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Abstract

We show how the Selberg Λ2-sieve can be used to obtain power saving error terms in a wide class
of counting problems which are tackled using the geometry of numbers. Specifically, we give such
an error term for the counting function of S5-quintic fields.
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1. Introduction

Over the past decade there has emerged a large body of work concerned
with counting arithmetic objects by parameterizing them as GZ orbits on VZ,
where G is some reductive algebraic group, and V is a representation of G
(see [3, 5–9, 11]). In certain applications, particularly relating to low lying
zeros–see [12], it is important not only to obtain the asymptotic count, but also to
obtain a power saving error term, that is a formula of the type

#{Objects of interest with height less than X} = cX a logb X + O(X a−δ)

for some fixed constant δ > 0.
In this note, we show how the Selberg Λ2-sieve can be used very generally to

obtain such power savings. In particular, we demonstrate our claim by obtaining
the first known power saving for quintic fields with Galois group S5 and bounded
discriminant:
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THEOREM 1. Define N (i)
5 (X) to be the number of quintic fields with Galois group

S5 having discriminant bounded in absolute value by X with i complex places.
Then

N (i)
5 (X) = di

∏
p

(1+ p−2
− p−4

− p−5)X + Oε(X
199
200+ε)

where d0, d1, d2 are 1/240, 1/24, and 1/16, respectively.

The analogous version of Theorem 1 in the case for cubic and quartic fields
with Galois groups S3 and S4, respectively, was proven in [2]. However, in those
cases, the arguments used to obtain power saving error estimates were explicit and
do not easily generalize. An advantage to using the Selberg Λ2-sieve is that it is
very general. It yields power saving error estimates when counting the arithmetic
objects that arise in, for example, [7, 9, 11].

We begin with a general sketch of the argument.

1.1. Sketch of the argument. Typically, one finds a fundamental domain
F ⊂ VR for the action of GR, and one wants to count integral points inside F of
bounded height. However, it is not all points that one wants to count; one partitions
the set VZ into two sets V deg

Z and V ndeg
Z where the former set corresponds to objects

which are ‘degenerate’ in some way, and it is only the points in V ndeg
Z that need to

be counted. For example, in the quintic case the degenerate points correspond to
quintic rings R such that R ⊗Z Q is not a quintic field with Galois group S5. F is
typically not compact and has ‘cusps’ which contain primarily degenerate points;
the method which one uses to estimate the number of nondegenerate points in the
cusp typically yields a power saving. Denoting the ‘main ball’ of F by F0, and
letting F0(X) be the set of points in F0 having height at most X , it then follows that

|VZ ∩ F0(X)| = cX a logb X + O(X a−δ).

It remains to estimate the number of degenerate points inside the main body
F0 ⊂ F , and it is in this last estimate that past results have frequently failed to
obtain a power saving.

The typical argument runs as follows. The reduction modulo a prime p of V deg
Z

is shown to lie in a subset Bp ⊂ VFp of density µp, which approaches a constant
c between 0 and 1 as p→∞. Set B̃p to be the set of elements of VZ reducing to
Bp. For any finite fixed set S of primes, one has the estimate

|V deg
Z ∩ F0(X)| 6

∣∣∣∣⋂
p∈S

B̃p ∩ F0(X)
∣∣∣∣ ∼∏

p∈S

µp · cX a logb X.
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This is true for every fixed S. Since
∏

p∈S µp can be made arbitrarily small by
picking S to be a large set, one obtains

|V deg
Z ∩ F0(X)| = o(X a logb X).

However it is possible to do much better by estimating |
⋂

p∈S B̃p| with the
Selberg sieve [10, Theorem 6.4]. To apply this sieve, we need the following
uniform statement. Let L ⊂ VZ be defined by congruence conditions modulo m.
Then

|L ∩ F0(X)| = µ(L)cX a logb X + O(X a−δm A),

where µ(L) denotes the density of L in VZ, and A is a fixed constant independent
of L . The application of the Selberg sieve immediately yields a power saving error
term:

|V deg
Z ∩ F0(X)| = Oε(X a− δ

2A+3+ε).

We remark that for arithmetic applications one usually needs a further sieve
(for example, a sieve from quintic rings to maximal quintic rings). This can be
done with a power saving error term following [2].

1.2. Outline of the paper. In Section 2, we collect the arguments used by
Bhargava in [5] to parameterize and count the number of quintic rings of a
bounded discriminant. In Section 3 we use the Selberg sieve to obtain a power
saving estimate for the number of non-S5-orders having bounded discriminant.
We try to adhere to the notation of [10, Theorem 6.4] for the convenience to the
reader. In Section 4 we prove our main theorem by sieving down from S5-orders
to S5-fields.

