

Compositio Mathematica **121:** 163–181, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

On Plane Maximal Curves

A. COSSIDENTE¹, J. W. P. HIRSCHFELD², G. KORCHMÁROS¹ AND F. TORRES³

¹Dipartimento de Matematica, Università della Basilicata, Potenza, 85100, Italy. e-mail: {cossidente, korchmaros}@unibas.it ²School of Mathematical Sciences, University of Sussex, Brighton BN19QH, United Kingdom. e-mail: jwph@sussex.ac.uk ³IMECC-UNICAMP, Cx. P. 6065, Campinas, 13083-970-SP, Brazil. e-mail: ftorres@ime.unicamp.br

(Received: 3 March 1998; in final form: 4 December 1998)

Abstract. The number *N* of rational points on an algebraic curve of genus *g* overa finite field \mathbb{F}_q satisfies the Hasse–Weil bound $N \leq q+1+2g\sqrt{q}$. A curve that attains this bound is called maximal. With $g_0 = \frac{1}{2}(q - \sqrt{q})$ and $g_1 = \frac{1}{4}(\sqrt{q} - 1)^2$, it is known that maximalcurves have $g = g_0$ or $g \leq g_1$. Maximal curves with $g = g_0$ or g_1 have been characterized up to isomorphism. A natural genus to be studied is $g_2 = \frac{1}{8}(\sqrt{q} - 1)(\sqrt{q} - 3)$, and for this genus there are two non-isomorphic maximal curves known when $\sqrt{q} \equiv 3 \pmod{4}$. Here, a maximal curve with genus g_2 and a non-singular plane model is characterized as a Fermat curve of degree $\frac{1}{2}(\sqrt{q} + 1)$.

Mathematics Subject Classifications (2000): Primary 11Gxx, Secondary 14Gxx.

Key words: finite field, maximal curve, linear series.

1. Introduction

For a non-singular model of a projective, geometrically irreducible, algebraic curve \mathcal{X} defined over a finite field \mathbb{F}_q with q elements, the number N of its \mathbb{F}_q -rational points satisfies the Hasse–Weil bound, namely (see [We], [Sti, §V.2])

 $|N - (q+1)| \leq 2g\sqrt{q}.$

If \mathcal{X} is plane of degree d, then this bound implies that

$$|N - (q+1)| \le (d-1)(d-2)\sqrt{q}.$$
(1.1)

These bounds are important for applications in Coding theory (see, for example, [Sti]) and in finite geometry (see [H, Ch. 10]). In these subjects, one is often interested in curves with many \mathbb{F}_q -rational points and, in particular, maximal curves, that is, curves where N reaches the upper Hasse–Weil bound.

The approach of Stöhr and Voloch [SV] to the Hasse–Weil bound shows that an upper bound for N can be obtained via \mathbb{F}_q -linear series. This upper bound depends

not only on q and g, as does the Hasse–Weil bound, but also on the dimension and the degree of the linear series.

In [HK1] an upper bound for N was found in the case that \mathcal{X} is a plane curve. It turns out that this bound is better than the upper bound from (1.1) under certain conditions on d and q. The bound in [HK1] is not symmetrical in the different types of points that a non-singular plane curve has. In fact, two types of \mathbb{F}_q -rational points of \mathcal{X} are distinguished: (a) regular points (non-inflexion points), and (b) inflexion points. Let M_q and M'_q be the numbers of type (a) and (b) respectively. If d and q satisfy certain restrictions, then

$$2M_q + M'_q \leqslant d(q - \sqrt{q} + 1), \qquad (1.2)$$

and equality holds if and only if \mathcal{X} is a non-singular plane maximal curve over \mathbb{F}_q of degree $d = \frac{1}{2}(\sqrt{q} + 1)$. Actually, (1.2) holds true for any (possible singular) irreducible plane curve \mathcal{C} defined over \mathbb{F}_q provided that M_q and M'_q are introduced in the following way. Let \mathcal{X} be the normalization of \mathcal{C} , and let g_d^2 be the linear series associated to the morphism $\pi: \mathcal{X} \to \mathcal{C}$. For a point P of X let (j_0, j_1, j_2) be the order sequence of \mathcal{X} at P with respect to g_d^2 . If $\pi(P)$ is centred at an \mathbb{F}_q -rational point, then P is of type (a) or (b) according as $j_2 = 2j_1$ or not. In [HK1] the result was also phrased in terms of branches (or places), in the same terminology as [Wa, Chapter IV]; a branch $\pi(P)$ has order α and class β if $(0, \alpha, \alpha + \beta)$ is the order sequence of \mathcal{X} at P with respect to g_d^2 . The result given by (1.2) is the starting point of our research.

An example of a curve attaining the equality in (1.2) is provided by the Fermat curve \mathcal{F} (see Section 3) with equation, in homogeneous coordinates (U, V, W),

$$U^{(\sqrt{q}+1)/2} + V^{(\sqrt{q}+1)/2} + W^{(\sqrt{q}+1)/2} = 0.$$
(1.3)

The main result of the paper is to show the following converse (see Section 5).

THEOREM 1.1. If \mathcal{X} is a non-singular plane maximal curve over \mathbb{F}_q of degree $\frac{1}{2}(\sqrt{q}+1)$, then it is \mathbb{F}_q -isomorphic to \mathcal{F} when $q \ge 121$.

This result is connected to recent investigations on the genus of maximal curves [FT], [FGT], [FT1]. The genus g of a maximal curve \mathcal{X} over \mathbb{F}_q is at most $\frac{1}{2}\sqrt{q}(\sqrt{q}-1)$ [Ih], [Sti, §V.2] with equality holding if and only if \mathcal{X} is \mathbb{F}_q -isomorphic to the Hermitian curve with equation

 $u^{\sqrt{q}+1} + v^{\sqrt{q}+1} + w^{\sqrt{q}+1} = 0$.

[R-Sti]. In [FT] it was observed that

$$g \leq \frac{1}{4}(\sqrt{q}-1)^2$$
 if $g < \frac{1}{2}\sqrt{q}(\sqrt{q}-1)$,

a result conjectured in [Sti-X]. Also, if q is odd and

$$\frac{1}{4}(\sqrt{q}-1)(\sqrt{q}-2) < g \leq \frac{1}{4}(\sqrt{q}-1)^2,$$

then $g = \frac{1}{4}(\sqrt{q}-1)^2$ and \mathcal{X} is \mathbb{F}_q -isomorphic to the non-singular model of the curve with affine equation $y^q + y = x^{(\sqrt{q}+1)/2}$ [FGT, Thm. 3.1], [FT1, Prop. 2.5]. In general, the situation for either q odd and $g \leq \frac{1}{4}(\sqrt{q}-1)(\sqrt{q}-2)$ or q even and $g \leq \frac{1}{4}\sqrt{q}(\sqrt{q}-2)$ is unknown. In the latter case, an example where equality holds is provided by the non-singular model of the curve with affine equation

$$\sum_{i=1}^{t} y^{\sqrt{q}/2^{i}} = x^{q+1}, \quad \sqrt{q} = 2^{t}$$

and it seems that this example may be the only one up to \mathbb{F}_q -isomorphism [AT].

In [FGT, §2] the maximal curves obtained from the affine equation $y\sqrt{q} + y = x^m$, where *m* is a divisor of $(\sqrt{q} + 1)$, are characterized by means of Weierstrass semigroups at an \mathbb{F}_q -rational point; the genera of these curves are given by $g = \frac{1}{2}(\sqrt{q} - 1)(m - 1)$. If $m = \frac{1}{4}(\sqrt{q} + 1)$ and $\sqrt{q} \equiv 3 \pmod{4}$, we find two curves of genus $\frac{1}{8}(\sqrt{q} - 1)(\sqrt{q} - 3)$, namely the curve with affine equation $y\sqrt{q} + y = x^{(\sqrt{q}+1)/4}$ and the curve \mathcal{F} of our main result. It turns out that these curves are not \mathbb{F}_q -isomorphic (see Remark 4.1(ii)). As far as we know, this is the first example of two maximal curves of a given genus that are not \mathbb{F}_q -isomorphic for infinitely many values of q. It is an interesting open problem to decide if the two examples of maximal curves with genus g_2 are the only ones.

