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Low-rank tensor representations can provide highly compressed approximations of
functions. These concepts, which essentially amount to generalizations of classical
techniques of separation of variables, have proved to be particularly fruitful for
functions of many variables. We focus here on problems where the target function
is given only implicitly as the solution of a partial differential equation. A first
natural question is under which conditions we should expect such solutions to be
efficiently approximated in low-rank form. Due to the highly nonlinear nature of the
resulting low-rank approximations, a crucial second question is at what expense such
approximations can be computed in practice. This article surveys basic construction
principles of numerical methods based on low-rank representations as well as the
analysis of their convergence and computational complexity.
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2 M. Bachmayr

1. Introduction
A matrix M ∈ R=×= of rank A can be represented in low-rank format M = AB>
with matrices A,B ∈ R=×A , which when A � = substantially reduces the required
storage from =2 to 2=A. Moreover, the low-rank format also leads to a reduction of
the computational costs of many linear algebra operations, such as multiplication
by matrices from the left or right. This basic idea can be generalized to tensors
of order 3 > 2, represented – in the real-valued case that we focus on here – by
elements of R=1×...×=3 with =1, . . . , =3 ∈ N. This leads to low-rank formats for
higher-order tensors, which can be used to significantly reduce the dependence on 3
of storage requirements and computational complexity of numerical methods. One
can thus hope to avoid the curse of dimensionality, that is, the exponential scaling
with respect to 3 obtained with standard methods designed for lower-dimensional
problems.

A main motivation for the development of numerical methods based on low-rank
tensor representations is the application to partial differential equations posed on
high-dimensional domains, which frequently arise in the context of quantum phys-
ics or probabilistic models. Closely related are methods for model order reduction
of multi-parametric problems. In these settings, coefficient arrays of basis expan-
sions of solutions can be regarded as high-order tensors. Low-rank approximations
of these high-dimensional coefficient arrays lead to nonlinear approximation meth-
ods, that is, approximations are not chosen from linear spaces and are parametrized
in a nonlinear manner. As above in the parametrization of M by the factors A and
B, this nonlinearity is of multiplicative type.
Certain types of low-rank tensor representations have proved to be particularly

suited to the construction of numerical methods for problems in very high dimen-
sions, such as hierarchical tensors, which are also known as tree tensor networks
in physics. Since we consider approximations in such formats for functions that
are given only implicitly as solutions of partial differential equations, not only the
solution itself but also the problem data (such as domains, right-hand sides, bound-
ary or initial conditions) need to have efficient low-rank approximations. A central
issue in the construction of solvers is the adaptation of rank parameters in tensor
representations: these ranks needs to be chosen sufficiently large to ensure conver-
gence, but should also be kept as small as possible due to their strong influence on
the computational costs of operating on low-rank representations.
The focus of this article is in particular on how low-rank tensor formats interact

with discretizations of partial differential equations in the construction of numerical
solvers. The remainder of this section gives a conceptual overview; further details
and references are given in the respective later sections.

1.1. Notation

Vectors, matrices and tensors are denoted by bold-face letters. On the one hand,
we consider tensors on finite index sets, that is, elements of R=1×···×=3 . These
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are tensors of order 3, where each dimension in the index set is called a mode
of the tensor, with mode 8 having mode size =8 for 8 = 1, . . . , 3. On the other
hand, an important role is played by tensors with square-summable entries on
countable 3-dimensional index sets, which are sequences in ℓ2(N3). In both cases,
in order to avoid too many subscripts, for the entry of a tensor t of order 3 at index
(a1, . . . , a3) ∈ N3 , we write t[a1, . . . , a3].
For the unit cube in 3 dimensions, which frequently appears in high-dimensional

model problems, we use the abbreviation �3 = (0, 1)3 . We write supp 5 for the
support of the function 5 and use the same notation for the supports of sequences:
for v ∈ R� with � a countable index set,

supp v = {a ∈ � : v[a] ≠ 0}.
We write cond(A) for the spectral norm condition number of the mapping defined
by A.
For scalar expressions � and �, we write � . � to denote � ≤ �� with a

constant � > 0 that does not depend on quantities that explicitly appear in � or �;
� & � for � . �; and � h � for � . � and � & �. Inequalities between tuples
(such as tuples of rank parameters) are always to be understood componentwise.

