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Summary

In the analysis of longitudinal data, before assuming a parametric model, an idea of the shape of

the variance and correlation functions for both the genetic and environmental parts should be

known. When a small number of observations is available for each subject at a fixed set of times,

it is possible to estimate unstructured covariance matrices, but not when the number of

observations over time is large and when individuals are not measured at all times. The non-

parametric approach, based on the variogram, presented by Diggle & Verbyla (1998), is specially

adapted for exploratory analysis of such data. This paper presents a generalization of their

approach to genetic analyses. The methodology is applied to daily records for milk production in

dairy cattle and data on age-specific fertility in Drosophila.

1. Introduction

Animal breeders and evolutionary geneticists are often

faced with the problem of analysing traits that change

as a function of age or some other independent and

continuous variable. This is the case, for example, for

lactation curve analysis in dairy cattle, growth curve

analysis of laboratory and agricultural species, or the

study of age-specific fitness components such as

reproductive output. Many techniques have already

been proposed to deal with this kind of data. The most

commonly used at present are random regression

models (Diggle et al., 1994). Another approach, called

‘character process models ’, has recently been pro-

posed by Pletcher & Geyer (1999), and corresponds to

a parametric modelling of the covariance structure.

An overview of these techniques is presented by

Jaffre! zic & Pletcher (2000).

These methods require an a priori formulation of a

parametric model, however, and so the main difficulty

is to choose the most appropriate model. In fact, the

number of possible models can be very large in

practice, especially for the character process meth-

odology, where it is possible to combine different

functions of variance and correlation for both the

genetic and environmental parts. An investigation of
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all possible combinations is generally not possible. An

idea of the covariance structure would be extremely

useful in order to choose the most appropriate

parametric model.

When a small number of measures with common

times of measurement is available for each subject, an

unstructured covariance matrix may be estimated

with standard software. However, when the number

of measurements per subject is large and when data

are unbalanced, for example for daily records for milk

production in dairy cattle, estimation may not be

feasible. The aim of this paper is to describe a non-

parametric procedure that deals with this kind of

data, and makes no a priori assumption about the

model for the covariance structure. This methodology

is based on the ‘variogram’ (Diggle & Verbyla, 1998),

which is easy to implement as it only requires

calculation of simple functions of the observations,

and provides a useful representation of the covariance

structure to help choose an appropriate parametric

model.

2. Variogram approach

The focus is on the analysis of repeated measures over

time, but this approach can also be applied to traits

that change as a function of another independent and
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continuous variable. In order to present the variogram

methodology, first consider the case of a phenotypic

analysis, and then an extension to a genetic analysis.

(i) Phenotypic analysis

Let t
j
( j¯1, … , J ) be the times of measurement, and

y
ij

the measure on individual i taken at time t
j
.

Individuals do not have to have measures at all times.

Assume that y
ij

is the realization of a random variable

Y
i
(t

j
), where Y

i
(t) are a set of I mutually independent

Gaussian processes with mean value functions µ
i
(t)¯

E(Y
i
(t)) and common covariance function P(s, t)¯

cov(Y
i
(s), Y

i
(t)).

For a general Gaussian process Y(t) with mean

value µ(t) and covariance function P(s, t), the residual

process is defined to be the zero-mean process Z(t)¯
Y(t)®µ(t). Then, as presented by Diggle & Verbyla

(1998), the variogram of Z(t) is the function:

γ(s, t)¯ "

#
E [(Z (s)®Z(t))# ] for s1 t. (1)

Because, E(Z(s))¯E (Z(t))¯ 0, it follows that :

γ(s, t)¯ "

#
[P(s, s)­P(t, t)®2P(s, t)] (2)

where P (s, t) is the phenotypic covariance function.

This description of the variogram does not assume

stationarity, i.e. that the variogram is a function only

of the difference rs®t r between the two times s and t

as in classical definitions.

For a set of longitudinal data (y
ij
, t

j
) with known

mean value function µ
i
(t), the variogram cloud is the

set of points ((t
j
, t

k
, �

ijk
), for i¯1, … , I, j¯1, … , J

and k" j ) in three-dimensional space, where:

�
ijk

¯ "

#
[(y

ij
®µ

i
(t

j
))®(y

ik
®µ

i
(t

k
))]#. (3)

If the data contain replicated pairs (t
j
, t

k
) across

subjects, the sample variogram �. (t
j
, t

k
) is defined as

the average of such pairs across subjects. Let r(t
j
, t

k
)

be the number of subjects contributing to �. (t
j
, t

k
).

