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Abstract
Narrow escape and narrow capture problems which describe the average times required to stop the motion of
a randomly travelling particle within a domain have applications in various areas of science. While for general
domains, it is known how the escape time decreases with the increase of the trap sizes, for some specific 2D and
3D domains, higher-order asymptotic formulas have been established, providing the dependence of the escape time
on the sizes and locations of the traps. Such results allow the use of global optimisation to seek trap arrangements
that minimise average escape times. In a recent paper (Iyaniwura (2021) SIAM Rev. 63(3), 525–555), an explicit
size- and trap location-dependent expansion of the average mean first passage time (MFPT) in a 2D elliptic domain
was derived. The goal of this work is to systematically seek global minima of MFPT for 1 ≤ N ≤ 50 traps in elliptic
domains using global optimisation techniques and compare the corresponding putative optimal trap arrangements
for different values of the domain eccentricity. Further, an asymptotic formula for the average MFPT in elliptic
domains with N circular traps of arbitrary sizes is derived, and sample optimal configurations involving non-equal
traps are computed.

1. Introduction

The narrow capture problem, as described here, concerns the average time required for a particle under-
going Brownian motion to encounter a region within the domain, referred to as a trap, which causes its
motion to cease. It is mathematically defined as a Neumann–Dirichlet Poisson problem:

�u = − 1

D
, x ∈ �0 ; �0 = � \ N∪

j=1
�εj ;

∂nu = 0 , x ∈ ∂� ; u = 0 , x ∈ ∂�εj , j = 1, . . . , N, (1.1)

where � ⊂R
n, n = 2, 3, denotes the physical domain of the problem; {�εj}N

j=1 are small trap domains
within �, �0 is the domain except the traps, where the motion of particles takes place, and ∂n is the
normal derivative on the domain boundary ∂�. The diffusivity D of the medium filling �0 is assumed
constant. The problem (1.1) describes the distribution of the mean capture time, the time u(x) needed
for a particle to be captured by any trap, averaged over a large number of launches from the same point
x ∈ �0. An illustration of the problem is provided in Figure 1.

The boundary conditions on ∂� are reflective: ∂nu = 0, whereas the traps �εj are characterised by
immediate absorption of a Brownian particle, which is manifested by a Dirichlet boundary conditions
u = 0 on all ∂�εj .
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(a) (b)

Figure 1. (a) A two-dimensional narrow capture problem in the unit disc containing internal traps with
absorbing boundaries {∂�εj}. (b) A three-dimensional narrow capture problem, a sample Brownian
particle trajectory, leading to a capture in a trap (lowermost) denoted by purple colour.

The above generic problem (1.1) affords a variety of physical interpretations, ranging from biological
to electrostatic (see, e.g., [9, 20] for an overview of applications). In this work, it will be strictly con-
sidered in terms of a particle undergoing Brownian motion [23]. In this case, the problem regards the
stopping time [19, 20] of a Brownian particle. When the path of the particle intersects the boundary of
one of the traps, the particle is captured. This capture time may be interpreted as the time required
for the particle to leave the confining domain; thus, it is often referred to as the first passage time
[1, 2, 10]. As Brownian motion is an inherently random process, the mean first passage time (MFPT)
is considered. Interpreting the problem (1.1) accordingly, u is the MFPT; D is the diffusion coefficient,
representing the mobility of the Brownian particle; �εj is the portion of the domain occupied by the jth

trap.
Given the physical domain and the number and sizes of the traps, it is of interest to ask whether

there is an optimal arrangement of N traps within the domain which minimises the MFPT, or in other
words, maximises the rate at which Brownian particles encounter the absorbing traps. Related work
dedicated to similar optimisation, in the case that the traps are asymptotically small relative to the size
of the domain, for various kinds of confining domains with interior or boundary traps, can be found,
for example, in [3, 7, 12, 14, 21] and references therein. Both putative globally optimal and multiple
locally optimal arrangements of boundary and volume traps have been computed in various settings.
An important aspect of such computations is the existence of a large number of locally optimal particle
arrangements with very close merit function values. This number quickly grows with N , increasing the
computational difficulty of the determination of the globally optimal configuration; see, for example,
[21] where locally optimal configurations were systematically computed for particles located on the
unit sphere, and the number of local minima exhibits exponential growth as N increases.

In the current contribution, we consider the narrow capture problem for the case of a 2D elliptical
domain, elaborating on previous work on the subject for the case of a circular domain [14], and the more
general case of the elliptical domain [12], and examine specifically the case where traps are not of equal
size. The paper is organised as follows. In Section 2, we briefly summarise results this work is based on.
This includes the approximate asymptotic MFPT formulas that hold in the case that the traps are small
relative to the domain size and are well separated, as well as the choice of merit function for average
MFPT (AMFPT) optimisation.