As in [HK], [HK1], [FT], [FGT], [FT1], the key tool used to carry out the research here is the approach of Stöhr and Voloch [SV] to the Hasse–Weil bound applied to suitable \mathbb{F}_q -linear series on the curve.

Convention. From now on, the word *curve* means a projective, geometrically irreducible, non-singular, algebraic curve.

2. Background

In this section we summarize background material concerning Weierstrass points and Frobenius orders from [SV, §§1–2].

Let \mathcal{X} be a curve of genus g defined over $\overline{\mathbb{F}}_q$ equipped with the action of the Frobenius morphism $\Phi_{\mathcal{X}}$ over \mathbb{F}_q . Let \mathcal{D} be a g_d^r on \mathcal{X} and suppose that it is defined over \mathbb{F}_q . Then associated to \mathcal{D} there exist two divisors on \mathcal{X} , namely the *ramification divisor*, denoted by $R = R^{\mathcal{D}}$, and the \mathbb{F}_q -Frobenius divisor, denoted by $S = S^{\mathcal{D}} = S^{(\mathcal{D},q)}$. Both divisors describe the geometrical and arithmetical properties of \mathcal{X} ; in particular, the divisor S provides information on the number $\#\mathcal{X}(\mathbb{F}_q)$ of \mathbb{F}_q -rational points of \mathcal{X} .

For $P \in \mathcal{X}$, let $j_i(P)$ be the *i*th (\mathcal{D}, P) -order, $\varepsilon_i = \varepsilon_i^{\mathcal{D}}$ be the *i*th \mathcal{D} -order (i = 0, ..., r), and $v_i = v_i^{(\mathcal{D},q)}$ be the *i*th \mathbb{F}_q -Frobenius order of \mathcal{D} (i = 0, ..., r-1). The curve \mathcal{X} is \mathcal{D} -classical, or \mathcal{D} is classical, if $(\varepsilon_0, \ldots, \varepsilon_r) = (0, \ldots, r)$. Similarly, \mathcal{X} is \mathcal{D} -Frobenius classical, or \mathcal{D} is Frobenius classical, if $(v_0, \ldots, v_{r-1}) = (0, \ldots, r-1)$. Then the following properties hold:

- (1) $\deg(R) = (2g-2)\sum_{i=0}^{r} \varepsilon_i + (r+1)d;$
- (2) $j_i(P) \ge \varepsilon_i$ for each *i* and each *P*;
- (3) $v_P(R) \ge \sum_{i=0}^r (j_i(P) \varepsilon_i)$ and equality holds if and only if $\det(\binom{j_i(P)}{\varepsilon_i}) \ne \infty$ 0 (mod *p*);
- (4) (v_i) is a subsequence of (ε_i) ;
- (5) $\deg(S) = (2g-2)\sum_{i=0}^{r-1} v_i + (q+r)d;$
- (6) $v_i \leq j_{i+1}(P) j_1(P)$, for each *i* and each $P \in \mathcal{X}(\mathbb{F}_q)$; (7) $v_P(S) \geq \sum_{i=0}^{r-1} (j_{i+1}(P) v_i)$, for each $P \in \mathcal{X}(\mathbb{F}_q)$, and equality holds if and only if $\det(\binom{j_{i+1}(P)}{v_i}) \not\equiv 0 \pmod{p}.$

Therefore, if $P \in \mathcal{X}(\mathbb{F}_q)$, properties (6) and (7) imply

(8)
$$v_P(S) \ge rj_1(P)$$
.

Consequently, from (5) and (8), we obtain the main result of [SV], namely,

(9) $\#\mathcal{X}(\mathbb{F}_q) \leq \deg(S)/r.$

3. Plane Maximal Curves of Degree $(\sqrt{q}+1)/2$

Throughout this section we use the following notation:

- (a) Σ_1 is the linear series on a plane curve over \mathbb{F}_q obtained from lines of $\mathbb{P}^2(\mathbb{F}_q)$, and Σ_2 is the series obtained from conics;
- (b) for i = 1, 2, the divisor R_i is the ramification divisor and S_i is the \mathbb{F}_q -Frobenius divisor associated to Σ_i ;
- (c) $j_n^i(P)$ is the *n*th (Σ_i, P) -order;
- (d) $\varepsilon_n^i = \varepsilon_n^{\Sigma_i}$ and $v_n^i = v_n^{(\Sigma_i,q)}$;
- (e) $p = \operatorname{char}(\mathbb{F}_q)$.

LEMMA 3.1. Let X be a plane non-singular curve over \mathbb{F}_q of degree d. If $d \not\equiv 1 \pmod{p}$, then \mathcal{X} is classical for Σ_1 .

Proof. See [Par, Corollary 2.2] for p > 2 and [Ho, Corollary 2.4] for $p \ge 2$.

COROLLARY 3.2. Let \mathcal{X} be a plane non-singular maximal curve over \mathbb{F}_q of degree d with $d \not\equiv 1 \pmod{p}$ and $2 < d \leq (\sqrt{q}+1)^2/3$. Then there exists $P_0 \in \mathcal{X}(\mathbb{F}_q)$ whose (Σ_1, P_0) -orders are 0, 1, 2.

Proof. Suppose that $j_2^1(P) > 2$ for each $P \in \mathcal{X}(\mathbb{F}_q)$. Then by Section 2(3) and the previous lemma we would have $v_P(R_1) \ge 1$ for such points *P*. Consequently, by Section 2(1) and the maximality of \mathcal{X} , it follows that

$$\deg(R_1) = 3(2g-2) + 3d \ge \#\mathcal{X}(\mathbb{F}_q) = (\sqrt{q}+1)^2 + \sqrt{q}(2g-2),$$

so that

$$0 \ge (\sqrt{q}+1)\left(\sqrt{q}+1-\frac{3d}{\sqrt{q}+1}\right) + (2g-2)(\sqrt{q}-3)$$

a contradiction.

Note that the hypothesis on d rules out the possibility q = 4.

Throughout the remainder of the paper, let \mathcal{X} be a plane non-singular maximal curve of degree d. We have the following relation between (Σ_1, P) -orders and (Σ_2, P) -orders for $P \in \mathcal{X}$.

Remark 3.3 [GV, p. 464]. For $P \in \mathcal{X}$, the set

 $\{j_1^1(P), j_2^1(P), 2j_1^1(P), j_1^1(P) + j_2^1(P), 2j_2^1(P)\}$

is contained in the set of (Σ_2, P) -orders.

Now suppose that *d* satisfies the hypotheses in Corollary 3.2 and let $P_0 \in \mathcal{X}(\mathbb{F}_q)$ be as in this corollary. Then, by Remark 3.3 and the fact that dim $(\Sigma_2) = 5$, the (Σ_2, P_0) -orders are 0, 1, 2, 3, 4 and $j := j_5^2(P_0)$ with $5 \le j \le 2d$. Therefore, by Section 2(2), (6), (4),

- (a) the Σ_2 -orders are 0, 1, 2, 3, 4 and $\varepsilon := \varepsilon_5^2$ with $5 \le \varepsilon \le j$;
- (b) the \mathbb{F}_q -Frobenius orders are 0, 1, 2, 3 and $v := v_4^2$ with $v \in \{4, \varepsilon\}$.

COROLLARY 3.4. Let \mathcal{X} be a plane non-singular maximal curve over \mathbb{F}_q of degree $d = \frac{1}{2}(\sqrt{q} + 1)$. If $\sqrt{q} \ge 11$, then

- (1) the Σ_2 -orders are 0, 1, 2, 3, 4, \sqrt{q} ;
- (2) the \mathbb{F}_q -Frobenius orders of Σ_2 are 0, 1, 2, 3, \sqrt{q} .

Proof. The curve \mathcal{X} satisfies the hypotheses in Corollary 3.2. So, with the above notation, we have to show that $\varepsilon = v = \sqrt{q}$.

(a) First it is shown that $v = \varepsilon$.