1.2. Classes of model problems

Let us first consider several typical model cases of high-dimensional partial differ-
ential equations (PDEs). Afirst problemof frequent interest is the high-dimensional
diffusion problem of the basic form

mCD − divG(� gradG D + 1D) = 5 in (0, )] ×Ω,
D = 0 on (0, )] × mΩ, D(0, G) = D0(G) for G ∈ Ω. (1.1)

Here we consider a bounded domain Ω with homogeneous Dirichlet boundary
conditions for simplicity, but problems of this type can also be considered on
unbounded domains such as Ω = R3 . The sought solution D as well as the
source term 5 and initial condition D0 are scalar functions, whereas � and 1 take
values in R3×3 and R3 , respectively. Equations of this type arise, for instance, as
Kolmogorov equations describing the time evolutions of probability densities of
stochastic processes.
A second source of high-dimensional problems is given by quantum-physical

models, where the dimensionality of the problem scales with the number of
particles. In classical quantum mechanics, the time evolution of quantum systems
is modelled by the time-dependent Schrödinger equation for the complex-valued
wavefunction D. For a given potential + and initial state D0, it takes the form

imCD = −ΔD ++D on R3 , D |C=0 = D0. (1.2)

The eigenpairs of theHamiltonian operator−Δ++ on the right-hand side correspond
to the quantum states for the total energy of the system; the associated Schrödinger
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eigenvalue problem reads

− ΔD ++D = _D on R3 . (1.3)

One example that is of central importance in quantum chemistry is the electronic
Schrödinger eigenvalue problem, which provides the (non-relativistic) standard
model of electronic structure of molecules for given positions of atomic nuclei. In
this case we have 3 = 3# for a system of # electrons, and + is a sum of Coulomb
potentials.
We are also frequently interested in stationary states of (1.1), which are described

by second-order elliptic equations. A frequently considered model problem, with
the simplification 1 = 0, reads

− div(� grad D) = 5 in Ω, D = 0 on mΩ. (1.4)

Such problems of elliptic type also arise as parts of algorithms for the parabolic
problem (1.1) and the Schrödinger problems (1.2), (1.3) (with � = I and Ω = R3)
and are thus a natural starting point for the development of numerical methods.
The above model problems have in common that they involve differential op-

erators on high-dimensional domains. A different type of high-dimensionality
originates from problem data that depend on parameters, for instance some para-
meter H from a set . . In the example of (1.4), with parameter-dependent diffusion
tensor �H and associated solutions DH , this leads to the mapping H ↦→ DH defined
for all H ∈ . by

− div(�H grad DH) = 5 in Ω, D = 0 on mΩ. (1.5)

Instead of evaluating DH independently for each required H, in the context of model
order reduction or uncertainty quantification, we are frequently interested in eco-
nomical approximations of the higher-dimensional function D(G, H) = DH(G) for
(G, H) ∈ Ω × . .
After treating the basics of low-rank tensor representations in Section 2, in the

following sections we first focus on elliptic problems. Their solution is of interest
in its own right, but also provides important building blocks for more involved
problems. In particular, the norm in which solutions are to be approximated is
important: in (1.4) and (1.5), we typically require approximations in the norm of
the Sobolev space �1(Ω), which is equivalent to the energy norm associated to the
problem. How this needs to be taken into account in the construction of low-rank
solvers is treated in Section 4. After treating low-rank solvers for elliptic problems
in Section 5, we return to eigenvalue problems and time-dependent problems in
Sections 6 and 7.
Concerning the application of low-rank approximations to solutions of PDE

problems as above, there are several fundamental questions: Can we have al-
gorithms with guaranteed convergence to the exact solution, that is, with the ability
to produce approximations of the solution of the original PDE problem with any
desired accuracy with respect to the appropriate norm? Can these algorithms be
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ensured to be numerically stable? Can the costs of numerically computing low-rank
approximations be quantified, and can we ensure that these costs are optimal in an
appropriate sense? For problems in high dimensions 3, we aim to avoid the curse of
dimensionality, that is, an exponential dependence of the costs on 3. This imposes
requirements on both the approximability of solutions and the costs of numerical
algorithms.