Section 3 describes the optimisation method chosen in the current study, the algorithms, the details of
their use, and some decisions made to facilitate comparison to previous studies. Specifically, we seek the
optimal configuration of traps for numbers of traps N ≤ 50, and elliptic domains of sample eccentricities
0, 0.472, 0.802, and 0.995. In Section 4, the results of the study for N identical traps are presented. These
results include the optimised values of the merit functions (related to the domain-average Brownian
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particle capture time) for each number of traps, and each domain eccentricity; in the case of the unit
disc, the new computations are compared to those of the previous study [14]. Distributions of traps for
some illustrative cases are shown, and bulk measures of trap distribution including the closest-neighbour
pairwise distance, smallest distance to the boundary, and area per trap are calculated for each of the
optimised configurations of identical traps. It is also shown that unlike the cases of the disc- and sphere-
shaped domains, where traps tend to be distributed about circular rings or spherical shells, respectively
[7, 14], optimal trap locations within an ellipse are generally not distributed about scaled versions of the
domain boundary. While this often seems to be the case, we observed remarkable deviations from this
trend, the most dramatic of which can be seen in Figure 10.

Section 5 is concerned with a more general case of unequal traps in an elliptic domain. Asymptotic
formulas for the AMFPT are derived for this case, generalising those for the case of identical traps.
Sample putative optimal configurations for traps of two kinds, for different trap size relations and domain
eccentricities, are computed.

Section 6 contains a discussion of the results and some related problems.

2. Asymptotic MFPT for the elliptic domain with N identical traps

The main goal of this contribution is to further explore optimal configurations of absorbing traps found
using asymptotic expansions for the circular and elliptical domains for which asymptotic MFPT for-
mulae depending on trap positions are now available [12, 14]. To this end, numerical methods will be
used to approximate the optimum configurations of larger numbers of traps than have previously been
considered. In the case of the unit disc, the parameter space used in this study is general and does not
assume any simplifying restrictions that have been imposed in previous works to reduce computational
complexity. To begin, we recall the formulas for identical traps [12], following which, in Section 5, we
derive the corresponding formulas for traps of differing sizes.

In essence, the problem at hand is to find the trap positions which minimise the spatial average of the
MFPT u(x) in the elliptic domain � of area |�|, denoted by:

ū = 1

|�|
∫

u(x) dS

and approximated by u0 in the leading order in terms of the deviation σ of the domain from the unit
disc [12]. We now summarise the equations used to minimise u0, as derived in [12, 14]. The unit disc
will be considered a special case of the elliptical domain with zero eccentricity. In either case, when the
domain contains N identical circular traps, each of radius ε, the approximate AMFPT satisfies [12]

u0 = |�|
2πDνN

+ 2π

N
eTGA, (2.1)

where the column vector A satisfies
N∑

j=1

Aj = |�|
2πD

(2.2)

and is given by the solution of the linear system:

[I + 2πν(I − E) G] A = |�|
2πDN

e. (2.3)

Here, E ≡ eeT/N, e = (1, . . . , 1)T , ν ≡ −1/ log ε, and the Green’s matrix G depends on the trap centre
locations {x1, . . . , xN}, such that

Gij =
{

G(xi; xj), i 	= j,

Ri, i = j.
(2.4)
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In (2.4), G(xi; xj) is the Neumann–Green’s function of the domain, and Ri ≡ R(xi) is the regular part of
G(xi; xj) as xj → xi. The function G(x; x0) is defined as the unique solution of the Poisson boundary value
problem [14]:

�G = 1

|�| −δ(x − x0) , x ∈ � ; ∂nG = 0 , x ∈ ∂� ; (2.5a)

G(x; x0) = − 1

2π
log |x − x0| + R(x; x0) ;

∫
�

G(x; x0) dx = 0. (2.5b)

Examining the equation (2.1), it can be seen that the first term depends only on the combined trap size
but does not depend on the trap locations. The second term that explicitly depends on the trap locations
is the quantity and therefore can be optimised by adjusting trap positions. The merit function subject to
optimisation can be chosen as:

q(x1, . . . , xN) = eTGA (2.6)

depending on 2N coordinates of N traps located within the elliptical domain. For a value of q to be a
permissible solution, it is required that u0 ≥ 0, as it is a measure of time; all traps must be within the
domain; no trap may be in contact with any other trap (or the two must instead be represented as a single
non-circular trap).

While the preceding statements are true for both the circular and the elliptical domain, the elements
of the matrix G are populated by evaluating the Green’s function of the domain for each pair of traps,
and the form of this function differs for the two cases considered here.

In the case of the circular domain, the elements of the Green’s matrix G are computed using the unit
disc Neumann–Green’s function [14]:

G(x; x0) = 1

2π

(
−log |x − x0| − log

∣∣∣∣x|x0| − x0

|x0|
∣∣∣∣ + 1

2

(|x|2 + |x0|2
) − 3

4

)
, (2.7a)

and its regular part:

R(x) = 1

2π

(
− log

∣∣∣∣x|x| − x

|x|
∣∣∣∣ + |x|2 − 3

4

)
. (2.7b)

The Green’s function for the elliptical domain, in the form of a quickly convergent series, has been
derived in [12] using elliptical coordinates (ξ , η). It has the form:

G(x, x0) = 1

4|�|
(|x|2 + |x0|2

)− 3

16|�| (a2 + b2) − 1

4π
log β − 1

2π
ξ>

− 1

2π

∞∑
n=0

log

(
8∏

j=1

|1 − β2nzj|
)

, x 	= x0 , (2.8)

where a and b are the major and minor axis of the domain, respectively; the area of the domain is
|�| = πab, and the parameter β = (a − b)/(a + b) and the values ξ> = max(ξ , ξ0), z1, . . . , z8 are defined
in terms of the elliptical coordinates ξ and η as follows.

