ON PP-ENDOMORPHISM RINGS

W. K. NICHOLSON

ABSTRACT. A characterization is given of when all kernels (respectively images) of endomorphisms of a module are direct summands, a necessary condition being that the endomorphism ring itself is a left (respectively right) PP-ring. This result generalizes theorems of Small, Lenzing and Colby-Rutter and shows that R is left hereditary if and only if the endomorphism ring of every injective left module is a right PP-ring.

If R is a ring and $_RM$ is a module, it is well known that end $_RM$ is a regular ring (in the sense of von Neumann) if and only if both ker α and im α are direct summands of $_RM$ for all α in $S = \text{end }_RM$. In this note, each of these conditions is characterized separately, and one of the requirements is that S be a left (respectively right) PP-ring. Here a ring S is called a left PP-*ring* if every principal left ideal is projective, or equivalently if, for all $b \in S$, $\ell_S(b) = Se$ for some $e^2 = e \in S$. (Left and right annihilators are denoted by $\ell(X)$ and r(X).) Right PP-rings are defined analogously, and these rings seem to have been first introduced by Hattori [2]. Throughout the paper, all rings are associative with unity, all modules are unitary and endomorphisms are written opposite the scalars.

If M_S is a right S-module and $b \in S$ then, as Hattori [2] observed, the inclusions

$$M\ell_{S}(b) \subseteq \ell_{M}(b)$$
 and $Mb \subseteq \ell_{M}[r_{S}(b)]$

are, respectively, equalities if and only if the respective natural sequences

$$0 \rightarrow M \otimes Sb \rightarrow M \otimes S$$
 and $hom(S, M) \rightarrow hom(bS, M) \rightarrow 0$

are exact. We will call $M_S P$ -flat, respectively *P*-injective, when this condition is satisfied. (Hattori calls M_S "torsion free", respectively "divisible".) Hattori proved that the following are equivalent: (1) *S* is regular; (2) every M_S is *P*-flat; (3) every M_S is *P*-injective.

The first main result is the following:

THEOREM 1. The following are equivalent for a faithful module M_S :

- (1) For all $b \in S$, $\ell_M(b) = Me$ for some $e^2 = e \in S$.
- (2) M_S is P-flat and S is a left PP-ring.

PROOF. (1) \Rightarrow (2). If $b \in S$, let $\ell_M(b) = Me$ for some $e^2 = e \in S$. Then Meb = 0so eb = 0 because M_S is faithful. Hence $\ell_M(b) = Me \subseteq M\ell_S(b)$ so M_S is *P*-flat. Clearly, $Se \subseteq \ell_S(b)$; if sb = 0 then $ms \in \ell_M(b) = Me$ for each $m \in M$. Hence mse = ms for all $m \in M$ so $s \in Se$ (again because M_S is faithful). Thus $\ell_S(b) = Se$ so S is a left PP-ring.

This research was supported by NSERC grant A8075.

Received by the editors May 10, 1991; revised December 17, 1992.

AMS subject classification: 16A65.

[©] Canadian Mathematical Society 1993.

(2) \Rightarrow (1). Let $b \in S$. Since S is a left PP-ring, we have $\ell_S(b) = Se$, $e^2 = e \in S$. Hence the fact that M_S is P-flat implies $\ell_M(b) = M\ell_S(b) = MSe = Me$.

Note that M_s need not be faithful for $(2) \Rightarrow (1)$.

Our main interest in Theorem 1 is when $M = {}_{R}M$ is an *R*-module for some ring *R* and $S = \text{end}_{R}M$. Write ${}_{R}N | {}_{R}M$ to signify that ${}_{R}N$ is a direct summand of ${}_{R}M$. Then Theorem 1 specializes as follows:

THEOREM 1'. Given a left module $_RM$, write $S = \text{end}_RM$. Then the following conditions are equivalent:

(1) ker $\beta \mid {}_{R}M$ for all $\beta \in S$.

(2) M_S is P-flat and S is a left PP-ring.