1.3. Separation of variables

A basic instance of low-rank methods is provided by the classical techniques of
separation of variables in partial differential equations, where higher-dimensional
problems are decomposed into simpler ones. As an example, consider the eigen-
value problem for the negative Laplacian

−Δ = −
3∑
8=1

m2
G8

on �3 with homogeneous Dirichlet boundary values on m�3 . From the solutions
of the one-dimensional eigenvalue problem for the negative second derivative on
(0, 1) with homogeneous Dirichlet boundary conditions,

−m2
G sin(ℓcG) = (ℓc)2 sin(ℓcG), ℓ ∈ N,

it is easy to see that for each : = (:1, . . . , :3) ∈ N3 , the functions

Φ:(G1, . . . , G3) =
3∏
8=1

sin(:8cG8)

satisfy Φ: |m�3 = 0 and

−ΔΦ: = c2(:2
1 + · · · + :2

3

)
Φ: .

Thus Φ: is an eigenfunction of −Δ on �3 , and since span{Φ: }:∈N3 is dense in
!2(�3), all eigenfunctions in !2(�3) are of this form.
By a similar use of the structure of the Laplacian, certainmultidimensional initial

value problems can also be reduced to spatially one-dimensional equations. Let

6(G1, . . . , G3) =
3∏
8=1

68(G8)

with

68(G) =
∞∑
:=1

2(8)
:

sin(:cG).

Then the solution of the heat equation mCD−ΔD = 0 on R+ ×�3 with homogeneous
Dirichlet boundary conditions and initial condition D(0, ·) = 6 on�3 has the product
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form

D(C, G1, . . . , G3) =
3∏
8=1

D8(C, G8), D8(C, G) =
∞∑
:=1

2(8)
:
4−(: c)2C sin(:cG),

where D8 solve the spatially univariate problems mCD8 − m2
GD8 = 0, D8(0, ·) = 68 .

This is an instance of the following more general structure: let �1, . . . , �3
be separable Hilbert spaces and consider the tensor product Hilbert space � =⊗3

8=1 �8 and an operator � : � → � of the Laplacian-type form

� = �1 ⊗ I ⊗ · · · ⊗ I + I ⊗ �2 ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ �3 , (1.6)

where for 8 = 1, . . . , 3, �8 : �8 → �8 are self-adjoint and positive definite, and
where I denotes the identity mapping. Assume that the normalized eigenfunctions{
q(8)
:

}
:∈N of �8 are an orthonormal basis of �8 for 8 = 1, . . . , 3. Then, for each

: = (:1, . . . , :3),

Φ: =

3⊗
8=1

q(8)
:8

is an eigenfunction of �. Since {Φ: }:∈N3 is an orthonormal basis of �, every
eigenfunction of � is of this form. As a further consequence, for 6 ∈ � of the
form 6 =

⊗3

8=1 68 with 68 ∈ �8 , we also have that the solution of the initial value
problem D′ + �D = 0, D(0) = 6 takes the form

D(C) =
3⊗
8=1

4−C �868 , (1.7)

where 4−C �868 solves an analogous evolution problem for the operator �8 , with
initial value 68 on �8 for each 8. Thus, for � and 5 of this particular structure, both
the eigenvalue problem and the associated homogeneous evolution problem can be
reduced to problems on the component spaces �1, . . . , �3 .
However, such simple product structures no longer apply when considering

slightly different problems, such as non-homogeneous evolution equations D′+�D =
5 or associated stationary problems �D = 5 . In these cases there is generally no
longer a straightforward reduction to lower-dimensional problems. In some cases
we can still find semi-analytical approximations that yield a reduction: given �
of the Laplace-like form (1.6), for D solving �D = 5 =