When all the r (t
j
, t

k
) are large, the sample variogram

may be an adequate estimator for γ(t
j
, t

k
). When

r(t
j
, t

k
) are small, a smoother estimator for γ(t

j
, t

k
) is

desirable. Note that when the data are balanced, in

the sense that the observation times are common to all

I subjects, r(t
j
, t

k
)¯ I for all (t

j
, t

k
).

If the mean value structure is known, then the

squared residuals, z#
ij
¯ (y

ij
®µ

i
(t

j
))# are unbiased for

the variance function �(t
j
). As for the variogram, if

replicated values of z#
ij

at each time t
j
are available

from different subjects, the sample means of these sets

of replicated values provide adequate non-parametric

estimates of the variance function. In other cases, a

smoother estimator for �(t
j
) is again desirable.

In most applications, µ
i
(t

j
) is unknown and will

have to be replaced by an appropriate estimate. In

practice, data (y
ij
) are pre-corrected for fixed effects

considering (y
ij
®µ#

i
(t

j
)) with µ#

i
estimated by a simple

regression model. Most simply, a non-parametric

mean curve is fitted in the variogram using averages

y. [j. Diggle et al. (1994, chapter 4) provide a discussion

about fixed effects estimation; but as the variogram is

to be used for exploratory purposes, the aim of this

estimation procedure is to be simple and compu-

tationally fast rather than statistically efficient.

(ii) Genetic analysis

The observed phenotypic process Y(t) is assumed to

be a Gaussian process and can be decomposed as:

Y(t)¯µ(t)­g(t)­e(t) (4)

where µ(t) are the fixed effects, g(t) and e(t) the genetic

and environmental effects, which are assumed to be

mean zero Gaussian processes, independent of each

other, and with covariance functions G(s, t) and

E (s, t), respectively.

In the case of a one-way classification, data are

assumed to be divided into groups (e.g. half-sib

families, clones). The idea is to consider simple

ANOVA on group means for each time independently

to provide variance estimates, and to combine these

with the variogram approach in order to obtain

covariance estimates.

The linear mixed model can be written as:

y
sij

¯µ
j
­u

sj
­e

sij
(5)

where y
sij

is the observation at time t
j
for individual i

from group s ( j¯1, … , J, i¯1, … , n
s

and s¯
1, … , S ), u

sj
is the group effect and e

sij
the residual

term at time t
j
. When considering each time t

j

independently, u and e are assumed to be independent

and normally distributed with variances �
G
(t

j
) and

�
E
(t

j
), respectively. If the groups are half-sib families,

for example, �
G
(t

j
) is equal to a quarter of the additive

genetic variance at time t
j
.

(a) Variance functions. Assume a balanced setting,

i.e. all groups have the same number n
s

of subjects

and individuals have observations at all times t
j
. Obser-

vations y
sij

are assumed to have been corrected pre-

viously for fixed effects. µ
j
represents the mean curve in

thepopulationandcanbeapproximatedby theaverage

y. [[j
at each time t

j
. Using a simple ANOVA on group

means, the sample variance �.
"j

¯ "
S−"

3S

s="
(y.

s[j
®y. [[j

)#

provides an estimate for γ
"
(t

j
)¯ �

G
(t

j
)­(1}n

s
)�

E
(t

j
),

and �.
#j

¯ "
S(ns−")

3S

s="
3ns

i="
(y

sij
®y.

s[j
)# for γ

#
(t

j
)¯

�
E
(t

j
).

(b) Sample �ariograms. Extending results for single

times, two sample variograms can be defined:

�b
"jk

¯
1

2(S®1)
3
S

s="

[(yb
s[j

®yb [[j
)®(yb

s[k
®yb [[k

)]# (6)
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and

�b
#jk

¯
1

2S(n
s
®1)

3
S

s="

3
ns

i="

[(y
sij

®yb
s[j

)®(y
sik

®yb
s[k

)]#. (7)

Extending the ANOVA result and the variogram

approach, the first sample variogram provides esti-

mates for :

γ
"
(t

j
, t

k
)¯ "

#
[(�

G
(t

j
)­�

G
(t

k
)®2G

jk
)

­
1

n
s

(�
E
(t

j
)­�

E
(t

k
)®2E

jk
)] (8)

and the second provides estimates for :

γ
#
(t

j
, t

k
)¯ "

#
(�

E
(t

j
)­�

E
(t

k
)®2E

jk
) (9)

where G
jk

and E
jk

represent the group and en-

vironmental covariances between times t
j

and t
k
,

respectively.

Extension to the unbalanced case is given in

Appendix A. Implementation of the variogram gen-

etical analysis was easy and, consequently, calculations

were fast. Fortran code is available from the first

author.

