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ABSTRACT. A numerical avalanche-prediction scheme was developed for 
highway applications at Kootenay Pass, British Columbia. The model features 
parametric discriminant analysis using Bayesian statistics to predict avalanche 
occurrences. Cluster techniques are then employed in discriminant space to analyze 
avalanche occurrences by the method of nearest neighbours. Extensive numerical 
testing of the model using an historical data base indicates that prediction accuracy 
may be 70% or better for both avalanche and non-avalanche time intervals. 

INTRODUCTION 

The basis for modern avalanche forecasting may be 
derived from the work of LaChapelle (1980). LaChapelle 
rationalized avalanche forecasting on the basis of three 
data classes and his work was extended by McClung and 
Schaerer (1993). The basic idea is that data available to 
an avalanche forecaster are in three classes. The three 
data classes are defined by their ease of interpretation and 
direct relevance to avalanche prediction. For example, a 
report of wind speed and direction may be difficult to 
relate directly to avalanche possibility, whereas a report 
of avalanche occurrences leaves no doubt as to the current 
stability. Therefore, data are roughly classified into three 
classes. The higher the class number, the less directly 
relevant are the data and the less direct is the connection 
to avalanche prediction. A brief description of factors 
follows: (i) stability factors: those factors such as results of 
stability tests and avalanche-occurrence information 
which give direct inferences about snow stability 
(McClung and Schaerer (1993) should be consulted for 
further details about this approach and the method of 
classifying data); (ii) snowpack parameters including 
results of snow-stratigraphy studies, snowpack temper­
atures and others; and (iii) meteorological and snow 
parameters measured at or above the snow surface: data 
largely of numerical character and amenable to numer­
ical analysis. 

One theme which develops from LaChapelle's method 
outlined above is that avalanche forecasters have access to 
varying amounts of information of varying quality, 
depending on the scale of the problem they are working 
with. For example, those attempting to predict aval­
anches for an entire mountain range from a meteorol­
ogical office as described by Ferguson and others (1990) 
might have better access to high-quality meteorological 
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information with less relevant information about local 
snow-stability factors. At the other extreme of the scale, a 
skier attempting to analyze stability potentially has access 
to snow-stability information of the highest quality of 
relevance to his/her problem (class i) but meteorological 
data and forecasts may be lacking. 

In this paper, an objective forecast scheme is partly 
developed for highway-forecasting application at Koot­
enay Pass in southeastern British Columbia (McClung and 
Tweedy, 1993). The scale of the problem is intermediate 
between the two scales described above. Forecasting at 
Kootenay Pass involves collection of data from all three 
classes. 

Of the three classes, the most difficult data for a 
forecaster to interpret are those from class iii. The reason 
is that class iii data are continuously recorded and the 
variables are potentially correlated. Fortunately, class iii 
is the category most amenable to use of numerical 
techniques. In this paper, a numerical model is dev­
eloped for application at Kootenay Pass based largely on 
class iii data. The method chosen is a parametric 
discriminant analysis similar to those presented by Bois 
and others (1975), Bovis (1977) and Obled and Good 
(1980). For illustration, discriminant functions are 
developed based on magnitude and frequency of aval­
anching as well as stratification of prediction for dry and 
moist-wet avalanches. The present analysis differs from 
past attempts in two important ways: (1) the transitional 
climate at Kootenay Pass (McClung and Tweedy, 1993) 
does not allow stratification into distinct dry and wet 
parts of the avalanche season (November-April); rainfall 
and moist-wet avalanching can occur at any time of the 
year. Due to the absence of distinct parts of the snow 
season for dry and wet avalanching, the character of 
modeling potentially differs from that described by Obled 
and Good (1980) and Bovis (1977); (2) Bayesian statistics 

https://doi.org/10.3189/S0022143000007437 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000007437


are employed to estimate the probability that a data 
vector belongs to groups of avalanche or non-avalanche 
periods measured in the past. Application of Bayesian 
statistics allows a forecaster to input his/her a priori 
probability of avalanching based on empirical data which 
potentially allows use of non-numerical data from classes 
outside those used in numerical prediction to improve the 
prediction. This approach can synthesize numerical and 
conventional avalanche forecasting (see LaChapelle, 
1980) and it can forge the link for the future develop­
ment of a coupled expert system using empirical and 
numerical data from all three classes. 