The Cartesian coordinates (x, y) and the elliptical coordinates (ξ , η) are related by the
transformation:

x = f cosh ξ cos η , y = f sinh ξ sin η , f = √
a2 − b2 . (2.9a)

For the major and minor axis of the elliptical domain, one has

a = f cosh ξb , b = f sinh ξb , ξb = tanh−1

(
b

a

)
= −1

2
log β. (2.9b)

https://doi.org/10.1017/S0956792522000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000341


European Journal of Applied Mathematics 1273

For the backward transformation, to determine ξ (x, y), equation (2.9a) is solved to give

ξ = 1

2
log
(

1 − 2s + 2
√

s2 − s
)

, s ≡ −μ −√
μ2 + 4f 2y2

2f 2
, μ ≡ x2 + y2 − f 2 . (2.10a)

In a similar fashion, η(x, y) is found in terms of η� ≡ sin−1 (
√

p) to be

η =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η� , if x ≥ 0, y ≥ 0

π − η� , if x < 0, y ≥ 0

π + η� , if x ≤ 0, y < 0

2π − η� , if x > 0, y < 0

, p ≡ −μ +√
μ2 + 4f 2y2

2f 2
. (2.10b)

Finally, the zj-terms appearing in the infinite sum of equation (2.8) are defined via ξ , η, and ξb as:

z1 ≡ e−|ξ−ξ0|+i(η−η0) , z2 ≡ e|ξ−ξ0|−4ξb+i(η−η0) , z3 ≡ e−(ξ+ξ0)−2ξb+i(η−η0) ,

z4 ≡ e(ξ+ξ0)−2ξb+i(η−η0) , z5 ≡ e(ξ+ξ0)−4ξb+i(η+η0) , z6 ≡ e−(ξ+ξ0)+i(η+η0) ,

z7 ≡ e|ξ−ξ0|−2ξb+i(η+η0) , z8 ≡ e−|ξ−ξ0|−2ξb+i(η+η0) .

(2.11)

The regular part of the Neumann–Green’s function, R, can be expressed in similar terms as G in
equation (2.8) but requires a restatement of the zj-terms given in (2.11). It is given by:

R(x0) = |x0|2

2|�| − 3

16|�| (a2 + b2) + 1

2π
log(a + b) − ξ0

2π
+ 1

4π
log
(
cosh2 ξ0 − cos2 η0

)

− 1

2π

∞∑
n=1

log
(
1 − β2n

) − 1

2π

∞∑
n=0

log

(
8∏

j=2

∣∣1 − β2nz0
j

∣∣) . (2.12a)

Here, z0
j denotes the limiting value of zj, as defined in equation (2.11), as (ξ , η) → (ξ0, η0), given by:

z0
2 = β2 , z0

3 = βe−2ξ0 ,

z0
4 = βe2ξ0 , z0

5 = β2e2(ξ0+iη0) , z0
6 = e2(−ξ0+iη0) ,

z0
7 = βe2iη0 , z0

8 = βe2iη0 .

(2.12b)

3. Global optimisation

In this section, the methods used to find the optimum trap configurations minimising the AMFPT (2.1)
are discussed, as are the parameters and constraints used to specify the optimisation problem. We include
a description of the general optimisation strategy, the algorithms used, and some implementation details.
For the model specification, we discuss the choices of the domain and trap sizes. To conclude, we give
some details on the expected accuracy of our approach, to help interpret the results presented later.

3.1. Model parameters

The parameters which defined each optimisation problem were the number of traps N , the sizes of the
traps ε1, . . . , εN , and eccentricity of the elliptic domain given by:

κ =
√

1 −
(

b

a

)2

(3.1)

in terms of the major and the minor semi-axes a and b. We imposed a common requirement that the area
of the domain be |�| = π to facilitate comparisons of results for different eccentricities.
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This study explored the following parameters. We considered domain eccentricities of κ = 0, 0.472,
0.802, and 0.995, and for N ≤ 50 traps. For traps of equal size, we took ε = 0.05 in order to facilitate
comparison with previous studies [12]. For traps of different sizes (see Section 5 below), we took two
traps to be larger than the others. The size of the smaller traps was chosen to be ε1 = 10−9 to further
reduce the number of computations spent on insufficiently separated traps, and the larger traps were
taken to be either ε2 = 103ε1 or ε2 = 106ε1. The relative difference was chosen to be several orders of
magnitude because the trap interactions are weighted by ν = −log(ε)−1, meaning a significant different
in sizes is required to achieve observable effects. The number of larger traps was kept small to limit the
computational complexity of the problem, for the following reasons.