2. S5-quintic orders

In this section, we recall results from [5] that allow us to obtain asymptotics for
the number of S5-quintic orders having bounded discriminant. All the results and
the notation in this section directly follow [5].

2.1. Parameterizing quintic rings. Let VZ denote the space of quadruples
of 5 × 5 skew-symmetric matrices with integer coefficients. The group GZ :=

GL4(Z) × SL5(Z) acts on VZ via (g4, g5) · (A, B,C, D)t = g4(g5 Agt
5, g5 Bgt

5,

g5Cgt
5, g5 Dgt

5)
t . The ring of invariants for this action is generated by one

element, denoted as the discriminant. In [4], Bhargava shows that quintic rings
are parameterized by GZ-orbits on VZ:
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THEOREM 2 (Bhargava [4]). There is a canonical bijection between the set of
GZ-orbits on elements (A, B,C, D) ∈ VZ and the set of isomorphism classes of
pairs (R, R′), where R is a quintic ring and R′ is a sextic resolvent of R. Under
this bijection, we have Disc(A, B,C, D) = Disc(R) = (1/16)Disc(R′)1/3.

2.2. Counting quintic rings. Following [5], we say that an element v ∈ VZ is
irreducible if it corresponds to a pair of rings (R, R′) such that R is an integral
domain. For a GZ-invariant subset S of VZ, let N (S, X) denote the number of
irreducible GZ-orbits on S having discriminant bounded by X .

The quantity N (VZ; X) is estimated in the following way: the action of GR on
VR has three open orbits denoted as V (0)

R , V (1)
R , and V (2)

R . Let F be a fundamental
domain for the action of GZ on GR and let H be an open bounded set in V (i)

R .
Denote VZ ∩ V (i)

R by V (i)
Z , and let S ⊂ V (i)

Z be a GZ-invariant subset. Then by
[5, Equations (9) and (10)], we have

N (S, X) =

∫
v∈H

#{x ∈ Fv ∩ Sirr
: |Disc(x)| < X}|Disc(v)|−1dv

ni

∫
v∈H
|Disc(v)|−1dv

= Ci

∫
g∈F

#{x ∈ gH ∩ Sirr
: |Disc(x)| < X}dg,

(1)

where dg is the Haar measure on GR and Sirr denotes the set of irreducible
elements in S. Note that ni depends only on i and Ci is independent of S. In
what follows, we pick F and dg as in [5, Section 2.1]. Once they are picked, we
let (1) define N (S, X) even for sets S that are not GZ-invariant. Define also the
related quantity N ∗(S, X) via

N ∗(S, X) := Ci

∫
g∈F

#{x ∈ gH ∩ S : |Disc(x)| < X}dg.

For GZ-invariant sets S, the quantity N ∗(S, X) is the number of (not necessarily
irreducible) GZ-orbits on S having discriminant bounded by X .

Let a12 denote the 12-coordinate of A. In [5], the set of elements in gH is
partitioned into two sets: the set where |a12| > 1 or the ‘main ball’ and the set
where |a12| < 1 or the ‘cusp’. Then [5, Lemma 11] states that we have

N ({x ∈ V (i)
Z : a12 = 0}, X) = O(X

39
40 ). (2)

Proposition 12 combined with the last equation in Section 2.6 of [5] implies that

N ∗({x ∈ V (i)
Z : a12 6= 0}, X) = ci X + O(X

39
40 ), (3)
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where

ci :=
ζ(2)2ζ(3)2ζ(4)2ζ(5)

2ni
.

To sieve down to fields, we will need analogous equations where V (i)
Z is

replaced by a set defined by finitely many congruence conditions on VZ.
Specifically, if L is a translate of mVZ, then from [5, Equation 28] we have

N ∗({x ∈ L ∩ V (i)
Z : a12 6= 0}, X) = ci m−40 X + O(m−39 X

39
40 ). (4)

2.3. Congruence conditions for V NS5
Z . Let V S5

Z denote the set of elements in
VZ that correspond to quintic orders whose field of fractions is an S5-number
field, and let V NS5

Z denote the complement of V S5
Z in VZ. As explained in

[5, Section 3.2], there exist disjoint subsets Tp(1112) and Tp(5) of VZ, that are
defined by congruence conditions modulo p, such that for any two distinct primes
p and q , the set V NS5

Z is disjoint from Tp(1112)∩Tq(5). Furthermore, the densities
gp(1112) of Tp(1112) and gp(5) of Tp(5) approach 1/12 and 1/5, respectively, as
p →∞. We set Sp(1112) and Sp(5) as the complements of Tp(1112) and Tp(5)
respectively.

3. Applying the Selberg sieve

Define
N ∗12(S, X) = N ∗({x ∈ S : a12 6= 0}, X).