In order to apply Theorem 1', we need conditions on $_RM$ which imply that M_S is P-flat where $S = \text{end }_RM$. The module $_RM$ is called a selfgenerator if it generates each of its images, that is, $Rm = M \cdot \text{hom}_R(M, Rm)$ for all $m \in M$. Thus, every generator (and hence every free module) is a selfgenerator. Clearly, $_RM$ is a selfgenerator if $Rm \mid M$ for all $m \in M$. Hence every semisimple module is a selfgenerator as is every regular module [5].

LEMMA 1. If _RM is a selfgenerator then M_S is P-flat where $S = \text{end}_RM$.

PROOF. Let $m\beta = 0$, $m \in M$, $\beta \in S$. Since $_RM$ is a selfgenerator, let $m = \sum m_i \alpha_i$, $m_i \in M$, $\alpha_i \in \hom_R(M, Rm)$. Then $M\alpha_i\beta \subseteq (Rm)\beta = 0$ so $\alpha_i \in \ell_S(\beta)$ for each *i*. Hence $m \in M\ell_S(\beta)$, as required.

Now Theorem 1' gives immediately

PROPOSITION 2. Let $S = \text{end}_R M$ and assume $_R M$ is a selfgenerator. Then S is a left **PP-ring** if and only if ker $\beta \mid M$ for all $\beta \in S$.

If $n \ge 1$ we call a module *n*-hereditary if every *n*-generated submodule is projective. A ring *R* is *left n*-hereditary if _{*R*}*R* is *n*-hereditary.

LEMMA 2. If R is left n-hereditary, then $_{R}F$ is n-hereditary for all f.g. free modules $_{R}F$.

PROOF. If $\{f_1, \ldots, f_k\}$ is a basis of $_RF$, induct on $k \ge 1$. It is clear if k = 1. If k > 1, let $G = Rf_1 \oplus \cdots \oplus Rf_{k-1}$. Suppose $_RM \subseteq F$ is *n*-generated. Then

$$P = \frac{M}{M \cap G} \cong \frac{M+G}{G} \subseteq \frac{F}{G} \cong {}_{R}R$$

so $M/(M \cap G)$ is projective (being *n*-generated). Hence $M \cong (M \cap G) \oplus P$, so $M \cap G$ is also *n*-generated. It is thus projective by induction, and we are done.

A similar argument shows that every free module over a hereditary ring is again hereditary. This, with Lemma 1, gives the following known results. COROLLARY. (1) Colby-Rutter [1]: A ring R is left hereditary if and only if end $_RF$ is a left PP-ring for all free modules $_RF$.

(2) Lenzing [3]: If $n \ge 1$, a ring R is left n-hereditary if and only if $M_n(R)$ is a left PP-ring.

(3) Small [4]: A ring R is left semihereditary if and only if $M_n(R)$ is a left PP-ring for all $n \ge 1$.

PROOF. If *R* is left hereditary (*n*-hereditary) so is each free module $_RF$. If $\beta \in S =$ end $_RF$, then $F\beta$ is projective in both cases. Since F_S is *P*-flat, end $_RF$ is a left PP-ring by Proposition 2. Conversely, if $L \subseteq R$ is a (*n*-generated) left ideal and $_RF \rightarrow L \rightarrow 0$ where $_RF$ is free (respectively $_RF = R^n$), choose $L' \subseteq F$ with $L' \cong L$. Then there exists $\beta: F \rightarrow L' \rightarrow 0$ so ker $\beta \mid F$ by Proposition 2. Thus L' (and hence L) is projective.

We now prove the "dual" to Theorem 1.

THEOREM 2. The following conditions are equivalent for a faithful module M_S :

(1) For all $b \in S$, Mb = Me for some $e^2 = e \in S$.

(2) M_S is P-injective and S is a right PP-ring.