An additional feature of our model is the use of cluster 
techniques to allow analysis of the "nearest neighbours" 
of data vectors from an historical data base consisting of 
snow, avalanche and weather data (Buser and Good, 
1985; Buser and others, 1987). Our application of cluster 
techniques differs from previous approaches because we 
have employed the Mahalanobis distance as the distance 
metric between data vectors instead of the Euclidean 
distance. This assumption allows us to account for 
correlation between variables when calculating distances 
between data vectors in discriminant space and it 
provides a consistent mathematical framework for 
linking the cluster techniques and the parametric 
discriminant analysis. 

DESCRIPTION OF DATA BASE 

The data in this study consisted of records collected at 
Kootenay Pass, British Columbia, of ten winters 
(November-April 1982-82 through 1990-91). McClung 
and Tweedy (1993) defined the climate area as 
approximately midway between maritime and continen­
tal. Snow and weather data were collected twice daily 
(early morning and late afternoon) to form a data base of 
approximately 3300 records. The reader is referred to 
McClung and Tweedy (1993) for more details about the 
data at Kootenay Pass and avalanche characteristics 
based on a single-variable analysis. 

In addition to snow and weather data, avalanche 
events were recorded as soon as possible after they 
occurred according to estimated occurrence time: those 
recorded between 1200 h midnight and 1200 h noon were 
grouped with morning observations; the remainder were 
grouped with afternoon observations. Avalanche occur­
rences were recorded (regardless of size) if they had 
potential for affecting the highway. All avalanches were 
given an empirical size based on the five-class Canadian 
size system (see McClung and Tweedy, 1993). Two 
empirical indices were formed to represent the character 
of avalanching: (1) an avalanche-activity index (AAI) 
defined as the sum of avalanche sizes recorded in the time 
periods described above. The AAI gives a simple index 
which represents the magnitude and frequency of 
avalanching within a time period; (2) a moisture index 
(MI) to differentiate between avalanches with dry, moist 
or wet debris. The MI categories were assigned the 
following numbers: 1, dry; 2, moist; 3, wet. The MI is 
defined as the average value of moisture content for all 
avalanches recorded in a time period. Two categories of 
moisture index for a time period were defined as dry 
(MI < 1.5); moist-wet (MI2: 1.5). 

McClung and Tweedy: Numerical avalanche prediction 

Snow and weather data initially used in the analysis 
were of two types: (1) data taken regularly at the twice­
daily intervals, and (2) lagging variables: data averaged 
over the present time period and several previous time 
periods. Data used in the study are listed in Table 1. 
Lagging variables and the number of time periods (12 h) 
used in the analysis are listed by including a parenthesis 
such as (L,3) meaning lagging variable averaged over 
three time periods. 

Table 1. Variables used in the analysis 

Snowfall rate (cmh-I) t 

Maximum precipitation 
rate (mmh-I) 

Average precipitation rate 
when precipitation is 
falling (mmh-I) 

Maximum temperature 
(cC) • 

Present temperature 
(cC) • 

Minimum temperature 
(cC) 0 

Relative humidity (%) 
New snow depth (cm) 
Storm-board total (cm) 
Weight new snow (g) 
Moisture content of 

surface snow t 

Water-equivalent new 
precipitation (mm) 

Density new snow (kgm-3
) 

Ram penetration (cm) 
Wind speed °t 
Wind direction °t 
Trend: maximum temper­

ature (cC) (L, 2) 
Trend: present temper­

ature (cC) (L, 2) 
Trend: minimum temper-

ature (cC) (L, 2) 
Precipitation type t 
Sky condition t 

Snow-surface condition t 
Total snow depth (cm) 

o Variables measured both at Kootenay Pass (highway 
level) and starting zone level. 

t Variables in categorical form rather than continuously 
varying. 

t Wind speed and direction were measured in categorical 
form at Kootenay Pass and continuously varying at 
starting zone level. This gave four separate variables. 