We have already seen that $v \in \{4, \varepsilon\}$. From Section 2(5), (8) and the maximality of \mathcal{X} we have that

$$deg(S_2) = (6 + \nu)(2g - 2) + (q + 5)(\sqrt{q} + 1)$$

$$\geq 5\#\mathcal{X}(\mathbb{F}_q)$$

$$= 5(\sqrt{q} + 1)^2 + 5\sqrt{q}(2g - 2),$$

so that

$$(\sqrt{q} - 5)(\sqrt{q} - 6 - v) \le 0.$$
 (3.1)

Then, if v = 4, we would have $\sqrt{q} \leq 10$, a contradiction.

(b) Now, p divides ε (see [G-Ho, Corollary 3]). From Section 2(6) and (a),

 $v = \varepsilon \leqslant j_5(P_0) - j_1(P_0) \leqslant \sqrt{q} \,.$

Therefore, from (3.1), the fact that $\sqrt{q} > 5$, and (a),

$$\varepsilon \in \{\sqrt{q} - 6, \sqrt{q} - 5, \sqrt{q} - 4, \sqrt{q} - 3, \sqrt{q} - 2, \sqrt{q} - 1, \sqrt{q}\}$$

Since p > 2 and p divides ε , the possibilities are reduced to the following:

 $\varepsilon \in \{\sqrt{q}-6, \sqrt{q}-5, \sqrt{q}-3, \sqrt{q}\}.$

If $\varepsilon = \sqrt{q} - 6$, then p = 3 and by the *p*-adic criterion [SV, Corollary 1.9] $\varepsilon = 6$ and so $\sqrt{q} = 12$, a contradiction.

If $\varepsilon = \sqrt{q} - 5$, then p = 5. Since $(\sqrt[\sqrt{q}-5) \not\equiv 0 \pmod{5}$, by the *p*-adic criterion we would have that 5 is also a Σ_2 -order, a contradiction.

If $\varepsilon = \sqrt{q} - 3$, then p = 3 and so $\sqrt{q} = 9$, which is eliminated by the hypothesis that $\sqrt{q} \ge 11$.

Hence $\varepsilon = \sqrt{q}$, which completes the proof.

Now the main result of this section can be stated. We recall that a maximal curve \mathcal{X} over \mathbb{F}_q is equipped with the \mathbb{F}_q -linear series $\mathcal{D}_{\mathcal{X}} := |(\sqrt{q} + 1)P_0|, P_0 \in \mathcal{X}(\mathbb{F}_q)$, which is independent of P_0 and provides a lot of information about the curve (see [FGT, §1]).

THEOREM 3.5. Let \mathcal{X} be a plane maximal curve over \mathbb{F}_q of degree $\frac{1}{2}(\sqrt{q}+1)$. Suppose that $\sqrt{q} \ge 11$. Then the linear series $\mathcal{D}_{\mathcal{X}}$ is the linear series Σ_2 cut out by conics.

Proof. First it is shown that, for $P \in \mathcal{X}(\mathbb{F}_q)$, the intersection divisor of the osculating conic $\mathcal{C}_P^{(2)}$ and \mathcal{X} satisfies

$$\mathcal{C}_{P}^{(2)} \mathcal{X} = (\sqrt{q} + 1)P. \tag{3.2}$$

To show this, let $P \in \mathcal{X}(\mathbb{F}_q)$; then, by Corollary 3.4(1) and Section 2(6), we have that $v = \sqrt{q} \leq j_5(P) - j_1(P) \leq \sqrt{q}$ (recall that $\deg(\Sigma_2) = \sqrt{q} + 1$). Consequently $j_5^2(P) = \sqrt{q} + 1$ and so (3.2) follows.

This implies that $\Sigma_2 \subseteq \mathcal{D}_{\mathcal{X}}$. Then to show the equality it is enough to show that $n + 1 := \dim(\mathcal{D}_{\mathcal{X}}) \leq 5$. To see this we use Castelnuovo's genus bound for curves in projective spaces as given in [FGT, p. 34]: the genus g of \mathcal{X} satisfies

$$2g \leqslant \begin{cases} (2\sqrt{q} - n)^2/(4n) & \text{if } n \text{ is even} \\ ((2\sqrt{q} - n)^2 - 1)/(4n) & \text{if } n \text{ is odd.} \end{cases}$$

Suppose that $n+1 \ge 6$. Then, since $2g = (\sqrt{q} - 1)(\sqrt{q} - 3)/4$, we would have

$$(\sqrt{q}-1)(\sqrt{q}-3)/4 \le ((2\sqrt{q}-5)^2-1)/20 = (\sqrt{q}-3)(\sqrt{q}-2)/5$$

a contradiction. This finishes the proof.

Next we compute the (Σ_1, P) -orders for $P \in \mathcal{X}$.

LEMMA 3.6. Let \mathcal{X} be a plane maximal curve over \mathbb{F}_q of degree $\frac{1}{2}(\sqrt{q}+1)$ and let $P \in \mathcal{X}$.

- (1) Two types of \mathbb{F}_q -rational points of \mathcal{X} are distinguished:
 - (a) regular points, that is, points whose (Σ_1, P) -orders are 0, 1, 2, so that $v_P(R_1) = 0$;
 - (b) inflexion points, that is, points whose (Σ_1, P) -orders are $0, 1, \frac{1}{2}(\sqrt{q}+1)$, so that $v_P(R_1) = (\sqrt{q}-3)/2$.
- (2) If $P \notin \mathcal{X}(\mathbb{F}_q)$, the (Σ_1, P) -orders are 0, 1, 2, so that $v_P(R_1) = 0$.

Proof. For each $P \in \mathcal{X}$ we have that $j_1^1(P) = 1$ because \mathcal{X} is non-singular. So we just need to compute $j(P) := j_2^1(P)$.

We know that $\mathcal{D}_{\mathcal{X}} = \Sigma_2 = 2\Sigma_1$, dim $(\Sigma_2) = 5$, and that $j_5^2(P) = \sqrt{q} + 1$ provided that $P \in \mathcal{X}(\mathbb{F}_q)$ (see proof of Theorem 3.5). In addition, by [FGT, Thm. 1.4(ii)], $j_5^2(P) = \sqrt{q}$ for $P \notin \mathcal{X}(\mathbb{F}_q)$.

Suppose that j(P) > 2. Then from Remark 3.3 we must have $j_5^2(P) = 2j(P)$. Since \sqrt{q} is odd, this is the case if and only if $2j(P) = \sqrt{q} + 1$ and $P \in \mathcal{X}(\mathbb{F}_q)$, because of the above computations.

The computations for $v_P(R_1)$ follow from Section 2(3).

Let

$$M_q = M_q(\mathcal{X}) := \#\{P \in \mathcal{X}(\mathbb{F}_q) : j_2^1(P) = 2\},\$$

and

$$M'_{q} = M'_{q}(\mathcal{X}) := \#\{P \in \mathcal{X}(\mathbb{F}_{q}) : j_{2}^{1}(P) = \frac{1}{2}(\sqrt{q} + 1)\}.$$

THEOREM 3.7. Let \mathcal{X} be a plane maximal curve over \mathbb{F}_q of degree $\frac{1}{2}(\sqrt{q}+1)$. Suppose that $\sqrt{q} \ge 11$. Then

(1) $M_q = (\sqrt{q} + 1)(q - \sqrt{q} - 2)/4;$ (2) $M'_q = 3(\sqrt{q} + 1)/2.$ Proof. By Lemma 3.6,

$$M_q + M'_q = \# \mathcal{X}(\mathbb{F}_q). \tag{3.3}$$

From this result, Lemma 3.1 and \$2(1),

$$\deg(R_1) = 3(2g-2) + \frac{3(\sqrt{q}+1)}{2} = \frac{\sqrt{q}-3}{2}M'_q.$$
(3.4)

The result now follows from (3.3) and (3.4), by taking into consideration the maximality of \mathcal{X} and that $2g - 2 = (\sqrt{q} - 5)(\sqrt{q} + 1)/4$.

4. The Example

In this section we study an example of a plane maximal curve of degree $\frac{1}{2}(\sqrt{q}+1)$. In the next section we will see that this example is, up to \mathbb{F}_q -isomorphism, the unique plane maximal curve of degree $\frac{1}{2}(\sqrt{q}+1)$.