⊗3

8=1 58 we have efficient
exponential sum approximations of the form

D = �−1 5 ≈
A∑
:=1

l:

3⊗
8=1

4−U:�8 58 . (1.8)

It can be shown, as detailed in Section 4.2, that there exist coefficients l: , U: > 0
for : = 1, . . . , A such that we can achieve approximation error Y for D in suitable
norms with A h |log Y |?, with some ? ≥ 1 depending in particular on the chosen
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norm. Note that the same construction can still be applied to 5 given by a sum of
elementary tensor products.
Approximations as in (1.8) indicate that sums of separable terms can provide a

more general framework for reducing high- to lower-dimensional problems. The
above example, however, still depends quite strongly on the particular structure
of the problem. This motivates more generally applicable computational methods
based on low-rank tensor representations. In such approaches, solutions D of quite
generic problems are approximated by more adaptable structures for separating
coordinates which, however, still offer the advantage of reducing the computational
effort.

1.4. Low-rank tensor representations

The notion of tensors can be approached in different ways. For a detailed treatment
of different definitions, we refer to Lim (2021). Although tensors can be defined in
a completely abstract manner as elements of tensor products of vector spaces, they
can also be regarded as describing multilinear mappings on Cartesian products of
vector spaces; with respect to bases of these vector spaces, tensors can be described
by their coefficient arrays, which need to satisfy certain invariance properties with
respect to changes of bases. Note that in physics, tensor fields (that is, tensor-
valued mappings on manifolds) are also often referred to simply as tensors, but
these geometric objects do not play a role in what follows.
The discrete analogue of separable functions, as considered in the previous

subsection, is given by tensors of rank one, that is, elementary tensors of the form
t = v(1) ⊗ v(2) ⊗ · · · ⊗ v(3) with v(8) ∈ R=8 for 8 = 1, . . . , 3. The entries of t are then
given by

t[ 91, . . . , 93] =
3∏
8=1

v(8) [ 98] .

A natural generalization is the canonical tensor format: clearly, each t ∈
R=1×···×=3 can be represented as a sum of elementary tensors in the form

t =
A∑
:=1

3⊗
8=1

v(8)
:
, (1.9)

with v(8)
:
∈ R=8 for : = 1, . . . , A , 8 = 1, . . . , 3, where the smallest possible A in such

a representation is called the tensor rank of t. This tensor format, also called the
canonical polyadic (CP) format, appeared already in Hitchcock (1927, 1928).
The use of representations (1.9) in iterativemethods for solving high-dimensional

partial differential equations was proposed in the seminal papers by Beylkin and
Mohlenkamp (2002, 2005). An important requirement for such algorithms is a
computational procedure for approximating a given tensor t∗ by a tensor of lower
rank, for instance the lowest rank permissible for a certain accuracy. In other words,
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for some prescribed rank A , we aim to minimize ‖t∗ − a‖2 over all tensors a of the
same mode sizes as t∗ with rank at most A .
As demonstrated by de Silva and Lim (2008), this problem of best approximation

of tensor rank A is generally ill-posed for representations of the form (1.9). This is
illustrated by the following example (de Silva and Lim 2008, Prop. 4.6): let x8 , y8
be linearly independent vectors in R=8 for 8 = 1, 2, 3, and define the tensors

t= = =
(

x1 + 1
=

y1

)
⊗
(

x2 + 1
=

y2

)
⊗
(

x3 + 1
=

y3

)
− =x1 ⊗ x2 ⊗ x3, (1.10)

which are of rank two. Then the limit of the tensors t= as =→∞ is

t∗ = y1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ x3 + x1 ⊗ x2 ⊗ y3,

which can be verified to have rank three.
This shows that, unlike the matrix rank for 3 = 2, for orders 3 > 2, the tensor