Lagging variables present the possibility of including 
temperature trends (present value minus previous value) 
as well as memory into a model constructed from them. 
The variable for storm-board total includes all snowfall 
deposited during a storm so that a memory effect for 
snowfall deposition during storms is included. 

DISCRIMINANT ANALYSIS 

Discriminant analysis seeks a linear combination of 
measurements in which the sum of squared differences 
between group means is maximized relative to within 
groups variance. It is assumed that the variance­
covariance matrices for both groups can be represented 
by one common matrix in the simplest analysis. For the 
cases presented in this paper, a single function 
(discriminant function) based on components of a 
measurement vector is used to account for all differences 
between groups. 
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In the analysis, we divide the population of time 
vectors into two groups at each stage of the analysis. A 
vector of data at a given time is denoted by X. If each 
group (i) has a mean vector given by ih and, if E 
represents the variance-covariance matrix representing 
both groups, then the task is to find a linear combination 
of X so that the ratio of the difference in the group means 
to the common variance is maximized. If linear com­
binations are given by Y = bX, then a vector of weights b 
is sought to maximize the ratio: 

- -b' - b'­Ll = J-L:. - _ J-L2 
b'Eb 

(1) 

When Ll is maximized, the maximum ratio of between­
population dispersions to within-population dispersions is 
obtained. Before application, the samples ni from each 
group are used to replace parameters (J-L, E) with sample­
based estimates. The J.Li are replaced by: 

X/ = (Xil,Xi2, .. . Xjp) (2) 

i = 1,2 and 

1 (-'- -'-) s= Xl Xl +X2X2 
nl + n2 - 2 

(3) 

where Xij = ,,£7!lXjt/ni. i = 1, 2, j = 1 ... p and S is the 
pooled sample variance-covariance matrix. 

In this study, it was necessary to derive the 
standardized discriminant coefficients to define group 
differences, as well as individual group classification 
functions. The latter enable conditional probabilities for 
group membership (avalanche/non-avalanche time per­
iods) to be calculated for each vector. Given a data vector 
for a given time, it is then possible to estimate the 
probability that a linear combination of variables in the 
time vector describes an avalanche situation. 

DISCRIMINANT FUNCTION AND APPLICATION 
OF BAYESIAN STATISTICS 

In the present work, for two-group discrimination, the 
discriminant function is defined by: Y = b' X and the 
estimate of b is given by: 

- -where Xl, X2 are vectors representing the group means. 
The components of 6 are equivalent to canonical 
coefficients standardized by conditional (within-groups) 
standard deviations. 

In addition to Fisher's discriminant function (defined 
above), the Mahalanobis distance squared between all 
data vectors Xi and the group centroids were calculated 
in discriminant space. These distances are presented by 
xil variables given by: 

2 (- -)' 1(- -) Djj = Xi - Xj S- Xi - Xj . (4) 

From the Mahalanobis distances determined by 
Equation (4), it may be shown (e.g. Tatsuoka, 1971) 
that the likelihood ratio of conditional probabilities 
P(DIGi ) relating membership in groups 1 and 2 is given 
by: 
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(5) 

where 

and 

By application of Bayes' rule, then the posterior 
probability for membership in group i is given by: 

(6) 

where P(Gi ) is the a priori probability of group 
membership and P(Gd + P(G2) = 1. 

The rule for classification into avalanche/non-aval­
anche periods is then to classify in group i if: 

P(GiID) > P(GjID) i, j = 1 or 2, i i= j. 

For each calculation, a test of the null hypothesis that 
the population means are equal was conducted. The 
appropriate Z statistic may be calculated in terms of the 
Mahalanobis distance between group means by forming 
the D2 statistic: 

Z= nln2 (n l +n2 -1-p)D2 (7) 
nl + n2 (nl + n2 - 2)p 

where D2 is the Mahalanobis distance between group 
centroids, nI, n2 are group-sample sizes, p is the number 
of independent variables. Within the null hypothesis and 
a common variance-covariance matrix, Z is distributed 
as an F distribution with p, nl + n2 - P - 1 degrees of 
freedom: 

(8) 

where et is the upper et percentage point of the F 
distribution. In all cases, et was less than 0.001, indicating 
that the null hypothesis is rejected and the group means 
are significantly differen t. 