Let q be a square power of a prime $p \ge 3$, and let \mathcal{F} be the Fermat curve given by (1.3). Then \mathcal{F} is non-singular and maximal. This is because \mathcal{F} is covered by the Hermitian curve with equation $u^{\sqrt{q}+1} + v^{\sqrt{q}+1} + w^{\sqrt{q}+1} = 0$ via the morphism $(u, v, w) \mapsto (U, V, W) = (u^2, v^2, w^2)$ (La, Prop. 6).

Remark 4.1. (i) The inflexion points of \mathcal{F} relative to Σ_1 are the ones over $U = \lambda$, over $V = \lambda$ and over $W = \lambda$ for λ a $(\sqrt{q} + 1)/2$ th root of -1. To see this we observe that the morphism $U : \mathcal{F} \to \mathbb{P}^1(\bar{\mathbb{F}}_q)$ has $(\sqrt{q} + 1)/2$ points, say $Q_1, \ldots, Q_{(\sqrt{q}+1)/2}$ over $U = \infty$ and it has just one point, say P_i , over $U = \lambda_i$ with $\lambda_i^{(\sqrt{q}+1)/2} = -1$. Hence, for each $i = 1, \ldots, (\sqrt{q} + 1)/2$, div $(U - \alpha_i) = \frac{1}{2}(\sqrt{q} + 1)P_i - \sum_j Q_j$. A similar result holds for div $(V - \alpha_i)$ and div $(W - \alpha_i)$.

(ii) The Weierstrass semigroup at any of the $3(\sqrt{q}+1)/2$ points above is $(2(\sqrt{q}-1), 2(\sqrt{q}+1))$.

The fact that $(\sqrt{q} - 1)/2$ is a non-gap at an inflexion point is explained as follows. In (i), the affine functions U, V, W are really the projective functions U/W, V/W, W/U. Hence $\operatorname{div}(1/(U/W) - \alpha_i) = \sum_j Q_j - \frac{1}{2}(\sqrt{q} + 1)P_i$ and $\operatorname{div}(V/W) = \sum_j P_j - \sum_j Q_j$. Then by using the product of both functions we find that $(\sqrt{q} - 1)/2$ is a Weierstrass non-gap at P_i .

Since this semigroup cannot be the Weierstrass semigroup at a point of the non-singular model \mathcal{X} of $y^{\sqrt{q}} + y = x^{(\sqrt{q}+1)/4}$, $\sqrt{q} \equiv 3 \pmod{4}$, [G-Vi], we conclude that \mathcal{F} is not \mathbb{F}_q -isomorphic to \mathcal{X} ; hence these curves are not \mathbb{F}_q -isomorphic.

Let $\lambda_1, \ldots, \lambda_{(\sqrt{q}-1)/2}, \lambda := \lambda_{(\sqrt{q}+1)/2}$ be the roots of $T^{(\sqrt{q}+1)/2} = -1$, and so each λ_i is in \mathbb{F}_q . Let \mathcal{Y} be the non-singular model of the affine curve with equation

$$X^{(\sqrt{q}+1)/2} = F(Y), \tag{4.1}$$

with $F(Y) \in \mathbb{F}_q[Y]$ satisfying the following properties:

- (a) deg $F = (\sqrt{q} 1)/2;$
- (b) the roots of *F* are $c_j := (\lambda_j \lambda)^{-1}$, $j = 1, ..., (\sqrt{q} 1)/2$; (c) either $F(0)^{\sqrt{q}-1} = 1$ or $F(0)^{\sqrt{q}-1} = -1$.

PROPOSITION 4.2. The curve \mathcal{F} is \mathbb{F}_q -isomorphic to \mathcal{Y} . *Proof.* Write $f = U^{(\sqrt{q}+1)/2} = \sum_{j=0}^{(\sqrt{q}+1)/2} A_j (U-\lambda)^j$ with $A_j = (D_U^j f)(\lambda)$ and D_U^j the *j*th Hasse derivative. We have that $A_0 = -1$ and $A_{(\sqrt{q}+1)/2} = 1$, so that

$$\frac{U^{(\sqrt{q}+1)/2}+1}{(U-\lambda)^{(\sqrt{q}+1)/2}} = \sum_{j=1}^{(\sqrt{q}+1)/2} A_j \frac{1}{(U-\lambda)^{(\sqrt{q}+1)/2-j}} .$$
(4.2)

Also, Equation (1.3) with W = 1 is equivalent to

$$\left[\frac{V}{U-\lambda}\right]^{(\sqrt{q}+1)/2} = \sum_{j=1}^{(\sqrt{q}+1)/2} \frac{-A_j}{(U-\lambda)^{(\sqrt{q}+1)/2-j}} \,.$$

Consequently, for $X = V/(U - \lambda)$ and $Y = 1/(U - \lambda)$ we obtain an equation of type (4.1). From (4.2),

$$F(Y) = \sum_{j=1}^{(\sqrt{q}+1)/2} (-A_j) = -Y^{(\sqrt{q}+1)/2} \left[\left(\frac{1}{Y} + \lambda\right)^{(\sqrt{q}+1)/2} + 1 \right]$$

belongs to $\mathbb{F}_q[Y]$, it has degree $(\sqrt{q}-1)/2$, its roots are $(\lambda_j - \lambda)^{-1}$

 $(j = 1, ..., (\sqrt{q} - 1)/2)$, and $F(0) = A_{(\sqrt{q}+1)/2} \in \mathbb{F}_{\sqrt{q}}$. Conversely, let us start with (4.1). Writing $F(Y) = k \prod_{j=1}^{(\sqrt{q}-1)/2} (Y - c_j)$ with $k \in \mathbb{F}_q^*$, $c_j := \lambda_j - \lambda$, and setting $X = V/(U - \lambda)$ and $Y = 1/(U - \lambda)$, from (4.1) we find that

$$V^{(\sqrt{q}+1)/2} = k(-1)^{(\sqrt{q}-1)/2} \prod_{j} c_j (U^{(\sqrt{q}+1)/2} + 1)$$

Since $k(-1)^{(\sqrt{q}-1)/2} \prod_i c_i = F(0) =: c^{-1}$, we then have an equation of type

$$cV^{(\sqrt{q}+1)/2} = U^{(\sqrt{q}+1)/2} + 1$$
 with $c^{2(\sqrt{q}-1)} = 1.$ (4.3)

Let $\varepsilon \in \overline{\mathbb{F}}_p$ such that $c\varepsilon^{(\sqrt{q}+1)/2} = -1$. Then (4.3) implies that $\varepsilon \in \mathbb{F}_q^*$. Then setting $V = \varepsilon V'$ we obtain an equation of type (1.3) with W = 1.

5. Proof of the Main Result

Throughout the whole section we let $q \ge 121$ and fix the following notation:

- (a) \mathcal{X} is a non-singular plane maximal curve over \mathbb{F}_q of degree $\frac{1}{2}(\sqrt{q}+1)$;
- (b) f = 0 is a minimal equation of \mathcal{X} with $f \in \mathbb{F}_q[X, Y]$.

From Lemma 3.1 and Corollary 3.4, \mathcal{X} has the following properties:

- (i) \mathcal{X} is classical for Σ_1 ;
- (ii) \mathcal{X} is non-classical for Σ_2 ;
- (iii) \mathcal{X} is Frobenius non-classical for Σ_2 .

Plane curves satisfying (i), (ii), (iii) above have been characterized in terms of their equations [GV], [HK1].

LEMMA 5.1. There exist $h, s, z_0, \ldots, z_5 \in \mathbb{F}_q[X, Y]$ such that

$$hf = z_0^{\sqrt{q}} + z_1^{\sqrt{q}} X + z_2^{\sqrt{q}} Y + z_3^{\sqrt{q}} X^2 + z_4^{\sqrt{q}} XY + z_5^{\sqrt{q}} Y^2$$
(5.1)

and

$$sf = z_0 + z_1 X^{\sqrt{q}} + z_2 Y^{\sqrt{q}} + z_3 X^{2\sqrt{q}} + z_4 (XY)^{\sqrt{q}} + z_5 Y^{2\sqrt{q}}.$$
(5.2)

For a point $P = (a, b, 1) \in \mathcal{X}$ such that $z_i(a, b) \neq 0$ for at least one index $i, 0 \leq i \leq 5$, the conic with equation

$$z_0(a, b) + z_1(a, b)X + z_2(a, b)Y + z_3(a, b)X^2 + z_4(a, b)XY + z_5(a, b)Y^2 = 0$$

is the osculating conic of X at P.