PROOF (1) \Rightarrow (2). Given $b \in S$, let Mb = Me, $e^2 = e \in S$, so that b(1 - e) = 0(because M_S is faithful). If $m \in \ell_M[r_S(b)]$, this means m(1 - e) = 0, so $m \in Me = Mb$. Hence M_S is *P*-injective and it suffices to show $r_S(b) = (1 - e)S$. We have already shown that $1 - e \in r_S(b)$. If bs = 0, $s \in S$, then Mes = Mbs = 0 so es = 0 (again because M_S is faithful). Hence $s = (1 - e)s \in (1 - e)S$, as required.

(2) \Rightarrow (1). Let $b \in S$ and write $r_S(b) = fS$, $f^2 = f \in S$. Hence bf = 0 so b = b(1-f)and $Mb \subseteq M(1-f)$. But $M(1-f) \subseteq \ell_M[fS] = \ell_M[r_S(b)] = Mb$ because M_S is *P*-injective. Hence (1) follows with e = 1 - f.

As in Theorem 1, the proof of $(2) \Rightarrow (1)$ does not require that M_S is faithful.

If we specialize to the case where $M = {}_{R}M$ and $S = \text{end}_{R}M$, Theorem 2 becomes

THEOREM 2'. Given a left module $_RM$, write $S = \text{end}_RM$. Then the following conditions are equivalent:

(1) $M\beta \mid M$ for all $\beta \in S$.

(2) M_S is P-injective and S is a right PP-ring.

If we take R = M = S in Theorem 2' we obtain

COROLLARY. A ring S is regular if and only if S_S is P-injective and S is a right PPring.

Thus, for example, a right selfinjective, right PP-ring is regular.

It follows from Theorem 1' (and its Corollary (1)) that a ring R is left hereditary if and only if end $_{R}P$ is a left PP-ring for all projective modules $_{R}P$. Theorem 2' gives the "dual".

PROPOSITION 3. A ring R is left hereditary if and only if $S = \text{end}_R M$ is a right PP-ring for every injective module $_R M$.

PROOF. Given the condition, let $\beta: {}_{R}M \to {}_{R}N$ be epic and define $\gamma \in \text{end} [M \oplus E(N)]$ by $(m, x)\gamma = (0, x\beta)$. Then $N \cong \text{im } \gamma$ is injective by hypothesis. The rest follows from Theorem 2'.

Call a module $_RM$ a *selfcogenerator* if it cogenerates each of its cokernels, that is, $0 \neq x \in M/M\beta$, $\beta \in \text{end}_RM$, implies that $x\lambda \neq 0$ for some $\lambda \in \text{hom}_R(M/M\beta, M)$. Clearly cogenerators have this property as do modules $_RM$ in which $M\beta \mid M$ for all $\beta \in \text{end}_RM$. We have the "duals" of Lemma 1 and Proposition 2.

LEMMA 3. If _RM is a selfcogenerator then M_S is P-injective where $S = \text{end}_R M$.

PROOF. Given $\beta \in S$, let $m \in \ell_M[r_S(\beta)]$ and assume $m \notin M\beta$. Then $(m + M\beta)\lambda \neq 0$ for some $\lambda: M/M\beta \to M$, so $m\alpha \neq 0$ where $\alpha \in S$ is defined by $m\alpha = (m + M\beta)\lambda$. But $\beta\alpha = 0$ so this is a contradiction.

PROPOSITION 4. If _RM is a selfcogenerator then $S = \text{end}_RM$ is a right PP-ring if and only if $M\beta \mid M$ for all $\beta \in S$.

ACKNOWLEDGEMENT. The author would like to thank the referee for suggesting Propositions 3 and 4, and K. Varadarajan for several conversations.

REFERENCES

1. R. R. Colby and E. A. Rutter, Generalizations of QF-3 algebras, Trans. A.M.S. 153(1972), 371-386.

2. A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math. J. **17**(1960), 147–158.

3. H. Lenzing, Halberlich Endomorphismenringe, Math. Z. 118(1970), 219-240.

4. L. W. Small, Semihereditary rings, Bull. A.M.S. 73(1967), 656-658.

5. J. M. Zelmanowitz, Regular modules, Trans. A.M.S. 163(1972), 341-355.

Department of Mathematics and Statistics University of Calgary T2N 1N4