The assumption of homogeneity of variance of the 
groups was tested for all individual variables. The Bartlett 
(e.g. Eisenbeis and Avery, 1972) test for homogeneity of 
group variances and an independent groups t-test was 
calculated for each variable. The results indicate no 
reason to reject the null hypothesis that the variances of 
the two groups are equivalent. 

VARIABLE TRANSFORMATIONS 

The usual assumption in discriminant analysis is that the 
variables are from a Gaussian distribution. Examination 
of variables in the analysis showed that the precipitation 
variables all had positive skewness. This same condition 
was found by Bovis (1976). Following Bovis (1976), we 
applied the transformation Xi ---- In(Xi + 1) to the 
precipitation variables used for dry avalanche and dry 
time-period prediction. This transformation improved the 
percentage of data vectors correctly classified by approx­
imately 5%. It also made the discriminant functions very 
nearly linear with very similar correct prediction 
percentages for avalanche and non-avalanche time 
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periods. For wet-moist avalanche predictions, it was 
found that prediction and quality of the discriminant 
functions were better without application of the transfor-

McClung and Tweedy: Numerical avalanche prediction 

mation, so it was not applied. This may reflect the relative 
lack of precipitation variables in our moist/wet avalanche 
variable sets. 

Table 2. Variables used in discriminant analYsis including significance: F-statistic and probability. AnalYsis is stratified by 
magnitude-frequency index (AA I) and moisture index (MI) 

Set V Dry avalanche-non-avalanche Set I Dry avalanche-non-avalanche 
(AA I > 0) F-statistic Significance ( AA! ~ 10) F-statistic Significance 

Snowfall rate (L) 70.4 <0.001 New-snow depth (L) 115.0 <0.001 
New-snow depth (L) 155.5 <0.001 Weight new snow (L) 124.4 < 0.001 
Weight new snow (L) 157.5 <0.001 Density new snow 89.5 < 0.001 
Water-equivalent new snow (L) 174.2 <0.001 Ram penetration 61.5 <0.001 
Ram penetration 113.1 <0.001 Storm-stake total (L) 157.5 <0.001 
Storm-stake total (L) 182.5 <0.001 Wind speed 76.9 <0.001 
Wind speed (ms-I) 64.0 <0.001 

Sample size: 180 % misclassified 
Sample size: 476 % misclassified 13 % non-avalanche 11 % avalanche 
19% non-avalanche 24% avalanche 

Set Il Moist-wet avalanche-non-avalanche Set VI Moist-wet avalanche-non-avalanche 
(AAI > 0) F-statistic Significance ( AA! ~ 3) F-statistic Significance 

Total snow depth 31.5 <0.001 Weight new snow 12.1 0.001 
Ram penetration 14.1 < 0.001 Ram penetration 9.2 0.003 
Maximum temperature 66.9 <0.001 Maximum temperature 47.6 <0.001 
Present temperature 83.8 <0.001 Present temperature 62.9 < 0.001 
Minimum temperature 66 .9 <0.001 Minimum temperature 52.1 < 0.001 
Maximum-temperature trend 25 .5 <0.001 Maximum-temperature 

trend 23.8 < 0.001 
Sample size: 209 % misclassified Present temperature trend 12.7 < 0.001 
24% non-avalanche 19% avalanche 

Sample size: 145 % misclassified 
Set III Dry avalanche-moist-wet avalanche 17% non-avalanche 19% avalanche 

(AA! > 0) F-statistic Significance 
Set VII Moist-wet avalanche-non-avalanche 

New-snow depth (L) 102.3 <0.001 ( AA! ~ 10) F-statistic Significance 
Ram penetration 142.5 < 0.001 
Maximum temperature 193.8 <0.001 Weight new snow 9.9 0.003 
Minimum temperature 99 .6 < 0.001 Total snow depth 16.8 < 0.001 