3. Application

(i) Daily records in dairy cattle

Daily records for milk production for first lactation

were analysed using this non-parametric procedure.

Data came from the Langhill experimental farm

(Edinburgh, UK), and comprised 438 cows from 50

sires. The number of daughters per sire varied from 1

to 22, with 9 on average. Using a simple regression

model, data were previously corrected for fixed effects :

age at calving, percentage of Holstein genes, line

(selected or control) and diet (forage or concentrates).

Estimation for the mean curve is included in the

definition of the variogram: a non-parametric curve

was considered, fitting one mean at each time. In

order to have enough observations per sire at each

time, only data from day 10 to day 240 were included.

The total number of observations was 83634, with a

maximum of 230 records for cows with complete

measures.

Fig. 1 shows the estimates of genetic and en-

vironmental variances. In order to check these non-

parametric estimates, as well as their ability to deal

with unbalanced data and fixed effects estimation,

REML estimates were calculated with the program

ASREML (Gilmour et al., 2000) assuming a sire

model. Diagonal covariance matrices were considered

and one variance was estimated at each time (230

values). REML1 represents estimates obtained while

estimating fixed effects at the same time, and REML2
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Fig. 1. Genetic and environmental variances for daily
records for milk production in dairy cattle, given in kg#.
DIM, days in milk; NP, non-parametric estimates ;
REML1, REML with fixed effects estimated at the same
time; REML2, REML on the data set pre-corrected for
fixed effects.

represents estimates obtained on the data set pre-

viously corrected for fixed effects. Variance estimates

obtained here with the three methodologies were

extremely close. A similar analysis was performed for

the covariance estimates. Unstructured covariance

matrices for both the genetic and environmental parts

were obtained using the package REMLPK (Meyer,

1985). However, as it cannot provide estimates for

unstructured covariance matrices of size 230 by 230,

this analysis was performed for only a few given days.

Covariance estimates obtained with the non-para-

metric approach and with REML were also very

similar.

As completely unstructured covariance matrices

cannot be obtained with standard software for all the

observed ages, this non-parametric methodology

should prove to be extremely useful for studying the

covariance and correlation structure for these daily

records. Fig. 2 shows estimates of genetic and

environmental correlations for days in milk 10, 80 and

210. As expected from previous analyses (White et al.,

1999), the genetic correlation was quite high for all

pairs of ages (about 0±8), except for the early stage of

lactation. For example, the correlation between day

210 and day 10, as well as that between day 80 and
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Fig. 2. Genetic and environmental correlations for
daily records for milk production in dairy cattle. DIM
10, correlation between day in milk 10 and others ;
DIM 80, correlation between day in milk 80 and
others ; DIM 210, correlation between day in milk 210
and others.

day 10, was about 0±2. For all stages of lactation, the

environmental correlation was high for days in milk

close in time (e.g. 0±8 between day 210 and day 190),

and decreased steadily as days became further apart

(e.g. 0±6 between day 210 and day 130, and 0±2
between day 210 and day 10). Raw estimates provided

by the variogram were plotted on these graphs. In

order to choose an appropriate parametric model it

may be useful to use a smoothing procedure as

proposed by Diggle & Verbyla (1998).

(ii) Fertility data in Drosophila

Age-specific measurements of reproduction were

obtained from 56 different recombinant inbred (RI)

lines of D. melanogaster, which are expected to exhibit

genetical variation (J. W. Curtsinger & A. A.

Khazaeli, unpublished results). Age-specific measures

for average female reproductive output were collected

from two replicate cohorts for each of the lines. Egg

counts were made every other day, and observations

were square-root transformed so that the age-specific

measures were approximately normally distributed. In
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Fig. 3. Genetic and environmental variances for fertility
data in Drosophila. Each age corresponds to a 2-day
interval. NP, non-parametric estimation.

order to have enough observations for each line, only

the first 18 ages (out of 34) were considered.

Fig. 3 shows estimates of genetic and environmental

variances using both the non-parametric procedure

presented above and a REML analysis performed with

the software ASREML. For the latter, a sire model

was assumed and diagonal covariance matrices were

used to estimate one variance at each time. The pro-

cedures showed very similar results for both genetic

and environmental parts. If a parametric model were

to be chosen, a quadratic function would probably be

appropriate for the environmental variance; but for

the genetic variance, the choice of a parametric

function may be more difficult. In fact, in a previous

study (Jaffre! zic & Pletcher, 2000), data were pooled

into 5-day intervals, and the best parametric model

for the genetic variance, using a likelihood based

criterion, was a constant function estimated at 0±18.