Note that Equation (5.2) is invariant under any change of projective coordinates. To see how the polynomials z_i change, we introduce the matrix

$$\Delta(z_0, \dots, z_5) = \begin{pmatrix} 2z_0 & z_1 & z_2 \\ z_2 & 2z_3 & z_4 \\ z_3 & z_4 & 2z_5 \end{pmatrix},$$
(5.3)

and use homogeneous coordinates $(X) = (X_0, X_1, X_2)$. Now, if the change from (X) to (X') is given by (X) = A(X') where A is a non-singular matrix over $\overline{\mathbb{F}}_q$, then (5.2) becomes, again in non-homogeneous coordinates,

$$HF = Z_0^{\sqrt{q}} + Z_1^{\sqrt{q}} X' + Z_2^{\sqrt{q}} Y' + Z_3^{\sqrt{q}} X'^2 + Z_4^{\sqrt{q}} X' Y' + Z_5^{\sqrt{q}} Y'^2,$$
(5.4)

where $H, F, Z_0, \ldots, Z_5 \in \overline{\mathbb{F}}_q[X', Y']$ and F = 0 is the equation of \mathcal{X} with respect to the new coordinate system. Also,

$$\Delta(Z_0, \dots, Z_5) = B^{tr} \Delta(z_0, \dots, z_5) B, \qquad (5.5)$$

where B is the matrix satisfying $B^{\sqrt{q}} = A$. If A is a matrix over \mathbb{F}_q , then $Z_0, \ldots, Z_5 \in \mathbb{F}_q[X', Y']$, and (5.1) becomes

$$SF = Z_0 + Z_1 X'^{\sqrt{q}} + Z_2 Y'^{\sqrt{q}} + Z_3 X'^{2\sqrt{q}} + Z_4 (X'Y')^{\sqrt{q}} + Z_5 Y'^{2\sqrt{q}}.$$
 (5.6)

For a rational function $u \in \overline{\mathbb{F}}_q(\mathcal{X})$, the symbol $v_P(u)$ denotes the order of u at $P \in \mathcal{X}$. Note that z_i , for $0 \le i \le 5$, can be viewed as a rational function of $\overline{\mathbb{F}}_q(\mathcal{X})$. We define $e_P := -\min_{0 \le i \le 5} v_P(z_i)$.

LEMMA 5.2. For $P \in \mathcal{X}$, the order $v_P(\det(\Delta(z_0, \ldots, z_5)))$ is either $2 + e_P$ or e_P according as P is an inflexion point or not.

Proof. Take *P* as the origin and the tangent to \mathcal{X} at *P* as the *X*-axis. Since *P* is a non-singular point of \mathcal{X} , there exists a formal power series $y(x) \in \overline{\mathbb{F}}_q[[x]]$ of order ≥ 1 , such that f(x, y(x)) = 0. For $0 \leq i \leq 5$, put $m_i = z_i(x, y(x))x^{e_p}$, so that $v_P(m_i(x)) \geq 0$. From (5.1),

$$m_0(x)^{\sqrt{q}} + m_1(x)^{\sqrt{q}}x + m_2(x)^{\sqrt{q}}y(x) + + m_3(x)^{\sqrt{q}}x^2 + m_4(x)^{\sqrt{q}}xy(x) + m_5(x)^{\sqrt{q}}y(x)^2 = 0.$$

Putting $y = c_s x^s + ...$, with $c_s \neq 0$ and $k_i = v_P(m_i(x))$, the left-hand side is the sum of six formal power series in the variable x whose orders are as follows:

$$k_0\sqrt{q}, k_1\sqrt{q}+1, k_2\sqrt{q}+s, k_3\sqrt{q}+2, k_4\sqrt{q}+s+1, k_5\sqrt{q}+2s.$$

At least two of these orders are equal, and they are less than or equal to the remaining four. Because of Lemma 3.6 we have two possibilities:

- (1) $s = \frac{1}{2}(\sqrt{q}+1)$, that is, P is an inflexion point, and $k_0 \ge 2$, $k_1 = 1$, $k_2 \ge 1$, $k_3 \ge 1$, $k_4 \ge 1$, $k_5 = 0$;
- (2) s = 2, that is, P is a regular point, and $k_0 \ge 1$, $k_1 \ge 1$, $k_2 = k_3 = 0$, $k_4 \ge 0$, $k_5 \ge 0$.

In case (1), $\det(\Delta(z_0(x), ..., z_5(x))) = x^{e_p}[cx^2 + ...]$, where $c = -c_5c_1^2$ with $m_5(x) = c_5 + ...$ and $m_1(x) = c_1x + ...$ In case (2), $\det(\Delta(z_0(x), ..., z_5(x))) = x^{e_p}[c + ...]$, where $c = -c_3c_4$ with $m_3(x) = c_3 + ...$, and $m_4(x) = c_4 + ...$ This completes the proof of the lemma.

Following [SV, §1], let $\phi : \mathcal{X} \to \mathbb{P}^5(\overline{\mathbb{F}}_q)$ be the morphism where $\phi(Q) = (z_0, \ldots, z_5)$, for a point $Q \in \mathcal{X}$, and $z_i \in \overline{\mathbb{F}}_q(\mathcal{X})$. Since $P \in \mathcal{X}$ is a non-singular point of \mathcal{X} , there exists a formal power series $y(x) \in \overline{\mathbb{F}}_q[[x]]$ of order ≥ 1 such that f(x + a, y(x) + b) = 0, where P = (a, b, 1). Let

$$m_i(x) = z_i(x+a, y(x)+b)x^{e_p},$$

with $i = 0, \ldots, 5$. Then we have

$$\phi(P) = (m_0(x), \ldots, m_5(x)),$$

which is a primitive branch representation of $\phi(P)$.

LEMMA 5.3. The degree of $\phi(\mathcal{X})$ is $\sqrt{q} + 1$.

Proof. Let Σ denote the cubic hypersurface in $\mathbb{P}^5(\bar{\mathbb{F}}_q)$ given by (5.3). By the previous lemma, the intersection multiplicity $I(\phi(\mathcal{X}), \Sigma; \phi(P))$ of $\phi(\mathcal{X})$ and Σ at $\phi(P)$ is either 2 or 0 according as P is an inflexion point or a regular point of \mathcal{X} . This shows that $\phi(\mathcal{X})$ is not contained in Σ . From Bézout's theorem and Theorem 3.7(2), we obtain 3 deg $(\phi(\mathcal{X})) = 2.3(\sqrt{q} + 1)/2$, whence deg $(\phi(\mathcal{X})) = \sqrt{q} + 1$.

LEMMA 5.4. For a generic point $P \in \mathcal{X}$, there exists a hyperplane H such that

- (1) $I(\phi(\mathcal{X}), H; \phi(P)) \ge \sqrt{q};$
- (2) the Frobenius image $\Phi(\phi(P))$ lies on H.

Proof. Choose a point $P = (a, b, 1) \in \mathcal{X}$ such that $z_i(a, b) \neq 0$ for at least one index *i*, with $0 \leq i \leq 5$. Then

$$\phi(P) = (z_0(a, b), z_1(a, b), z_2(a, b), z_3(a, b), z_4(a, b), z_5(a, b)).$$

Note that all points of \mathcal{X} , apart from a finite number of them, are of this kind. Let $X_0 + \alpha X_1 + \beta X_2 + \alpha^2 X_3 + \alpha \beta X_4 + \beta^2 X_5 = 0$ be the equation of the hyperplane H, where $\alpha = a^{\sqrt{q}}$, $\beta = b^{\sqrt{q}}$. There exists a formal power series y(x) of order ≥ 1 such that f(x + a, y(x) + b) = 0. Putting $z_i(x) = z_i(x + a, y(x) + b)$, we have

$$I(\phi(\mathcal{X}), \Sigma; \phi(P)) = \operatorname{ord}\{z_0(x) + \alpha z_1(x) + \beta z_2(x) + \alpha^2 z_3(x) + \alpha \beta z_4(x) + \beta^2 z_5(x)\}.$$

From (5.2) we have

$$z_0(x) + z_1(x)(x+a)^{\sqrt{q}} + z_2(x)(y(x)+b)^{\sqrt{q}} + z_3(x)(x+a)^{2\sqrt{q}} + z_4(x)((x+a)(y(x)+b))^{\sqrt{q}} + z_5(x)(y(x)+b)^{2\sqrt{q}} = 0.$$

Since y(x) has order ≥ 1 , that is, y(x) = cx + ..., then

$$z_0(x) + z_1(x)a^{\sqrt{q}} + z_2(x)b^{\sqrt{q}} + z_3(x)a^{2\sqrt{q}} + z_4(x)(ab)^{\sqrt{q}} + z_5(x)b^{2\sqrt{q}} + x^{\sqrt{q}}[\ldots] = 0,$$

which proves (1).