Maximum temperature 14.6 <0.001 
Sample size: 327 % misclassified Present temperature 22.0 < 0.001 
13% moist-wet avalanche 14% dry avalanche Minimum temperature 17.7 < 0.001 

Maximum-temperature 
Set IV Dry avalanche-non-avalanche trend 13.1 0.001 

(AA! > 3) F-statistic Significance Present temperature trend 11.4 0.001 

New-snow depth (L) 156.4 <0.001 Sample size: 48 % misclassified 
Weight new snow (L) 154.0 <0.001 20% non-avalanche 6% avalanche 
Water-equivalent new 

snow (L) 172.0 < 0.001 
New-snow density 116.9 < 0.001 
Ram penetration 107.4 <0.001 
Storm-stake total (L) 210.0 <0.001 
Wind speed-starting 

zone 65.6 <0.001 

Sample size: 366 % misclassified 
17% non-avalanche 17% avalanche 
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RESUL TS OF PARAMETRIC DISCRIMINANT 
ANALYSIS 

For the analysis here, groups of nearly equal size were 
selected for time vectors describing avalanche and non­
avalanche time periods by deleting non-avalanche data 
vectors with a random-number generator. At Kootenay 
Pass, avalanche-data vectors constitute about 20% of the 
total during a winter period. This analysis produced 
discriminant functions derived from nearly equal a priori 
probabilities concerning population size. Separate anal­
yses were performed by stratifying time periods according 
to whether avalanches were dry or moist-wet and by the 
avalanche-activity index (AAI). 

Ten winters of data were included in the calculations: 
1981-82 through 1990-91. In addition to avalanche-non­
avalanche groups, an analysis was also employed to allow 
discrimination between dry and moist-wet avalanche 
periods. This result is used later by application of Ba ye si an 
statistics to help decide on the use of predictor-variable 
groups for dry or moist-wet cases in operational use 
(discussed below). 

Table 2 contains information about the percentages of 
avalanche and non-avalanche time periods misclassified, 
the variables and the sample sizes in the analysis. Var­
iables followed by (L) were transformed according to the 
logarithm transformation described above. 

OPERATIONAL AVALANCHE-PREDICTION 
SCHEME AND NUMERICAL TESTING 

The prediction scheme to be employed is the result of a 
two-step procedure using Bayesian parametric and non­
parametric discriminant analysis. Figure 1 shows a 
schematic of group separation achieved by discriminant 
analysis and cluster (non-parametric) analysis for a data 
vector represented as a point in multi-dimensional 

G' , 
I 

I 
I 

I 
I 

x, 

Discriminant 
function axis Y 

Fig. 1. Schematic of group separation in discriminant 
space. Cluster techniques are used to assess the nearest 
neighbours to a data vector for relevant information on 
avalanche occurrences. 
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discriminant space. Figure 2 shows avalanche/non­
avalanche groups calculated numerically from Kootenay 
Pass data. The groups in Figure 2 are fuzzy sets (Klir and 
Fegler, 1988) depicted on a two-dimensional graph but 
calculated in a six-dimensional discriminant space. 

10~------~-----,-------,-------.------, 

8 

:::. 6 
w 
u z 
~ 
(f) 

o 4 

2 

OL-____ ~ ______ -L ______ ~ ____ ~L-____ ~ 

o 2 4 6 8 

DISTANCE (2) 

Fig. 2. Groups generated from a discriminant analysis. 
M ahalanobis distances from group centroids for dry­
avalanche occurrences and non-avalanche data vectors. 
Avalanche-data vector positions (0), non-avalanche (.) 
and misclassified data vector positions (6:.) are shown. 
The results are calculated from a discriminant analysis 
using set V, Table 2: six-dimensional discriminant space. 