For traps of different sizes, it was found that the computational problem was significantly compli-
cated by the fact that the optimal placement of a trap now depended on its size, leading to the loss of
some advantageous symmetry, in a similar way that changing the eccentricity of the domain eliminates
the rotational invariance of a configuration. To account for this we used an optimised configuration,
obtained for identical traps, as an initial guess, then applied our method for all unique combinations of
initial trap locations. With this approach, for N total traps and m traps of a different size than the oth-
ers, there are Cm

N = N!/(m!(N − m)!) ∼O(Nm/m!) initial configurations to consider. To maintain relative
computational simplicity, the study was limited to N = 5, N = 10, and m = 2.

3.2. Model constraints

In terms of the optimisation constraints, we note that the asymptotic approximation of the AMFPT used
in this work was derived under the assumptions of the traps being well separated, and small relative
to the domain: ε � 1. Special care needed to be taken to ensure that the traps were well separated. If
the traps were to come into contact or overlap, the asymptotic equation (2.1) could yield non-physical
values u0 < 0 (a common feature of asymptotic formulas that replace finite traps with ‘point traps’ in
various narrow escape and narrow capture setups). In the MFPT optimisation, the traps are effectively
repelled from one another, as well as from their ‘reflections’ in the domain boundary. For example, for
the disc domain, this is manifested in the fact that the Green’s function (2.7a) grows logarithmically as
x → x0 as well as when |x| → 1. In particular, q increases as distance between traps decreases, yet as
traps begin to overlap q decreases extremely rapidly, appearing to the optimisation algorithm to give a
favourable configuration. Though this problem can be addressed by artificially assigning q a high value
when an unacceptable configuration is encountered, this approach was found to significantly reduce the
efficiency of the global search. Instead, an optimum was first found for ε = 0, following which a local
search was carried out using these coordinates as an initial guess, and further optimisation applied from
there on.

3.3. Method description

In all cases the same general approach, outlined in Algorithm 1, was taken to find the putative optimal
trap configuration for a given set of model parameters. The optimisation method had three components,
referred to as sweep, iteration, and search. A ‘search’ consisted of running an optimisation algorithm for
a specific N , an ‘iteration’ consisted of comparisons of the results of each search and selecting which
values of N should considered in subsequent searches, and a ‘sweep’ consisted of a series of iterations.
After each iteration, the search would alternate between the global and local algorithms, described below.
Each search would run until one of three stopping conditions was encountered. The first of these was∣∣∣∣q′ − q

q

∣∣∣∣≤ δq = 10−4 and q′ < q , (3.2)

meaning that the new candidate optimal value q′ of the merit function (2.6) did not provide a sufficiently
large relative improvement. The second condition was that the execution time of the program exceeded
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Algorithm 1: Pseudocode for the general form of the optimization method used here.

30 min, and the third was that the number of merit function evaluations exceeded 106. After the search
was conducted for each N , the results were compared to previous results according to two criteria. The
first of these was that, for a specific Ni from the list, qi

′ < qi, meaning that an improvement had been
made. The second was that qi was consistent with the expectation that q must be a decreasing function
of N , as we expect the AMFPT to decrease as more traps are added. If both of these conditions were
satisfied, the new interim optimum was accepted and Ni would not be considered in further iterations.
Iterations would repeat until the list was exhausted, a user-defined limit was exceeded, or the program
was manually stopped. On each new sweep, the list would be repopulated and the process would repeat,
informed by the newly obtained optimums. For traps of different sizes, permutation of trap positions
occurred after each sweep.

3.4. Choice of algorithms

The global search employed the particle swarm algorithm PSwarm [11], as implemented in the freely
available software package OPTI [6]. The default values for the social and cognitive parameters were
chosen, meaning the local optimum known by each particle tended to be as attractive as the known
global optimum. These values were chosen with the intent that the parameter space would be explored as
broadly as possible. For the local search, the Nelder–Mead algorithm [16], as implemented in MATLAB
R2020, was used. The algorithms were chosen based on their broad applicability, availability in software
libraries, and the fact that they do not require information about the structure of the merit function, such
as its partial derivatives. Algorithms with such properties are commonly referred to as derivative-free
(see, e.g., [22]).
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Table 1. Average MFPT ũ0 in the unit disc for pre-
viously computed putative optimal configurations
([14], Table 2) compared to the AMFPT u0 (4.1) for
optimal trap arrangements computed in this work.
The relative difference plot is given in Figure 2
N ũ0 u0

6 0.11648 0.11648
7 0.09299 0.09297
8 0.07660 0.07660
9 0.06518 0.06512
10 0.05653 0.05624
11 0.04920 0.04900
12 0.04291 0.04278
13 0.03805 0.03796
14 0.03380 0.03375
15 0.03042 0.03038
16 0.02747 0.02745
17 0.02502 0.02499
18 0.02286 0.02280
19 0.02078 0.02076
20 0.01909 0.01907
21 0.01756 0.01755
22 0.01626 0.01624
23 0.01512 0.01510
24 0.01411 0.01403
25 0.01314 0.01307

3.5. Expected accuracy of results

Concerning the accuracy of results, we note that the error associated with the AMFPT and q (2.6) is
O(ε2) [12]. For the largest trap size considered in this study, ε = 0.05, this means that δq = 0.0025,
which motivated the choice of stopping threshold δq (3.2). While in the current elliptic domain setup,
the Green’s function is known explicitly in terms of a series (2.12a) which can be summed numer-
ically to an arbitrary precision accessible to software. In a more general case, where entries of the
Green’s matrix G might be known only approximately, with some expected relative error δG, the result-
ing relative error in the merit function may reach the values ∼ N2δG. In such a case, in order to use the
threshold value δq in (3.2), one would need to compute the the Green’s matrix entries with relative error
δG � N−2δq.