To check (2), note that (5.1) yields

$$z_0(a, b)^{\sqrt{q}} + z_1(a, b)^{\sqrt{q}}a + z_2(a, b)^{\sqrt{q}}b + z_3(a, b)^{\sqrt{q}}a^2 + z_4(a, b)^{\sqrt{q}}(ab) + z_5(a, b)^{\sqrt{q}}b^2 = 0$$

Thus

$$z_0(a,b)^q + z_1(a,b)^q a^{\sqrt{q}} + z_2(a,b)^q b^{\sqrt{q}} + z_3(a,b)^q a^{2\sqrt{q}} + z_4(a,b)^q (ab)^{\sqrt{q}} + z_5(a,b)^q b^{2\sqrt{q}} = 0.$$

Since

$$\Phi(\phi(P)) = (z_0(a, b)^q, z_1(a, b)^q, z_2(a, b)^q, z_3(a, b)^q, z_4(a, b)^q, z_5(a, b)^q),$$

and $\alpha = a^{\sqrt{q}}, \beta = b^{\sqrt{q}}$, so (2) follows.

Now, the linear series of hyperplanes sections of $\phi(\mathcal{X})$ is equivalent to the base-point-free linear series $\mathcal{D} - E$, where $\mathcal{D} \cong \mathbb{P}(\langle z_0, \ldots, z_5 \rangle)$ and E := $\sum_{P \in \mathcal{X}} e_P P$. By Lemma 5.3, this linear series is contained in $\mathcal{D}_{\mathcal{X}} = |(\sqrt{q} + 1)P_0|$, $P_0 \in \mathcal{X}(\mathbb{F}_q)$, because \mathcal{X} is maximal; hence $(\sqrt{q}+1)P_0 \sim \sqrt{q}P + \Phi_{\mathcal{X}}(P)$ ([FGT, Corollary 1.2]). Note that we do not assert that equality holds. In fact, this is the case if and only if $\phi(\mathcal{X})$ is not degenerate, that is, z_0, \ldots, z_5 are \mathbb{F}_q -linearly independent. This gives the following result.

LEMMA 5.5. The base-point-free linear series of \mathcal{X} generated by the curves z_0, \ldots, z_5 is contained in $\mathcal{D}_{\mathcal{X}}$.

The next step is to determine the degrees of the z_i .

LEMMA 5.6. The degrees satisfy $\max_{0 \le i \le 5} \deg(z_i) = 2$. Proof. As before, the base-point-free linear series $\sum_{i=0}^{5} c_i z_i - E$ on \mathcal{X} is contained in $\mathcal{D}_{\mathcal{X}}$; hence it is contained in the linear series cut out by conics on \mathcal{X} , by Theorem 3.5. This implies the existence of constants $d_i^{(i)}$ such that $\operatorname{div}(z_i) - E = \operatorname{div}(d_i)$, i = 0, ..., 5, where

 $d_i = d_i(X, Y) = d_0^{(i)} + d_1^{(i)}X + d_2^{(i)}Y + d_3^{(i)}X^2 + d_4^{(i)}XY + d_5^{(i)}Y^2$

Choose an index k such that $z_k(X, Y) \neq 0 \pmod{f(X, Y)}$. Then

 $\operatorname{div}(z_i/z_k) = \operatorname{div}(d_i/d_k).$

Thus $z_i(X, Y)d_k(X, Y) \equiv z_k(X, Y)d_i(X, Y) \pmod{f(X, Y)}$. Now, re-write (5.1) in terms of $d_i(X, Y)$:

$$hfd_k = z_k \sqrt{q} (d_0 \sqrt{q} + d_1 \sqrt{q} X + d_2 \sqrt{q} Y + d_3 \sqrt{q} X^2 + d_4 \sqrt{q} XY + d_5 \sqrt{q} Y^2).$$

Since $z_k(X, Y) \neq 0 \pmod{f(X, Y)}$, so f(X, Y) must divide the other factor on the right-hand side, and hence there exists $g \in \overline{\mathbb{F}}_q[X, Y]$ such that

$$gf = d_0^{\sqrt{q}} + d_1^{\sqrt{q}} X + d_2^{\sqrt{q}} Y + d_3^{\sqrt{q}} X^2 + d_4^{\sqrt{q}} XY + d_5^{\sqrt{q}} Y^2 ,$$

with $deg(d_i) \leq 2$, for $i = 0, \dots 5$. Thus we may assume that g = h and $d_i(X, Y) = z_i(X, Y)$ all *i*. It remains to show that at least one of the polynomials $z_i(X, Y)$ has degree 2. However, if $deg(z_i(X, Y)) \leq 1$ for all *i*, then the linear series generated by z_0, \ldots, z_5 would be contained in the linear series cut out by lines. But this would imply that $\deg(\phi(\mathcal{X})) \leq (\sqrt{q} + 1)/2$, contradicting Lemma 5.3.

LEMMA 5.7. The polynomials h and s in Lemma 5.1 may be assumed to be equal.

Proof. Since deg(z_i) ≤ 2 for all *i*, we can re-write

$$z_0 + z_1 X^{\sqrt{q}} + z_2 Y^{\sqrt{q}} + z_3 X^{2\sqrt{q}} + z_4 (XY)^{\sqrt{q}} + z_5 Y^{2\sqrt{q}}$$

in the form

$$w_0^{\sqrt{q}} + w_1^{\sqrt{q}}X + w_2^{\sqrt{q}}Y + w_3^{\sqrt{q}}X^2 + w_4^{\sqrt{q}}XY + w_5^{\sqrt{q}}Y^2$$

where $w_i \in \mathbb{F}_q[X, Y]$ and $\max_{0 \le i \le 5} \deg(w_i) = \max_{0 \le i \le 5} \deg(z_i)$. Comparing this with (5.1) we see that z_i and w_i only differ by a constant in \mathbb{F}_q independent of i, $0 \le i \le 5$. Substituting cz_i for w_i then gives

$$w_0^{\sqrt{q}} + w_1^{\sqrt{q}} X + w_2^{\sqrt{q}} Y + w_3^{\sqrt{q}} X^2 + w_4^{\sqrt{q}} XY + w_5^{\sqrt{q}} Y^2$$

= $c^{\sqrt{q}} (z_0^{\sqrt{q}} + z_1^{\sqrt{q}} X + z_2^{\sqrt{q}} Y + z_3^{\sqrt{q}} X^2 + z_4^{\sqrt{q}} XY + z_5^{\sqrt{q}} Y^2)$
= $c^{\sqrt{q}} hf$. (5.7)

Now, by the previous lemma we can write z_i explicitly in the form

$$z_i = t_0^{(i)} + t_1^{(i)}X + t_2^{(i)}Y + t_3^{(i)}X^2 + t_4^{(i)}XY + t_5^{(i)}Y^2,$$
(5.8)

for i = 0, ...5. Let $t := c^{\sqrt{q}}h$; then (5.7) yields that $(t_j^{(i)})^{\sqrt{q}} = ct_i^{(j)}$ for $0 \le i, j \le 5$. Putting i = j, this gives $c^{\sqrt{q}+1} = 1$. Choose an element k in $\overline{\mathbb{F}}_q$ such that $k^{\sqrt{q}-1} = c$, and put $d_i = k^{-1}z_i$, $0 \le i \le 5$. Then (5.1) and (5.2) become respectively

$$\begin{aligned} hk^{-\sqrt{q}}f &= d_0^{\sqrt{q}} + d_1^{\sqrt{q}}X + d_2^{\sqrt{q}}Y + d_3^{\sqrt{q}}X^2 + d_4^{\sqrt{q}}XY + d_5^{\sqrt{q}}Y^2, \\ tk^{-1}f &= k(d_0 + d_1X^{\sqrt{q}} + d_2Y^{\sqrt{q}} + d_3X^{2\sqrt{q}} + d_4(XY)^{\sqrt{q}} + d_5Y^{2\sqrt{q}}. \end{aligned}$$

Put $h' = hk^{-\sqrt{q}}$ and $t' = tk^{-1}$. Then h' = t', and this completes the proof.