The first step in the analysis involves employing 
Bayesian statistics coupled to parametric discriminant 
analysis to decide whether a given data vector would be 
more likely to belong to a group to forecast dry 
avalanches or moist-wet avalanches (set Ill, Table 2). 
We tested 30% of the data base on 3 years' of data (1 year 
at a time) using an a priori probability of a dry-avalanche 
time period as 0.5 to calculate the posterior probability of 
a dry/moist-wet period. The method of testing consisted 
of holding out the year in question. The data from each 
data vector in the year held out were then tested by 
application of Bayesian statistics. Cluster calculations 
were performed between each data vector in the year held 
out and all other data vectors in the remaining 9 years of 
data. The results were then compared with what actually 
happened on the day in question by application of 
mathematically determined probability-warning levels 
(discussed below). This gave an overall success rate of 
88% with 85% of dry-avalanche periods selected 
correctly and 98% of moist-wet periods selected 
correctly. A data vector was specified dry if the posterior 
probability of branching to dry conditions was ~O.5. 

These results are slightly better than group classification 
based on equal sample sizes (86%, set Ill, Table 2) as the 
discriminant functions are defined. When used oper­
ationally, we expect a better success rate when a 
forecaster applies Bayesian statistics by specifying an a 
priori probability. Variables employed in this first part of 
the analysis are listed as set III (Table 2). 
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The second step of analysis involves application of 
Bayesian statistics to determine the probability of 
avalanching. Either set I (dry avalanching) or set II 
(moist-wet avalanching) of variables are selected depend­
ing on the results of the first step of the analysis. 

We tested the results of steps one and two of the 
analysis by applying Bayesian statistics (a priori prob­
ability = 0.5) to 3 years of the data set (1984-85, 1987-
88 and 1990-91 ). A warning (avalanche prediction) was 
issued if the probability of dry avalanching was ~0.6 and 
if the probability of moist-wet avalanching was ~O. 7. 
These levels (0.6 and 0.7) were determined mathematic-
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a: 
a. 
w 
I 
o 
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« 
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0.00L-------
1
-'-0-0--"'-----2.L

00
---------:-'·300 

TIME PERIOD 

Fig. 3. Avalanche probability for 1984-85 calculatedJrom 
discriminant-analysis predictions (.) vs avalanche occur­
rences (0). For the avalanche occurrences, if no circle 
(0) appears, no avalanches were recorded. Both dry and 
moist-wet avalanches are shown. Warning level is 0.6 Jor 
dry avalanches, 0.7 Jor moist-wet avalanches. Variable sets 
J and 11 (Table 2) were used in the calculations. 
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Fig. 4. Similar to Figure 3for dataJrom 1987- 88. 
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ally to achieve an approximate equal balance between the 
percentage of avalanche and non-avalanche periods 
predicted correctly. The predicted results were then 
compared with what actually occurred (avalanching or 
not) during the time period. The results gave 79% success 
rate for dry-avalanche prediction (79% of non-avalanche 
periods; 78% of avalanche periods). For moist-wet 
avalanche periods, 75% success rate was achieved (75% 
non-avalanche periods, 71 % wet-moist avalanche per­
iods). These results are comparable to sample classific­
ation based on equal sizes during development of the 
discriminant functions (see Table 2) using equal sample 
sizes. Figures 3 and 4 show the results of our numerical 
testing for 2 years of observations. 

CLUSTER ANALYSIS OF A DATA VECTOR 

In addition to calculating the probability of occurrence of 
avalanching, we also use cluster analysis to provide a 
further description of "nearest neighbours" to the time 
vector (e.g. Obled and Good, 1980; Buser, 1983; Buser 
and others, 1987). Our method of determining nearest 
neighbours consists of calculating the Mahalanobis 
distance D2 between all vectors in the data Xi base and 
the current one: Xp 

2 ( - -)' -1 ( - - ) Dip = Xi - Xp S Xi - Xp (9) 

where Sl is the inverse of the pooled within-groups 
variance-covariance matrix calculated as a part of the 
discriminant analysis. This distance and variance­
covariance matrices are calculated using the variables of 
either set I or set II in Table 2, depending on whether dry 
avalanching or moist-wet avalanching may be expected. 
This distance metric reduces to the Euclidean distance 
metric assumed by Buser and others (1987) if the 
variance-covariance matrix is taken to be the identity 
matrix. Therefore, our distance matrix retains the 
assumption that the variables are correlated and 
distances are calculated in discriminant space in contrast 
to the implicit assumption of no correlation between 
variables if a Euclidean metric is chosen. 