4. Optimisation results: N identical traps

In this section, we use the method outlined in Section 3 to compute putative global optimum configura-
tions of N equal traps in the ellipse, 1 ≤ N ≤ 50, compare these results of this study to previous results
for the unit disk [14], and present some analysis of the trap configurations. In particular, we show that
the unit disc AMFPT values for the putative optimal configurations found below are consistently better
than those given in [14].
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Table 2. Optimised values of the merit function (2.6), for each number of
traps N and eccentricity κ considered in this study. Plots of these values are
found in Figure 3

Merit value

N κ = 0 κ = 0.472 κ = 0.802 κ = 0.995
1 −0.0597 −0.0594 −0.0540 0.1730
2 −0.0754 −0.0792 −0.0854 0.0175
3 −0.0969 −0.0967 −0.0959 −0.0452
4 −0.1112 −0.1113 −0.1115 −0.0793
5 −0.1207 −0.1207 −0.1200 −0.1007
6 −0.1272 −0.1274 −0.1289 −0.1154
7 −0.1348 −0.1347 −0.1342 −0.1261
8 −0.1409 −0.1408 −0.1393 −0.1343
9 −0.1451 −0.1451 −0.1447 −0.1407
10 −0.1489 −0.1494 −0.1492 −0.1457
11 −0.1526 −0.1532 −0.1533 −0.1498
12 −0.1567 −0.1566 −0.1569 −0.1530
13 −0.1599 −0.1598 −0.1603 −0.1559
14 −0.1632 −0.1632 −0.1632 −0.1587
15 −0.1659 −0.1660 −0.1657 −0.1614
16 −0.1685 −0.1686 −0.1683 −0.1642
17 −0.1708 −0.1705 −0.1708 −0.1668
18 −0.1731 −0.1731 −0.1733 −0.1693
19 −0.1756 −0.1755 −0.1756 −0.1718
20 −0.1777 −0.1776 −0.1775 −0.1741
21 −0.1798 −0.1797 −0.1796 −0.1756
22 −0.1815 −0.1815 −0.1816 −0.1768
23 −0.1831 −0.1831 −0.1833 −0.1800
24 −0.1848 −0.1851 −0.1848 −0.1820
25 −0.1864 −0.1867 −0.1864 −0.1834
26 −0.1880 −0.1882 −0.1880 −0.1858
27 −0.1897 −0.1896 −0.1896 −0.1875
28 −0.1911 −0.1910 −0.1911 −0.1893
29 −0.1925 −0.1925 −0.1925 −0.1909
30 −0.1940 −0.1940 −0.1938 −0.1920
31 −0.1953 −0.1953 −0.1952 −0.1941
32 −0.1964 −0.1964 −0.1965 −0.1953
33 −0.1977 −0.1978 −0.1978 −0.1958
34 −0.1989 −0.1989 −0.1990 −0.1975
35 −0.2000 −0.2001 −0.2000 −0.1987
36 −0.2012 −0.2012 −0.2012 −0.2003
37 −0.2025 −0.2024 −0.2023 −0.2005
38 −0.2035 −0.2035 −0.2033 −0.2022
39 −0.2045 −0.2044 −0.2043 −0.2028
40 −0.2056 −0.2055 −0.2053 −0.2037
41 −0.2065 −0.2065 −0.2064 −0.2046
42 −0.2074 −0.2073 −0.2073 −0.2049
43 −0.2083 −0.2084 −0.2083 −0.2065
44 −0.2093 −0.2092 −0.2092 −0.2069
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Table 2. Continued.

Merit value

N κ = 0 κ = 0.472 κ = 0.802 κ = 0.995
45 −0.2102 −0.2103 −0.2102 −0.2086
46 −0.2110 −0.2111 −0.2111 −0.2091
47 −0.2119 −0.2120 −0.2119 −0.2102
48 −0.2127 −0.2128 −0.2128 −0.2098
49 −0.2136 −0.2136 −0.2136 −0.2118
50 −0.2144 −0.2143 −0.2143 −0.2126
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Figure 2. Relative difference (u0 − ũ0)/ũ0 between average MFPT ũ0 in the unit disc for previously
found putative optimal configurations ([14], Table 2) and the optimal average MFPT values u0 (4.1)
computed in this work (Table 1).