In this section we give a power saving estimate for N ∗12(V
NS5,(i)
Z , X). By

Section 2.3, we know that

N ∗12(V
NS5,(i)
Z , X) 6 N ∗12(∩p Sp(5), X)+ N ∗12(∩p Sp(1112), X). (5)

Our goal is to bound each of the two terms on the RHS of (5) using the Selberg
sieve. We turn to the details. We begin by fixing a number z < X . Set P(z) =∏

p<z p. For each square-free number d | P(z), set gd(5) =
∏

p|d gp(5) and

ad = N ∗12

(⋂
p|d

Tp(5)
⋂

p| P(z)
d

Sp(5), X
)
.

We define ad to be 0 for d - P(z). This is a sequence of nonnegative integers, and
by (4) we have that for all d | P(z),∑

n≡0 mod d

an = N ∗12(∩p|d Tp(5), X) = ci gd(5)X + rd (6)
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where rd = O(dgd(5)X 39/40). Fix D > 1 and define

hd(5) =
∏
p|d

gp(5)
1− gp(5)

, H =
∑

d<
√

D
d|P(z)

hd(5).

A direct application of [10, Theorem 6.4] yields

a1 =
∑

(n,P(z))=1

an 6 ci X H−1
+ O

( ∑
d<D,d|P(z)

τ3(d)rd

)
. (7)

To use (7) we take z =
√

X . Note that since gp(5)→ 1
5 , we have

d−ε �ε gd(5), hd(5)�ε dε .

It follows that H = D
1
2+o(1) while∣∣∣∣ ∑

d<D,d|P(z)

τ3(d)rd

∣∣∣∣�ε X
39
40 Dε

∑
d<D

d 6 X
39
40 D2+ε .

We deduce that a1�ε X D−1/2+ε
+X 39/40 D2+ε . Optimizing, we take D = X 1/100

to deduce that a1 �ε X 199/200+ε .
It follows that

N ∗12(∩p Sp(5), X) 6 N ∗12(∩p<z Sp(5), X) = a1 �ε X
199
200+ε .

The case of N ∗(∩p Sp(1112), X) can be treated similarly, and we thus conclude
by (5) that

N ∗12(V
NS5,(i)
Z , X)�ε X

199
200+ε . (8)

4. Sieving to fields

In this section we follow [2] to prove Theorem 1. For d square-free, define
Wd ⊂ VZ to be the set of elements corresponding to quintic orders that are not
maximal at each prime dividing d, and Ud ⊂ VZ to be the complement of Wd .
Recall from [5] that Wd is defined by congruence conditions modulo d2.

We need a slight generalization of the uniformity estimate [5, Proposition 19].

LEMMA 3. N (Wd, X) = Oε(X/d2−ε).

Proof. As in [5, Proposition 19], we count rings that are not maximal by
counting their over-rings. As in that proof, we use the result of Brakenhoff [1]
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that the number of orders having index m in a maximal quintic ring R is∏
pk ||m O(pmin(2k−2,20k/11)). Moreover, from [4, Proof of Corollary 4], the number

of sextic resolvents of a quintic ring of content n is O(n6). (Recall that the content
of a ring is the largest integer n such that R = Z+ n R′ for some quintic ring R′.)

Since Disc(R) = n8Disc(R′), we have

N (Wd, X)�ε dεX
∞∑

n=1

n6

n8

∏
p|d

∞∑
k=1

pmin(2k−2, 20k
11 )

p2k
�ε X/d2−ε

as desired.

Now, a point in VZ corresponds to a maximal order in an S5-field precisely if it
is in ∩pUp ∩ V S5

Z . Denote the density of Wd by kd , and recall from [5] that kd =

Oε(d−2+ε). A quintic field is maximal if and only if it is maximal at all primes p,
and so we count S5-quintic fields by estimating the quantity N (∩pUp ∩ V (i)

Z , X)
as follows:

N (∩pUp ∩ V (i)
Z , X) =

∑
d∈N

µ(d)N (Wd ∩ V (i)
Z , X)

=

∑
d<T

(
ciµ(d)kd X + O(X

39
40 dε)

)
+

∑
d>T

Oε(X/d2−ε)

=

∑
d∈N

ciµ(d)kd X + Oε(X/T 1−ε
+ X

39
40 T 1+ε)

= ci

∏
p

(1− kp)X + Oε(X/T 1−ε
+ X

39
40 T 1+ε).

Since Wd is the union of Oε(d78+ε) translates of d2VZ, the second equality follows
from (4) and Lemma 3. Optimizing, we pick T = X 1/80 and, taking this in
conjunction with (2) and (8), we obtain Theorem 1.
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