Next we determine explicitly the coefficients $t_j^{(i)}$ given in (5.8) or, equivalently, the 6×6 matrix $T = (t_i^{(i)})$. From Lemma 5.7 we can assume that

$$(t_j^{(i)})^{\sqrt{q}} = t_i^{(j)}.$$
(5.9)

for $0 \le i, j \le 5$. In other words, we can assume that *T* is a Hermitian matrix over $\mathbb{F}_{\sqrt{q}}$.

To obtain further relations between elements of T, we go back to (5.3) and note that

 $(\det(\Delta(z_0,\ldots,z_5)))^{\sqrt{q}}=0$

can actually be regarded as the equation of the Hessian curve $\mathcal{H}(Z)$ associated to the algebraic curve \mathcal{Z} with equation

$$z_0^{\sqrt{q}} + z_1^{\sqrt{q}}X + z_2^{\sqrt{q}}Y + z_3^{\sqrt{q}}X^2 + z_4^{\sqrt{q}}XY + z_5^{\sqrt{q}}Y^2 = 0;$$

here $z_i = z_i(X, Y)$. Hence $\mathcal{H}(\mathcal{Z})$ is \sqrt{q} -fold covered by the curve \mathcal{C} with equation $\det(\Delta(z_0, \ldots, z_5)) = 0$, and Lemma 5.2 can be interpreted in terms of intersection multiplicities between \mathcal{C} and \mathcal{X} ; namely, $I(\mathcal{C}, \mathcal{X}; P)$ is either $2 + e_P$ or e_P according

as $P \in \mathcal{X}$ is an inflexion point or not. Now, $I(\mathcal{H}(\mathcal{X}), \mathcal{X}; P) = s(P) - 2$, where $\mathcal{H}(\mathcal{X})$ is the Hessian of \mathcal{X} and $s(P) := I(\mathcal{X}, l; P)$, with *l* the tangent to \mathcal{X} at the point *P*; see, for example, (Wa, Ch.4, §6)) and, for a characteristic-free approach to Hessian curves, see (OO, Ch.17)). Comparing the intersection divisors $C.\mathcal{X}$ and $\mathcal{H}(\mathcal{X}).\mathcal{X}$, we see that $(n-2)/2 C.\mathcal{X} \ge \mathcal{H}(\mathcal{X}).\mathcal{X}$ with $n = \frac{1}{2}(\sqrt{q}+1)$. Hence, by Noether's "AF + BG" Theorem, (Sei, p. 133), we obtain

$$(\det(\Delta(z_0,\ldots,z_5)))^{(n-2)/2} = AF + BG ,$$

with F the projectivization of f and A, B, G homogeneous polynomials in $\overline{\mathbb{F}}_q[X_0, X_1, X_2]$, where G = 0 is the equation of $\mathcal{H}(\mathcal{X})$. As $\det(\Delta(z_0, \ldots, z_5))$ is a polynomial of degree 6 (cf. Lemma 5.6), while $\deg(G) = 3(n-2)$, so B must be a constant. This yields that $e_P = 0$ for each $P \in \mathcal{X}$. For an inflexion point $P \in \mathcal{X}$, we can now infer from the proof of Lemma 5.2 that if P = (0, 0, 1) and l is the X-axis, then $z_i(0, 0) = 0, i = 0, \ldots 4$, and thus $\det(\Delta(z_0, \ldots, z_5))$ has no terms of degree ≤ 2 . This shows that each inflexion point P of \mathcal{X} is a singular point of C.

By a standard argument depending on the upper bound for the number of singular points of an absolutely irreducible algebraic curve of degree m, namely (m-1)(m-2)/2, it can be shown that C is doubly covered by an absolutely irreducible cubic curve U of equation u = 0, with u homogeneous in $\overline{\mathbb{F}}_{d}[X_{0}, X_{1}, X_{2}]$. Hence,

$$\det(\Delta(z_0,\ldots,z_5)) = u^2. \tag{5.10}$$

Consider now a minor Δ_{ij} of $\Delta(z_0, \ldots, z_5)$, and suppose that Δ_{ij} is not the zero polynomial. Then $\Delta_{ij} = 0$ can be regarded as the equation of a quartic curve \mathcal{V}_{ij} . Since \mathcal{V}_{ij} also passes through each inflexion point of \mathcal{X} , so \mathcal{V}_{ij} and \mathcal{U} have at least 3n common points. On the other hand, $\deg(\mathcal{V}_{ij}) \deg(\mathcal{U}) = 12$, and because 3n > 12, so \mathcal{U} is a component of \mathcal{V}_{ij} . This shows the existence of linear homogeneous polynomials $l_0, \ldots, l_5 \in \overline{\mathbb{F}}_q[X_0, X_1, X_2]$ such that

$$4z_3z_5 - z_4^2 = ul_0, \quad 2z_1z_5 - z_2z_4 = -ul_1, \quad z_1z_4 - 2z_2z_3 = ul_2, \tag{5.11}$$

$$4z_0z_5 - z_2^2 = ul_3, \quad 2z_0z_4 - z_1z_2 = -ul_4, \quad 4z_0z_3 - z_1^2 = ul_5.$$
(5.12)

Let *L* denote the matrix $\Delta(l_0, l_1, l_2, l_3, l_4, l_5)$. From elementary linear algebra, $\Delta^* = uL$ where Δ^* is the adjoint of $\Delta(z_0, \ldots, z_5)$, and hence $(\det(\Delta(z_0, \ldots, z_5)))^2 = u^3 \det(L)$. Comparison with (5.10) gives $u = \det(L)$. Thus $\Delta^* = \det(L)L$. Also, $\Delta(z_0, \ldots, z_5) = \det(L)L^{-1}$; that is,

$$2z_0 = l_3 l_5 - l_4^2, \quad z_1 = -(l_1 l_5 - l_2 l_4), \quad z_2 = l_1 l_4 - l_2 l_3, \tag{5.13}$$

$$2z_3 = l_0 l_5 - l_2^2, \quad z_4 = -(l_0 l_4 - l_1 l_2), \quad 2z_5 = l_0 l_3 - l_1^2.$$
(5.14)

Note that we have also seen that \mathcal{U} has equation det(L) = 0.

Set

178

$$l_i = a_i X + b_i Y + c_i$$
, for $i = 0, 2, 3, 5$,
 $l_i = -a_i X - b_i Y - c_i$, for $i = 1, 4$.

Now we take an inflexion point P on \mathcal{X} to be the origin and the tangent of \mathcal{X} at P to be the X-axis. Also, $I(\mathcal{U}, \mathcal{X}; P) = 1$, so P is a non-singular point of \mathcal{U} , and the tangent to \mathcal{U} at P is not the X-axis. We take this tangent to be the Y-axis. We are going to prove that the Y-axis is a component of \mathcal{U} . A direct computation shows that (5.11) yields

$$z_0(X, Y) = kY^2, (5.15)$$

$$l_5 = a_5 X$$
, with $a_5 \neq 0$. (5.16)

By (5.9) we also have

$$l_4 = -b_4 Y, \quad b_4 \neq 0. \tag{5.17}$$

The first relation in (5.11), again with u = det(L), together with (5.15) and (5.16) yields

$$l_3 = 0.$$
 (5.18)

Then, with the unit point suitably chosen, we may also assume that

$$z_0(X, Y) = -\frac{1}{2}Y^2, (5.19)$$

Again, a certain amount of computation shows that (5.9) yields

$$b_0 b_4 - 2b_1 b_2 = 0, (5.20)$$

$$c_0 b_4 - 2c_1 b_2 = 0. (5.21)$$

LEMMA 5.8. If $P \in \mathcal{X}$ is an inflexion, then \mathcal{U} has a linear component through P.

