A SHORT COMBINATORIAL PROOF OF THE VAUGHT CONJECTURE

BY
CHARLES C. EDMUNDS

1. In [5] R. C. Lyndon gave the first proof of the Vaught conjecture: that if a, b, and c are elements of a free group F such that $a^{2} b^{2}=c^{2}$, then $a b=b a$. Lyndon's proof has been followed by many alternative proofs and generalizations [1, 2, 3, $4,6,8,9,10,11,13,14]$ all of which involve rather long combinatorial arguments or group theoretical arguments of a noncombinatorial nature. This note provides a short, purely combinatorial proof of the Vaught conjecture.
2. Let F be the free group $\left\langle x_{1}, x_{2}, \ldots ; \varnothing\right\rangle$ where 1 denotes the empty word. Denote the identical equality of words in F by " \equiv " and their equality, modulo insertions and deletions of the words $x_{i}^{\varepsilon} x_{i}^{-\varepsilon}(\varepsilon \in\{-1,+1\})$, by " $=$ ". A word is freely reduced if it contains no subword of the form $x_{i}^{\varepsilon} x_{i}^{-\varepsilon}$ and cyclically reduced if every cyclic permutation of it is freely reduced. The reader is referred to Magnus, Karrass, and Solitar [7] for any unexplained notation.
3. Assuming that $a^{2} b^{2}=c^{2}$ in F, we will show that a, b, and c generate a cyclic subgroup of F. We begin with a "change of variables". Let $x=a b c^{-1} a^{-1}, y=a c^{-1}$, and $z=a c b^{-1} a^{-2}$. It is easy to compute that $a=z^{-1} x^{-1}, b=x z x z^{-1} x^{-1} y^{-1} z^{-1} x^{-1}$, and $c=y^{-1} z^{-1} x^{-1}$. Using this substitution, the equation $a^{2} b^{2}=c^{2}$ becomes $x^{-1} y^{-1} x y=$ z^{2}; therefore it suffices to show that x, y, and z generate a cyclic subgroup of F. This follows from a result of M. J. Wicks about commutators in free groups.
In [12] Wicks proved that if w is a commutator in F (i.e. a word of the form $x^{-1} y^{-1} x y$), then some cyclic permutation of the cyclically reduced form of w is identically either of the form $X^{-1} Y^{-1} X Y$ or $X^{-1} Y^{-1} Z^{-1} X Y Z$. (The proof of this is neither long nor difficult and is purely combinatorial in nature.) Starting with the equation $x^{-1} y^{-1} x y=z^{2}$, we note that z, which we assume w.l.o.g. to be freely reduced, satisfies an identity $z \equiv u^{-1} z_{1} u$ where z_{1} is cyclically reduced and u is possibly empty. Thus our equation can be written $x_{1}^{-1} y_{1}^{-1} x_{1} y_{1}=z_{1}^{2}$ where $x_{1}=$ $u x u^{-1}, y_{1}=u y u^{-1}$, and z_{1}^{2} is cyclically reduced. Denoting the freely reduced form of the left hand side by w, we arrive at the identity $w \equiv z_{1}^{2}$. Since z_{1}^{2} is cyclically reduced, so is w; therefore, using a cyclic permutation if necessary, we have either $X^{-1} Y^{-1} X Y \equiv z_{2}^{2}$ or $X^{-1} Y^{-1} Z^{-1} X Y Z \equiv z_{2}^{2}$ where z_{2} is a cyclic permutation of z_{1}. It follows immediately that either $X^{-1} Y^{-1} \equiv X Y$ or $X^{-1} Y^{-1} Z^{-1} \equiv X Y Z$. Considering lengths of subwords we see that $X \equiv X^{-1}, Y \equiv Y^{-1}$, and $Z \equiv Z^{-1}$. It is then clear that $X \equiv Y \equiv Z \equiv 1$ and thus, in either case, that $z_{2} \equiv 1$. Therefore $z_{1} \equiv 1$ and $z=1$.

Our equation has become $x^{-1} y^{-1} x y=1$, or $x y=y x$. It is easy to see that this has solutions if and only if x and y generate a cyclic subgroup of F.

Added in proof: The above technique can also be used, in conjunction with [12], to obtain the result in [14].

References

1. G. Baumslag, On a problem of Lyndon, J. London Math. Soc. 35 (1960), 30-32.
2. -, Residual nilpotence and relations in free groups, J. Algebra 2 (1965), 271-282.
3. -_ and A. Steinberg, Residual nilpotence and relations in free groups, Bull. Amer. Math. Soc. 70 (1964), 283-284.
4. L. G. Budnika and Al. A. Markov, On F-semigroups with three generators, Math. Notes, 14 (1974), 711-716.
5. R. C. Lyndon, The equation $a^{2} b^{2}=c^{2}$ in free groups, Michigan Math. J. 6 (1959), 89-95.
6. -and M. P. Schützenberger, The equation $a^{M H}=b^{N} c^{P}$ in a free group, Michigan Math. J. 9 (1962), 289-298.
7. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Pure and Applied Math. Vol. 13, Interscience, New York, 1966.
8. M. P. Schützenberger, Sur l'equation $a^{2+n}=b^{2+m} c^{2+p}$ dans un group libre, C.R. Acad. Sci. Paris 248 (1959), 2435-2436.
9. E. Shenkman, The equation $a^{n} b^{n}=c^{n}$ in a free group, Ann. of Math. (2) 70 (1959), 562-564.
10. J. Stallings, On certain relations in free groups, Notices Amer. Math. Soc. 6 (1959), 532.
11. A. Steinberg, Ph.D. thesis, N.Y.U., 1962.
12. M. J. Wicks, Commutators in free products, J. London Math. Soc. 37 (1962), 433-444.
13. -_, A general solution of binary homogenous equations over free groups, Pacific J. Math. 41 (1972), 543-561.
14. -, A relation in free products, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, 709-716.

University of Manitoba, Winnipeg, Manitoba.

Current address: Mount Saint Vincent University
Halifax, N. S.