However, the variation observed here for the genetic

variance with both the non-parametric and REML

methodologies may be worthwhile to study. The

genetic variance dropped quickly for early ages, then

increased rapidly at about age 10, and decreased

thereafter. The biological causes of these large changes

may therefore be worth investigating.

Table 1 gives non-parametric estimates for the

correlation matrices. Both the genetic and environ-

mental correlations seem to be non-stationary, as was

also found by Jaffre! zic & Pletcher (2000).
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Table 1. Non-parametric estimates for genetic (abo�e diagonal ) and

en�ironmental (below diagonal ) correlation for fertility data in

Drosophila (table gi�es correlation for e�ery 4-day inter�al )

1 2 3 4 5 6 7 8 9

1 1 0±34 0±50 0±37 0±34 0±47 0±44 0±34 0±56
2 0±03 1 1±0 0±44 0±54 0±32 0±20 0±33 0±22
3 0±30 0±16 1 0±87 0±68 0±80 0±67 0±50 0±73
4 0±17 0±31 0±32 1 0±76 0±77 0±58 0±46 0±45
5 0±33 0±04 0±48 0±35 1 1±0 0±90 0±87 0±91

6 ®0±04 0±22 0±20 0±17 0±07 1 0±92 1±0 0±93
7 0±16 0±09 0±35 ®0±03 0±30 0±37 1 0±95 1±0
8 0±05 ®0±20 0±14 0±08 0±22 0±12 0±37 1 1±0
9 ®0±05 0±03 ®0±13 0±03 0±00 0±24 ®0±07 0±17 1

4. Discussion

In the analysis of repeated measurements, before

assuming a parametric model, an idea of the shape of

the variance and correlation functions for both the

genetic and environmental parts should be known.

When a small number of observations is available for

each subject at a fixed set of times, unstructured

covariance matrices can be estimated with standard

software. However, this is not feasible when the

number of observations over time is large, and when

data are unbalanced. In this case, the proposed non-

parametric procedure would be extremely useful.

The method presented here is easy to implement as

it implies mainly sum and average calculations. The

computing time required is small even for a large data

set such as the daily records for milk production,

especially because it is a non-iterative procedure. A

large number of observations can be handled over

time, and estimates for covariances and correlations

between all ages are provided, which was not possible

with the usual software. Moreover, it was found in a

simulation study (results not shown) that the meth-

odology can also deal with non-stationary covariance

and correlation structures, and could therefore be

Appendix A. Unbalanced analysis

In the case of an unbalanced design, let n
sj

be the number of individuals in group s with measures at time t
j
.

ANOVA variance estimate at time t
j
is :

�b
"j

¯
S

(S®1) 3
S

s="

n
sj

3
S

s="

n
sj
(yb

s[j
®yb [[j

)#.

Let n
dj

be the average number of daughters per sire with measures at time t
j
. The sample variance �.

"j
will

provide estimates for :

γ
"
(t

j
)¯ �

G
(t

j
)­

1

n
dj

�
E
(t

j
).

useful to check the stationarity assumption for the

parametric model.

The non-parametric procedure is equivalent to the

REML in the balanced case and when no fixed effects

are considered. It should, however, be used mainly for

exploratory purposes as the estimates are not always

statistically efficient. As pointed out by Diggle &

Verbyla (1998), one of the main difficulties of this

approach can be fixed effects estimation. Nevertheless,

when only a few fixed effects are considered, as for the

Langhill data, the non-parametric analysis on pre-

corrected data performs well compared with REML,

which estimates fixed effects at the same time. Another

point that needs to be further investigated concerns

extension to an animal model that would take into

account the relationship matrix. This does not seem to

be straightforward, and requires further study.

The extension of this non-parametric approach to

multiple trait analysis is obvious as formulae given in

the paper can also be used to estimate cross-covariance

and cross-correlation functions between different

traits. This could, for example, be useful for the joint

analysis of milk, fat and protein in dairy cattle, and

could also help generalizing the character process

methodology to multivariate analyses.
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A straightforward extension of this result to covariance estimates is :

�b
"jk

¯
S

(S®1)3
S

s="

n
sjk

3
S

s="

n
sjk

2
[(yb

s[j
®yb [[j

)®(yb
s[k

®yb [[k
)]#

where n
sjk

is the number of individuals in group s with measures for both time t
j
and t

k
.

This sample variogram will give estimates for :

γ
"
(t

j
, t

k
)¯

1

2

A

B

(�
G
(t

j
)­�

G
(t

k
)®2G

jk
)­

1

3
S

s="

n
sjk

3
S

s="

E

F

n
sjk

n
sj

�
E
(t

j
)­

n
sjk

n
sk

�
E
(t

k
)®2

n#
sjk

n
sj
n
sk

E
jk

G

H

C

D

.