Proof. We prove that the Y-axis is a linear component of \mathcal{U} . Equivalently, we can show that X is a factor of det(L). By (5.16) and (5.18), we must check that X divides $l_0l_4 - 2l_1l_2$. By (5.16) and $c_2 = 0$, this occurs if the polynomial $(b_0b_4 - 2b_1b_2)Y^2 + (c_0b_4 - 2c_1b_1)Y$ is identically zero. Hence the result is a consequence of (5.20) and (5.21).

It was shown in Theorem 3.7 that \mathcal{X} has $3(\sqrt{q}+1)/2$ inflexion points altogether, and each one lies on a linear component of \mathcal{U} .

COROLLARY 5.9. The cubic U splits into three distinct lines.

Some more computations depending on (5.9) together with a suitable change of coordinates give the following result.

LEMMA 5.10. There exist $a_0, a_2, a_5 \in \mathbb{F}_{\sqrt{q}}$ such that

$$l_0 = a_0 X, l_1 = 1, l_2 = -a_2 X, l_3 = 0, l_4 = -Y, l_5 = a_5 X,$$
(5.22)

 $z_0 = -\frac{1}{2}Y^2, z_1 = -a_5X + a_2XY, z_2 = -Y,$ (5.23)

$$z_3 = \frac{1}{2}(a_0a_5 - a_2^2)X^2, z_4 = a_0XY - a_2X, z_5 = -1/2.$$
(5.24)

Now we want to show that, if $R = (0, \eta)$ is any further inflexion point of \mathcal{X} lying on the Y-axis, then the tangent line r to \mathcal{X} at R has equation $Y = \eta$. To do this it is sufficient to check that the curve \mathcal{Z} with equation

$$z_0^{\sqrt{q}} + z_1^{\sqrt{q}}X + z_2^{\sqrt{q}}Y + z_3^{\sqrt{q}}X^2 + z_4^{\sqrt{q}}XY + z_5^{\sqrt{q}}Y^2 = 0$$

has a cusp at *R*, that is, a double point with only one tangent, such that the tangent is the horizontal line $Y = \eta$. Applying the translation X' = X, $Y' = Y - \eta$, the curve Zis transformed into the curve with equation

$$-\frac{1}{2}(\eta^{\sqrt{q}}+\eta)^{2}+(\eta^{\sqrt{q}}+\eta)Y-\frac{1}{2}Y^{2}+\alpha=0,$$

where α represents terms of degree at least 3. Since this curve passes through the origin, we have $\eta \sqrt{q} + \eta = 0$. Hence, the lowest degree term is $-\frac{1}{2}Y^2$ and so the origin is a cusp with tangent line Y = 0, as required. This gives the following situation.

THEOREM 5.11. There exists a triangle such that the inflexion points of \mathcal{X} lie $\frac{1}{2}(\sqrt{q}+1)$ on each side, none a vertex, and the inflexional tangents pass $\frac{1}{2}(\sqrt{q}+1)$ through each vertex, none being a side.

We are now in a position to prove the main result, Theorem 1.1, stated in Section 1. Let $n = (\sqrt{q} + 1)/2$. We choose the triangle \mathcal{T} of Theorem 5.11 as triangle of reference, and denote the inflexions on the *X*-axis by $(\xi_i, 0)$, $i = 1 \dots n$, and those on the *Y*-axis by $(0, \eta_i)$, $i = 1 \dots n$. Also, without loss of generality, we may assume that $\xi_1^n + 1 = 0$ and $\eta_1^n + 1 = 0$. Write f(X, Y) in the form

$$f = a_0(X)Y^n + \ldots + a_i(X)Y^{n-j} + \ldots + a_n(X),$$

with $a_i(X)$ of degree *i* in $\mathbb{F}_q[X]$.

Since $(\xi_i, 0)$ lies on \mathcal{X} , so $a_n(\xi_i) = 0$. Since the line $x = \xi_i$ is the inflexional tangent at $(\xi_i, 0)$, so

 $a_0(\xi_i)Y^n + \ldots + a_{n-1}(\xi_i)Y = 0$

has n repeated roots. So

$$a_1(\xi_i) = \ldots = a_{n-1}(\xi_i) = 0.$$
 (5.25)

Since (5.25) is true for all ξ_i ,

 $a_1(X) = \ldots = a_{n-1}(X) = 0.$

Hence it follows that $f(X, Y) = a_0 Y^n + a_n(X)$. A similar argument shows that $f(X, Y) = b_0 X^n + b_n(Y)$. Thus $f(X, Y) = a_0 X^n + b_0 Y^n + c_0$, and it only remains

to compute the coefficients. Since $f(\xi_1, 0) = 0$ and ${\xi_1}^n + 1 = 0$, we have $a_0 = c_0$. Similarly, from $\eta_1^n + 1 = 0$ we infer $b_0 = c_0$. This completes the proof.

Acknowledgements

The first and third authors were supported respectively by GNSAGA of the Italian CNR, the second by a NATO grant, and the fourth by Cnpq-Brazil. We are extremely grateful to the referee for the care with which the paper was read.

References

- [AT] Abdon, M. and Torres, F.: On maximal curves in characteristic two, *Manuscripta Math.* 99, (1998), 39–53.
- [FGT] Fuhrmann, R., Garcia, A. and Torres, F.: On maximal curves, J. Number Theory 67 (1997), 29–51.
- [FT] Fuhrmann, R. and Torres, F.: The genus of curves over finite fields with many rational points, *Manuscripta Math.* **89** (1996), 103–106.
- [FT1] Fuhrmann, R. and Torres, F.: On Weierstrass points and optimal curves, *Rend. Circ. Mat. Palermo Suppl.* 51 (1998), 25–46.
- [G-Ho] Garcia, A. and Homma, M.: Frobenius order-sequences of curves, In: G. Frey and J. Ritter (eds), *Algebra and Number Theory*, de Gruyter, Berlin, 1994, pp. 27–41.
- [G-Vi] Garcia, A. and Viana, P.: Weierstrass points on certain non-classical curves, Arch. Math. 46 (1986), 315–322.
- [GV] Garcia, A. and Voloch, J. F.: Wronskians and linear independence in fields of prime characteristic, *Manuscripta Math.* **59** (1987), 457–469.
- [H] Hirschfeld, J. W. P.: Projective Geometries Over Finite Fields, 2nd edn, Oxford Univ. Press, Oxford, 1998.
- [HK] Hirschfeld, J. W. P. and Korchmáros, G.: Embedding an arc into a conic in a finite plane, *Finite Fields Appl.* **2** (1996), 274–292.
- [HK1] Hirschfeld, J. W. P. and Korchmáros, G.: On the number of points on an algebraic curve over a finite field, *Bull. Belg. Math. Soc. Simon Stevin* 5 (1998), 313–340.
- [Ho] Homma, M.: A souped-up version of Pardini's theorem and its applications to funny curves, *Compositio Math.* 71 (1989), 295–302.
- [Ih] Ihara, Y.: Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721–724.
- [La] Lachaud, G.: Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 729–732.
- [OO] Orzech, G. and Orzech, O.: Plane Algebraic Curves, M. Dekker, New York, 1981.
- [Par] Pardini, R.: Some remarks on plane curves over fields of finite characteristic, Compositio Math. 60 (1986), 3–17.
- [R-Sti] Rück, H. G. and Stichtenoth, H.: A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185–188.
- [Sei] Seidenberg, A.: *Elements of the Theory of Algebraic Curves*, Addison-Wesley, Reading, Mass, 1969.
- [Sti] Stichtenoth, H.: Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.
- [Sti-X] Stichtenoth, H. and Xing, C. P.: The genus of maximal function fields, *Manuscripta Math.* 86 (1995), 217–224.

- [SV] Stöhr, K. O. and Voloch, J. F.: Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52 (1986), 1–19.
- [Wa] Walker, R. J.: *Algebraic Curves*, Princeton University Press, Princeton, 1950 (Dover, New York, 1962).
- [We] Weil, A., Courbes Algébriques et Variétés Abeliennes, Hermann, Paris, 1948.