On calculation of distances between data vectors, the 
distances are ranked and the 30 nearest neighbours are 
retained and analyzed for information as to whether they 
have avalanche occurrences associated with them, and 
information about the avalanches is summarized. This 
information includes: size, moisture (dry, moist, wet), 
trigger, aspect, location, type (slab or loose snow) and 
other parameters. The fraction of data vectors in the 
nearest-neighbour cluster which contain avalanching 
may be regarded as similar to a conditional probability 
of avalanching for the cluster analysis. We have studied 
two values of probability (PlO and P30), which describe 
the conditional probability of avalanching for the ten and 
30 nearest neighbours to the present data vector. Our 
study had two objectives: (I) to determine whether the 
Bayesian discriminant probability or conditional cluster 
probabilities correlated best with avalanche activity; (2) 
to assess whether PlO and P30 correlated best with the 
Bayesian discriminant probability. 

The answer to objective (I) was sought in two parts: 
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(a) by a simple correlation, e.g. Spearman Rank 
correlation, and (b) by comparing conditional probabil­
ity of avalanching calculated by both methods. Both (a) 
and (b) showed that Bayesian discriminant probabilities 
were superior to conditional cluster probabilities in our 
study. Rank correlation between magnitude of avalanch­
ing and Bayesian probabilities is shown in the correlation 
Table 3. 

Table 3. Rank correlation matrix for AA!, P, PlO, P30 
for data from 1985, 1988 and 1991 

Matrix of Spearman correlation coefficients 

AA! P PlO P30 

AAI 1.000 
P 
PlO 
P30 

0.371 
0.363 
0.366 

1.000 
0.580 
0.712 

1.000 
0.798 1.000 

These data show that the Bayesian probabilities 
correlate best with the avalanche magnitude-frequency 
index but the differences are minor. In order to compare 
predictions from the cluster probabilities with Bayesian 
probabilities, it was necessary to establish a prediction 
level (warning level) for the cluster predictions. It was 
found mathematically that the optimal prediction level 

Table 4. Groups (rows) by prediction (columns) for 
winters of 1985, 1988, 1991 combined 

Prediction with P30: 

Non-avalanche 
Avalanche 

Non-avalanche 

477 
43 

Avalanche 

113 
91 

72% of periods successfully predicted. 

Prediction of dry avalanches Non-avalanche Avalanche 
(discrimination analysis): 

Non-avalanche 268 70 
Avalanche 19 63 

79% of periods successfully predicted when dry 
avalanches are most likely. 

Prediction of moist-wet 
avalanches 

(discriminant analysis) : 

Non-a valanche Avalanche 

~56 

Non-avalanche 
Avalanche 

233 
12 

79 
29 

74% of periods successfully predicted when moist­
wet avalanches are most likely. 

was obtained when P30 = 0.20; when 20% of the 30 
nearest neighbours contained avalanche occurrences, the 
best balance between successful prediction of avalanche 
and non-avalanche periods was achieved. This "warning 
level" is comparable to the optimum warning levels of 0.6 
for dry avalanches and 0.7 for moist-wet avalanches. 
Table 4 gives a summary of results for data from the 
winters of 1985, 1988 and 1991. The results are tabulated 
in numbers of data vectors. 

I t is important to note that, for the results in Table 4, 
there were 12 dry avalanche periods found in periods 
which were predicted by use of discriminant probabilities 
to be more likely to produce dry-avalanche periods. 
When these are taken into account, the fraction of 
avalanche periods correctly predicted by the two methods 
is virtually identical but non-avalanche periods are best 
predicted by the Bayesian-discriminant probabilities 
(77%) vs (73%) by using cluster techniques . Our 
conclusion then is : for the analysis using Kootenay Pass 
data, application of Bayesian discriminant technique is 
superior but there is not much difference between the two 
methods. Since our operational forecasting procedures 
will use both methods, Bayesian statistics to predict 
avalanches and cluster techniques to analyze expected 
ch a racter of avalanche occurrences, the consistency 
between the two m ethods is both advantageous and 
necessary. 