Though it is conventional to discuss optimal configurations in terms of their ‘interaction energy’ used
as the merit function (see, e.g., [21] and references therein), here we will use the full asymptotic AMFPT
expression [12, 14]:

u0 = |�|
2πDνN

(
1 + 4π 2Dν

|�| eTGA
)

. (4.1)

which facilitates comparisons with the previous work [14] in the case of the unit disk. We denote the
AMFPT values of the trap arrangements found in [14] by ũ0. Table 1 compares ũ0 and u0 (4.1) for each N
reported in the previous study ([14], Table 2). It can be seen that the new values are consistently smaller,
differing at most in the third significant figure. A plot of the difference between the previous and the
new putative optimal AMFPT values, relative to the previous results, is presented in Figure 2.

The computed optimal values of the merit function (2.6) that correspond to putative globally optimal
minima of the AMFPT (2.1), for the domain eccentricities κ = 0 (circular disc), 0.472, 0.802, and 0.995,
are presented in Table 2 below and are graphically shown in Figure 3. While the first three plots are nearly
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Figure 3. The putative optimal values of the merit function (2.6) for different ellipse eccentricity values
as a function of the number of traps N (Table 2).

identical, the plot (d) for the largest eccentricity value differs significantly for small N but becomes
similar to the other plots for larger N .

Plots comparing the optimal configurations of select N for each of the eccentricities considered in
this study are shown in Figures 4–7. Each plot shows the positions of the traps within the domain, along
with a visualisation of a Delaunay triangulation [17] calculated using the traps as vertices, to illustrate
the distribution of the traps and relative distance between them.

In addition, it was of interest to see how the ring-like distribution of traps would change with the
eccentricity of the domain. This is related to the observation that for the unit disc, optimal trap config-
urations tend to form ring-like structures [14]; a similar effect is observed for the MFPT problem with
internal traps in the unit sphere, where equal traps tend to be centred close to nested spherical surfaces
[7]. To be specific, traps on a ring would have common radial coordinates and common angular separa-
tion from their neighbours on the ring. Ring-like distributions would then be ones which are qualitatively
similar to a ring.

In order to examine the configurations for ring-like structure, visualisations of the effective radial
coordinates of the traps were produced. To elaborate, a scaling factor was calculated for each trap which
corresponds to the size of the elliptical contour which that trap would be placed. This scaling factor c is
given by the equation: ( x

a

)2 +
( y

b

)2 = c2 , (4.2)

where c = 1 corresponds to the boundary of the domain. When the domain is circular, meaning
a = b = 1, then in terms of polar coordinates, c is the radial coordinate of the trap. It should be kept
in mind that these measures are meant as a rough criteria to test the prevalence of ring-like configura-
tions. A more thorough examination would require the traps be categorised by their radial proximity to
one another, following which the angular coordinates of alike traps would be compared. The scaling fac-
tors are shown in the lower subplots in Figures 4–7. For the case of N = 5, Figure 4 can be compared to
the optimal configurations presented in [12], through which it can be seen that the two are qualitatively
similar and exhibit the same relationship between trap distribution and domain eccentricity. For higher
eccentricity values (except the degenerate cases where traps lie on the symmetry axis: Figures 4(d),
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Figure 4. Plots depicting optimal trap distribution for N = 5, comparing eccentricities of (a) κ = 0, (b)
κ = 0.472, (c) κ = 0.802, and (d) κ = 0.995. For each subfigure (a)–(d), upper plots show positions of
traps, along with a visualisation of nearest-neighbour pairs calculated using Delaunay triangulation.
Lower plots show the scaling factor given by the equation (4.2).

5(d)), the trap configurations do not tend to show ring-like structures that are present, to some degree,
in the disc and low-eccentricity elliptic domains.

To examine the putative optimal distributions of traps in terms of their pairwise distance to the clos-
est neighbour and related measures, a Delaunay triangulation was computed to identify neighbours of
each trap (see upper plots in Figures 4–7). In general, for a configuration of N traps distributed, in
some sense, ‘uniformly’ over the elliptic domain of area |�| = π , the average ‘area per trap’ is given
by A(N) = |�|/N = π/N. Likening an optimal arrangement of N traps to a collection of circles packed
into an enclosed space, the (average) distance 〈d〉 between two neighbouring traps would be the dis-
tance between the centres of two identical circles representing the area occupied by each trap; it would
be related to the area per trap as A(N) = π〈d〉2/4. One consequently finds that the average distance
between neighbouring traps, equivalent to the diameter of one of the circles, is given by:

〈d〉 =
√

4|�|
πN

= 2√
N

. (4.3)

Extending this comparison to the traps nearest the boundary, the smallest distance between a trap and
the boundary was taken to be the radius of a circle surrounding the trap, and the diameter of this circle
was compared to the smallest distance between two traps. This essentially provides a measure of the
distance between a near-the-boundary trap and its ‘reflection’ in the Neumann boundary.
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Figure 5. Plots depicting optimal trap distribution for N = 10, comparing eccentricities of (a) κ = 0,
(b) κ = 0.472, (c) κ = 0.802, and (d) κ = 0.995. For each subfigure (a)–(d), upper plots show positions
of traps, along with a visualisation of nearest-neighbour pairs calculated using Delaunay triangulation.
Lower plots show the scaling factor given by the equation (4.2).