rank is not lower semicontinuous, and in particular, the infimum

inf
{‖t∗ − a‖2 : a ∈ R=1×=2×=3 has tensor rank at most 2

}
= 0

is not attained. The properties of the tensor rank in the higher-order case are
different from those of the matrix rank in other respects too. For instance, as shown
by Hillar and Lim (2013), determining the tensor rank of a given tensor with 3 > 2
is generally an NP-hard problem.
The ill-posedness of the best tensor rank-A approximation problem poses a fun-

damental difficulty in the construction of reliable numerical approximation proced-
ures, even when we are content with near-best approximations. These issues can be
circumvented by different types of low-rank representations that can be character-
ized in terms of matrix ranks. The most classical instance of such a representation
is the Tucker format, considered in the case 3 = 3 by Tucker (1964, 1966). In this
particular case, for t ∈ R=1×=2×=3 , a representation in Tucker format takes the form

t =
A1∑
:1=1

A2∑
:2=1

A3∑
:3=1

a[:1, :2, :3] U(1)
:1
⊗ U(2)

:2
⊗ U(3)

:3
(1.11)

with the core tensor a ∈ RA1×A2×A3 and vectors U(8)
:
∈ R=8 for : = 1, . . . , A8 and

8 = 1, 2, 3.
The entrywise smallest possible tuple (A1, A2, A3) for representing t in the form

(1.11) is called the multilinear rank of t. It can be characterized in terms of matrix
ranks: for the multilinear rank (A1, A2, A3) of t, with the matricizations

M1 = (t[a1, a2, a3])a1∈{1,...,=1 },(a2,a3)∈{1,...,=2 }×{1,...,=3 },
M2 = (t[a1, a2, a3])a2∈{1,...,=2 },(a1,a3)∈{1,...,=1 }×{1,...,=3 },
M3 = (t[a1, a2, a3])a3∈{1,...,=3 },(a1,a2)∈{1,...,=1 }×{1,...,=2 }

of t, we have

A1 = rank M1, A2 = rank M2, A3 = rank M3.

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000125


Low-rank tensor methods for partial differential equations 9

In other words, we obtain the most efficient representations of the form (1.11) by
choosing {U(8)

:
}:=1,...,A8 as a basis of the subspace range(M8) ⊂ R=8 for 8 = 1, 2, 3.

For the Tucker format, the existence of best approximations of prescribed rank
is guaranteed (see Section 2.7). Moreover, standard linear algebra procedures
for matrices can be used for the computation of near-best approximations by the
higher-order singular value decomposition, which can serve as the basis of reliable
computational methods. However, this format by itself is not suitable for avoiding
the curse of dimensionality, since in general the number of entries

∏3
8=1 A8 of the

core tensor a still scales exponentially with respect to 3.
This problem is addressed by more general subspace tensor formats that use

further decompositions of a into lower-order tensors, which amounts to choosing
subspaces not only for single tensor modes as in the Tucker format, but for groups
of modes. Instances of such formats that are suitable for problems in very high
dimensions are hierarchical tensors, also known as tree tensor networks in physics,
and the special case of tensor trains, which are also known as matrix product
states. For tensors that satisfy further constraints on additional rank parameters,
representations in these tensor formats can achieve favourable scaling with respect
to 3. Note that there are two cases in which all formats considered below coincide:
they reduce to standard representations of low-rank matrices for order 3 = 2, and
at arbitrary order they contain elementary tensors as special cases.
In general, a tensor format defines a multilinear representation mapping g that

for certain fixed parameters (such as tensor order) maps a corresponding number
# of representation component tensors X1, . . . ,X# to the represented tensor,

t = g(X), X = (X1, . . . ,X# ).