TIME-SERIES ANALYSIS 

Our model contains temperature and snowfall variables 
(and perhaps others) which allow a memory effect in the 
prediction capabilities. To study the time relation 
between probabilities and the AAI (see Table 3), we 
calculated the cross-correlation time series on a year-by­
year b asis for the numerical experiments given in Table 4. 
Figures 5 and 6 show the correlation coefficients for 1984-
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Fig. 5. Time-series cross-correlation of avalanche 
occurrences (AA!) with probabili!J (P) as predicted for 
1984-85 (see Fig. 3). The limits of ± 2 standard errors 
above ~ero are shown ( . - .) . 
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Fig. 6. Cross-correlation of 1984-85 avalanche occurrences 
(AAI) with probabiliry of avalanching (P30) calculated 
from 30 nearest neighbours in discriminant space. The 
limits of ± 2 standard errors above zero are shown 
(-). Variable sets I and II (Table 2) are usedfor the 
calculations. 

85 calculated by cross-correlation of AAI and P (Fig. 5) 
and P30 (Fig. 6). Figures 5 and 6 also show the limits of 
± 2 standard errors above zero correlation: when the 
correlation falls inside these ranges, it is not considered 
significant. The results shown indicate that correlation 
between avalanching and the probability from the model 
becomes significant about two time periods (1 d) prior to 
the present (zero lag) . In addition, the results in Figures 5 
and 6 show that the correlation between avalanching and 
the probabilities approaches insignificance after about 
one time period past maximum correlation (zero lag). 

SUMMARY AND DISCUSSION 

We have modified some of the numerical procedures for 
dealing with the numerical part of the avalanche­
forecasting problem. Our methods are derived from the 
suggestions of Obled and Good (1980), Buser and others 
(1987) and LaChapelle (1980). Our resulting model 
involves using both parametric discriminant-analysis 
techniques (incorporating Bayesian statistics) and cluster 
techniques and "nearest neighbours" calculated in 
discriminant space using the Mahalanobis distance as 
the distance metric. 

LaChapelle (1980) first advocated the use of Bayesian 
statistics in avalanche forecasting in the manner in which 
we intend to employ it by field testing our model. It is our 
belief that by combining a forecaster's a priori probability 
with our numerical estimate of the conditional prob­
ability of avalanching, we can assess the potential power 
of an expert system employing symbolic logic to non­
numerical data of classes i and ii. We have been able to 
include some data from these classes (e.g. avalanche 
occurrences) but not enough to produce a forecasting tool 
of the accuracy desired in applications. 

McClung and Tweedy: Numerical avalanche prediction 

The consistency of the results presented in comparing 
the cluster analysis and parametric discriminant analysis 
prove that these techniques are nearly identical when 
calculations are done in discriminant space. Application 
of the cluster techniques (along with parametric 
discriminant analysis) allows an operational forecaster 
to analyze the character of expected avalanche occur­
rences if any appear in the clusters. For example, 
triggering mechanism, avalanche type and terrain 
information, such as avalanche-path location and aspect 
of avalanche release. The consistency in our comparison 
of results adds confidence that the mathematical 
procedures are correct in both cases. 

Even though we have not field-tested our model, we 
believe that our numerical testing of the model is among 
the most extensive reported for numerical forecasting 
models. When Bayesian statistics are actually employed 
by forecasters, we have good reason to believe that the 
predictive accuracy we have estimated numerically will 
be exceeded. Since groups calculated by discriminant 
techniques (e.g. Fig. 2) are fuzzy, a future goal for 
avalanche forecasting may be to provide estimates of a 
priori probabilities from application of fuzzy logic 
procedures coupled with symbolic computing. 
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