In Figure 8, for each of the four considered eccentricities of the elliptic domain, the mean pairwise
distance between neighbouring traps is plotted as a function of N , along with minimum pairwise distance
between traps, and 2× minimal distance to the boundary. These are compared with the average distance
formula (4.3) coming from the ‘area per trap’ argument. It can be observed that the simple formula
(4.3) may be used as a reasonable estimate of common pairwise distances between traps in an optimal
configuration.

5. Traps of different sizes

We now consider the case when the small traps are circular and well separated but have differing sizes
given by εj, j = 1, . . . , N, with the corresponding size parameters νj = −1/ log εj. In the case of same or
different-sized traps, the leading-term MFPT contribution satisfies [12, 15]

u0(x) = −2π

N∑
k=1

AkG(x, x0) + ū0
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Figure 6. Plots depicting optimal trap distribution for N = 25, comparing eccentricities of (a) κ = 0,
(b) κ = 0.472, (c) κ = 0.802, and (d) κ = 0.995. For each subfigure (a)–(d), upper plots show positions
of traps, along with a visualisation of nearest-neighbour pairs calculated using Delaunay triangulation.
Lower plots show the scaling factor given by the equation (4.2).

and, when matched with the far-field behaviour of u0, yields

ū0 − 2π

(
AjRj +

N∑
i 	=j

AjG(xj; xi)

)
∼ Aj

νj

, j = 1, . . . , N. (5.1)

When all νj = ν, the matching condition (5.1) and (2.2) yield the formulas (2.1) and (2.3). In the general
case, the equations (5.1) and (2.2) can also be solved explicitly. One obtains

ū0 = |�|
2πDν̄N

+ 1

ν̄N
w ·A , (5.2)

where the vector A is the solution of the linear system:

(I + 2πNG −Q) A= |�|
2πDν̄N

ν. (5.3)

In (5.2) and (5.3), G is the Green’s matrix (2.4), ν = (ν1, . . . , νN)T is the trap size parameter vector, N =
diag ν is the corresponding diagonal N × N matrix, ν̄ = (∑N

i=1 νj

)
/N is the average trap size parameter,

w = 2πeTNG is a row vector, and Q= (ν · w)/(ν̄N) is an N × N matrix.
The optimisation of the approximate AMFPT (5.2) corresponds to the optimisation of the second

term of (5.2), or equivalently, the merit function:

q(x1, . . . , xN) = eTNGA (5.4)
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Figure 7. Plots depicting optimal trap distribution for N = 40, comparing eccentricities of (a) κ = 0,
(b) κ = 0.472, (c) κ = 0.802, and (d) κ = 0.995. For each subfigure (a)–(d), upper plots show positions
of traps, along with a visualisation of nearest-neighbour pairs calculated using Delaunay triangulation.
Lower plots show the scaling factor given by the equation (4.2).

depending on 2N scalar variables. The expression (5.4) generalises the merit function (2.6) onto the
set-up with non-equal traps.

As an illustration, we consider elliptic domains with N = N1 + N2 traps, such that N1 traps have com-
mon radii ε1, and N2 traps common radii ε2 > ε1. Using the global optimisation procedure described
in Section 3 and the values ε1 = 10−9 and ε2 = 103ε1 or ε2 = 106ε1, the configurations obtained for two
different values of eccentricity κ = 0.472 or κ = 0.802 and the trap numbers N2 = 2 and N = 5, 10 are
shown in Figures 9 and 10. As expected, larger traps produce a stronger ‘push’ than the smaller ones. It
is evident that the increase of the ε2/ε1 ratio causes a significant change in the form of the configuration.

6. Discussion

At this point, some interpretation of the previously stated results will be presented. This discussion will
concern the putative optimal values of the AMFPT (2.1) in elliptic domains with internal traps, values
of the related merit function (2.6), the positions of traps within the domain, the bulk measures of trap
distribution which were employed, and the configurations of non-identical traps.

To begin, the method of study will be briefly reiterated. In order to study the dependence of optimal
trap configurations on both the number of traps and the eccentricity of the elliptic domain, the values of
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Figure 8. Plots depicting local pairwise distance properties of optimal trap distributions as functions
of N, for domain eccentricities κ = 0 (a), κ = 0.472 (b), κ = 0.802 (c), and κ = 0.995 (d). The curve
entitled ‘Measure of Area per Trap’ shows the distance 〈d〉 computed using the ‘area per trap’ argument
and the resulting formula (4.3).

the merit function (2.6) corresponding to the approximate AMFPT (4.1) were minimised for N ≤ 50 and
sample values of the eccentricity (3.1) of 0, 0.472, 0.802, and 0.995, while the area of the ellipse was
kept constant, |�| = π . For N traps, the merit function consequently depends on 2N scalar variables.
In the search for a global optimum, an iterative approach, which switched between global and local
searches, was used (Section 3). The method used here was similar to that of [12], though a different
algorithm was used for the local search, as well as in [7] which used a different algorithms than here
for both searches. A somewhat different approach was employed in [13], which made use of numerical
solutions to the Poisson problem (1.1). In the case of the unit disc, the comparison of the results of this
study to those in [14] demonstrated that the optima reported here are consistently an improvement on
previous work. In particular, this is due to the removal of the constraint that all traps be located on rings
within the domain – see, for example, Figure 5(a) where for N = 10, trap centres evidently do not lie on
concentric rings.