In the simplest case of low-rank matrices in R=1×=2 with factors X1 ∈ R=1×A and
X2 ∈ R=2×A , the usual representation mapping is

g(X1,X2) = X1X>2 (1.12)

for any rank parameter A . In the case of the Tucker format in 3 dimensions,
the arguments of the representation mapping are a ∈ RA1×···×A3 and the matrices
U(8) ∈ R=8×A8 with columns U(8)

:
, : = 1, . . . , A8 as above for 8 = 1, . . . , 3.

These representation mappings are not injective: for instance, for any given X1,
X2 as in (1.12) andG ∈ GL(A,R), we have g(X1,X2) = g(X1G−1,X2G>). A central
feature of tensor formats is that they are closed under vector space operations, that is,
under scaling and addition of tensors. For example, the addition of two low-rank
matrices can again be written in the form (1.12) with summed rank parameters by
a simple concatenation of components, as detailed in Section 2.2.

1.5. Low-rank approximations of functions

Low-rank tensors provide a natural tool for approximating functions on high-
dimensional product domains. We exemplify this by the approximation of elements
of !2(�3) by tensor product basis expansions.
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Let {ia}a∈N be an orthonormal basis of !2(0, 1). Then, for any 5 ∈ !2(�3), we
have the basis expansion

5 =
∑

(a1,...,a3)∈N3
f [a1, . . . , a3]

3⊗
8=1

ia8 ,

where

f [a1, . . . , a3] =
∫
�3

5
3⊗
8=1

ia8 dG.

Note that the mapping 5 ↦→ f defined in this manner is an isometry between
!2(�3) and ℓ2(N3). Due to the tensor product structure of this mapping, if 5 has
low-rank structure, it is inherited by the basis coefficients f: in the simplest case, if
5 =

⊗3

8=1 58 with 58 ∈ !2(0, 1) for 8 = 1, . . . , 3, then

f =
3⊗
8=1

f8 , where f8 [a] =
∫ 1

0
58ia dG, a ∈ N.

This hints at the usefulness of considering tensor representations not only for tensors
of finite mode sizes but also on sequence spaces defined on high-dimensional index
sets such as ℓ2(N3). In this setting, infinite basis expansions are covered in a natural
way, and low-rank approximations can be studied independently of any particular
choice of finitely many summands in the basis expansion.
The reduction to a problem on ℓ2(N3) via a basis representation is also conveni-

ent for computational purposes, since standard algorithms for rank reduction in
subspace tensor formats provide error estimates in this norm. However, an addi-
tional difficulty that is important for applications to partial differential equations is
that for Sobolev spaces �B(�3), the isomorphism to ℓ2(N3) provided by suitable
bases is not of tensor product form, and thus does not preserve low-rank structures.
As considered in detail in Section 4, this issue can be overcome by what amounts
to a discretization-dependent low-rank approximation of this isomorphism.
Tensor approximations are of interest not only for problems of high dimen-

sionality: although it is natural to assign tensor modes to independent variables
in an approximation problem, entirely different parametrizations of functions by
tensors can be useful for particular purposes. For instance, in the context of oc-
cupation number representations of symmetric or antisymmetric wavefunctions
in quantum physics, each tensor mode corresponds to a lower-dimensional basis
function. Another example is that of methods based on reinterpreting basis ex-
pansion coefficients of lower-dimensional functions as high-order tensors. In this
case, by a suitable encoding of indices, tensor modes correspond to scales in the
approximation problem. In particular, this leads to efficient generic approximations
for problems with singularities. These examples are considered in detail in Sec-
tion 3. In such a context, classical notions of dimensionality need no longer be the
determining factor for the computational complexity of low-rank approximations.
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1.6. Low-rank methods as an instance of nonlinear approximation schemes