Provided that n
sjk

is not too different from n
sj

and n
sk
, this sample variogram will give estimates for :

γ
"
(t

j
, t

k
)¯

1

2

A

B

(�
G
(t

j
)­�

G
(t

k
)®2G

jk
)­

1

n
djk

(�
E
(t

j
)­�

E
(t

k
)®2E

jk
)

C

D

where n
djk

is the average number of subjects per group with measures at times t
j
and t

k
. Other weights could also

be used, such as those proposed by Robertson (1962).

Appendix B. Small example

A small example of simulated data is provided to allow the reader to check his or her own non-parametric

program using the estimation procedure presented above. Data are given in Table B1. They were simulated

according to a non-stationary character process structure with a linear variance, σ#
S
(t)¯Var

G
(t)¯ 0±3­0±4t, and

a non-stationary exponential correlation, ρ
G
(t, s)¯ exp(®0±8(rt

λ
−s

λ

λ r)), with λ¯ 0±5 for the genetic part, and a

quadratic variance, Var
E
(t)¯ 0±5­0±6t­0±2t#, and a non-stationary exponential correlation, ρ

E
(t, s)¯

exp(®0±1(rt
λ
−s

λ

λ r)), with λ¯ 0±5 for the environmental part.

A balanced sire design was considered with 10 sires, 3 daughters per sire and 4 measures per daughter. In order

to check the proposed unbalanced extension, 1 daughter was deleted for 5 of the sires. Covariance parameter

estimates obtained in the balanced and unbalanced cases with the non-parametric procedure are given in Table

B2. As no fixed effects were considered, these estimates are equivalent to the REML in the balanced case. No

additional smoothing was performed and results given in Table B2 correspond to the raw data obtained with

the sample variogram.

Table B1. Simulated data set analysed in the small example (animals in bold were deleted in the unbalanced

case)

Sire Animal Y1 Y2 Y3 Y4 Sire Animal Y1 Y2 Y3 Y4

1 1 1±01 0±96 1±69 0±75 6 16 ®1±41 ®2±63 ®0±68 ®1±62
2 0±66 0±94 1±69 1±63 17 ®0±83 0±05 1±29 0±88
3 0±79 1±39 0±74 0±38 18 ®0±76 ®1±09 ®0±04 ®0±78

2 4 0±48 2±46 4±62 2±82 7 19 ®1±98 ®0±19 ®0±27 ®1±94
5 0±51 1±55 3±37 1±36 20 ®0±65 0±76 ®0±15 ®1±46
6 ®0±74 ®0±74 ®0±38 ®2±95 21 ®0±96 0±64 0±19 ®0±33

3 7 2±24 1±86 1±65 3±10 8 22 2±03 ®2±48 ®2±12 ®1±55
8 0±87 0±70 ®0±16 0±41 23 ®0±93 ®4±35 ®5±17 ®4±69
9 1±97 2±49 3±76 5±34 24 1±66 ®1±87 ®3±25 ®2±22

4 10 1±20 0±44 ®0±54 ®0±22 9 25 1±63 0±80 0±68 1±28

11 ®0±53 ®2±50 ®4±43 ®5±59 26 1±46 0±51 2±06 5±35
12 1±67 1±95 2±56 2±43 27 1±21 0±91 2±66 3±47

5 13 ®0±79 ®1±25 ®0±88 0±95 10 28 0±33 0±44 2±49 4±01

14 ®2±13 ®1±85 ®1±21 ®0±22 29 0±40 ®0±39 0±91 2±54
15 0±20 1±17 3±15 4±27 30 ®0±07 ®0±38 1±50 3±99
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Table B2. Non-parametric co�ariance parameter

estimates for the small simulated example (data gi�en

in Table B1) in the balanced and unbalanced cases

Times

Balanced Unbalanced

GEN ENV GEN ENV

1 1 0±8243 0±7098 0±9375 0±7441

2 1 0±0949 0±8741 0±2588 0±8745
2 2 1±2975 1±5301 1±6197 1±6062
3 1 ®0±2278 1±1735 0±0212 1±1188
3 2 1±3056 2±0979 1±8420 2±1076
3 3 1±9377 3±4194 2±8359 3±2696
4 1 0±2524 1±3638 0±5266 1±3519
4 2 0±9537 2±3791 1±3648 2±4523
4 3 1±7043 3±8626 2±6130 3±6564
4 4 3±0951 4±7524 4±4081 4±4444
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