Plots of the putative globally optimal merit function values vs. N , for each eccentricity value consid-
ered, are found in Figure 3. It follows that the domain eccentricity is a more important factor when there
are few traps, but each function behaves similarly as N increases. In particular, as the number of traps
N increases, the AMFPT u0 (2.1) approaches zero; the merit function q(x) therefore must, as N → ∞,
approach from above the value −|�|/(4π 2Dν) � −0.238, which agrees with the plots in Figure 3.
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Figure 9. Plots depicting optimal trap distributions for N = 5 traps with three traps of radius ε1 = 10−9

and two larger traps of radius ε2 = 103ε1 (upper) or ε2 = 106ε1 (lower), and κ = 0.472 (left) or κ = 0.802
(right). Upper plots show positions of traps along with a crude visualisation of nearest-neighbour pairs
calculated using Delaunay triangulation. Lower plots show the scaling factor given by equation (4.2).

Examination of the positions of traps in the AMFPT-minimising configurations, both visually and
in terms of their radial coordinates, gives the impression that the optimal configuration is one which
consists of traps placed on the vertices of nested polygons. These polygons, while irregular, seem to
possess some consistent structure, including being convex. (It is interesting to note that the optimal con-
figurations of confined interacting points often take similar forms, both in two and three dimensions
[8, 18, 24, 25].) Due to the geometrical symmetries of the ellipse, the optimal configurations are defined
uniquely modulo the group C2 × C2 of reflections with respect to both axes, which includes the rotation
by π . Numerical optimisation algorithms converge to a single specific representative of the equivalent
putative globally optimal configurations. For example, for non-symmetric numerically optimal configu-
ration, several traps may be found along the midline of one half (right or left) of the domain. Optimal trap
configurations with the same symmetry group as the ellipse were also observed (see, e.g., Figure 5(c)).

In addition to the examination of individual trap positions in each optimised configuration, quantities
were calculated using the distances between neighbouring traps, defined using a Delaunay triangulation
of the trap coordinates, which served as bulk measures of the distribution of traps in each configuration.
Plots of these measures, shown in Figure 8, illustrate that the mean distance between neighbouring traps
tends to be close to the diameter of a circle which would occupy the average area of the domain per
trap, as in equation (4.3). Additionally, the minimum distance between any two traps tends to be twice
the minimum distance between a trap and the domain boundary, which supports the intuitive reasoning
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Figure 10. Plots depicting optimal trap distributions for N = 10 traps with eight traps of radius
ε1 = 10−9 and two larger traps of radius ε2 = 103ε1 (upper) or ε2 = 106ε1 (lower), and κ = 0.472 (left)
or κ = 0.802 (right). Upper plots show positions of traps along with a crude visualisation of near-
est-neighbour pairs calculated using Delaunay triangulation. Lower plots show the scaling factor given
by equation (4.2).

that for the boundary value problem (1.1) with interior traps, the Neumann boundary condition on ∂�

‘reflects’ each trap, so that under the AMFPT optimisation, every trap tends to ‘repel’ from its reflection
in the boundary the same way as it is repelled from other traps.

In Section 5, the formulas obtained in [13] pertaining to the approximate asymptotic MFPT in
an elliptic domain were generalised onto the case of N traps of different sizes, defined by the radii
εj, j = 1, . . . , N. It was shown that that the AMFPT is approximated by (5.2) and can be minimised
simultaneously with the merit function (5.4) of 2N scalar trap coordinates. Global optimisation was
performed for sample configurations corresponding to all combinations of trap numbers N = {5, 10},
domain eccentricities κ = {0.472, 0.802}, and trap size relations ε2 = {103ε1, 106ε1}, when two traps had
the same radius ε2 and N − 2 traps the radius ε1. The respective putative optimal configurations shown
in Figures 9–10 were obtained. In particular, strong dependence of the form of the optimal configuration
on the trap size ratio was observed.

Both in the case of same and different trap sizes, multiple N-trap configurations corresponding to
local minima of the AMFPT exist, some having rather close values of the merit function. Computation
and analysis of the structure of such local minima, possibly along the lines of a similar study for traps
on the surface of the sphere [21], is a possible direction of future research.

In future work, it would also be of interest to address the following related problems. The first is to
carry out similar investigations for non-elliptic near-disc domains considered in [12]. Another interesting
direction is the development of a scaling law which would predict the behaviour of the MFPT as the
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number of traps increases with their positions defined according to a specific distribution, in particular,
for distributions that globally or locally minimise MFPT, or other distributions of practical significance.
A similar problem, along with the dilute trap fraction limit of homogenisation theory, was addressed in
[4, 5] for the narrow escape problem involving boundary traps located on the surface of a sphere in three
dimensions.
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