An important feature of low-rank tensor formats is that they are closed under
addition, but addition of two tensor representations generally leads to an increase
of the associated rank parameters. In the simplest case of matrices, the result
of adding two matrices of ranks A1 and A2 may have rank up to A1 + A2. In low-
rank methods, approximations of functions are thus not sought from linear spaces
(spanned, for instance, by a fixed set of basis functions) but from sets with nonlinear
structure, where the representation complexity of elements increases under vector
space operations.
This difficulty arises in an analogous manner in sparse nonlinear approximations

with dictionaries; see for instance the survey by DeVore (1998). Here, we choose a
fixed dictionary of functions {ka}a∈N, such as a Riesz basis or frame of the relev-
ant function space �. For a given approximand 5 ∈ � and error tolerance Y > 0,
we choose a suitable finite subset ΛY( 5 ) ⊂ N such that 5 has an approximation
5Y ∈ span{ka : a ∈ ΛY( 5 )} with ‖ 5 − 5Y ‖� ≤ Y. This notion of sparse approx-
imation in some sense involves a lesser degree of nonlinearity than the low-rank
approximations considered above, since 5Y is parametrized linearly by its expan-
sion coefficients. However, we have a nonlinear dependence on 5 via the choice of
non-zero entries of the coefficient sequence, and when adding sparse approxima-
tions of two different functions with =1 and =2 non-zero coefficients, respectively,
the result may also have up to =1 + =2 non-zero coefficients. Hence, in contrast
to approximations from fixed linear subspaces, the complexity of representations
generally increases under vector space operations.
A natural benchmark for sparse approximations is provided by best =-term ap-

proximation, where in the above setting, for given 5 ∈ � and for each budget of
= ∈ N terms, we consider the error achievable by a best choice of Λ=( 5 ) ⊂ N with
#Λ=( 5 ) ≤ =, that is, the best =-term errors

min
Λ=( 5 )⊂N
#Λ=( 5 )≤=

min{‖ 5 − 5=‖� : 5= ∈ span{ka : a ∈ Λ=( 5 )}}.

Ideally, numerical methods for computing sparse approximations should yield
errors proportional to the best =-term errors when using = coefficients or (as a
much stronger requirement) when using a multiple of = elementary operations.
Such questions also arise in the context of low-rank methods when we need to
identify suitable lower-dimensional basis expansions in each tensor mode. This
combination of sparse and low-rank approximations is discussed in further detail
in Sections 3.2 and 5.3.
Another important instance of nonlinear approximations is neural networks,

where inputs are transformed by several layers of alternating linear mappings with
entrywise nonlinear transformations such as ReLU(G) = max{G, 0}. Although
neural networks can in principle approximate many classes of functions very effi-
ciently, either matching or surpassing the performance of classical approximation
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methods, finding such approximations as solutions of regression problems by ma-
chine learning methods can generally be quite a problematic task. In this regard,
a distinctive feature of subspace tensor formats is that the generation of near-best
low-rank approximations can be reduced to the computation of singular value
decompositions, for which reliable numerical algorithms are available.

1.7. Basic algorithmic concepts

Standard methods for solving partial differential equations eventually amount to
solving systems of equations for grid values or coefficients with respect to some
basis. In the case of low-rank approximations, we are facing the additional difficulty
that these basis coefficients are represented indirectly in terms of components of
a tensor representation. Moreover, the rank parameters that are required for a
certain approximation quality are typically not known a priori. Since the process
of generating approximate solutions in low-rank format is not straightforward,
the computational complexity of low-rank solvers is just as important as the basic
approximability of solutionswhen considering the viability of such approximations.
With the exception of semi-analytical explicit low-rank approximations as in (1.8)

that exist for problems with certain special structures (see Section 4.2), methods for
computing low-rank approximations are generally iterative: starting from a certain
initial approximation g(X0) of a solution in low-rank format with representation X0,
each step from g(X=) to g(X=+1) is performed by operating only on the representation
components X=.

Concerning the construction of such iterations, one can broadly distinguish two
basic approaches. One common strategy is to realize standard iterative solvers,
such as Krylov subspace methods, in tensor format. Perhaps the simplest example
is Richardson iteration for solving systems of linear equations Ax = b for positive
definite A. With starting vector x0 and a damping parameter l > 0, the iteration
reads

x=+1 = x= − l(Ax= − b). (1.13)

To realize this iteration in low-rank form, the problem data A and b also need to be
represented in a compatible format. For instance, let 3 = 2 with

x= =
A∑
:=1

v(1)
:
⊗ v(2)

:
and A =

'∑
ℓ=1

A(1)
ℓ
⊗ A(2)

ℓ
.

Then

Ax= =
'∑
ℓ=1

A∑
:=1

A(1)
ℓ

v(1)
:
⊗ A(2)

ℓ
v(2)
:
, (1.14)

that is, we still have a representation in the same low-rank format, but with ranks
multiplied by (at most) '. Except in special cases such as ' = 1, without further
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precautions, the rank parameters of the representations X= of the iterates x= in
(1.13) will thus increase exponentially with respect to =.

The iteration (1.13) thus needs to be combined with a rank reduction: let
X=+1 = F(X=) be the iteration on the low-rank representations of the x= defined by
(1.13); we then replace this with X=+1 = (R ◦ F)(X=), where R is a suitable rank
reduction procedure, such as a truncated singular value decomposition or one of
its higher-order generalizations for subspace tensor formats. In devising criteria
for performing this rank reduction, we need to balance computational costs against
preserving the convergence of the iteration. When always truncating to some fixed
rank parameter, the costs in each step are controlled, but the convergence of the
iteration is difficult to guarantee; conversely, when truncating up to a prescribed
error, it becomes a non-trivial problem to estimate the resulting ranks and hence
the computational costs.
The second strategy is to exploit the particular structure of the tensor format and

to directly optimize the components of the representation. Again assuming A to be
positive definite, we can rewrite the original system of equations as a optimization
problem: find a low-rank representation X such that

1
2
〈Ag(X), g(X)〉 − 〈b, g(X)〉

is minimized. Variational formulations of this kind can be combined with altern-
ating minimization procedures that operate on one or two components in X at a
time. Solvers can also be constructed to use the Riemannian manifold structure of
fixed-rank tensors.
There exist many different realizations of the two approaches described above,

as well as methods that combine elements of both. An overview of some prominent
examples is given in Section 5.1. In the remainder of Section 5 we then focus on
methods that achieve guarantees on convergence and computational complexity by
striking a balance between error reduction and controlled ranks.

1.8. Notes on the literature

There is now a large body of literature on low-rank tensor approximations. For a
survey on classical tensor representations including canonical and Tucker formats,
we refer to Kolda and Bader (2009). Tensors in the context of computational
applications have also been considered in surveys by Grasedyck, Kressner and
Tobler (2013), Hackbusch (2014), Khoromskij (2015), Bachmayr, Schneider and
Uschmajew (2016) andBachmayr andDahmen (2020), aswell as in themonographs
by Hackbusch (2019) and Khoromskij (2018). The canonical tensor rank and its
geometric and algebraic aspects are considered in a monograph by Landsberg
(2012) and in a survey by Lim (2021).
In the present article, at the expense of developments that are aimed at other

applications, such as machine learning, we consider low-rank methods specifically
from the perspective of the numerical solution of partial differential equations.
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Although we aim at a general overview of such methods, we focus on the use
of subspace tensor formats in schemes with rigorous deterministic performance
guarantees.
Concerning applications of tensor representations in signal processing and ma-

chine learning not covered by this article, we refer to the surveys by Signoretto,
Tran Dinh, De Lathauwer and Suykens (2014), Cichocki et al. (2015), Sidiropoulos
et al. (2017) and Janzamin et al. (2019), as well as to Stoudenmire and Schwab
(2016), Chen, Batselier, Suykens and Wong (2017), Novikov, Trofimov and Osele-
dets (2018) and Michel and Nouy (2022). Concerning methods for solving PDEs
using tensor representations with random sampling, which we do not consider in
further detail, see for example Richter, Sallandt and Nüsken (2021), Oster, Sallandt
and Schneider (2022) and Fackeldey, Oster, Sallandt and Schneider (2022).

2. Subspace tensor formats
In this section we consider in detail the particular class of low-rank representations
of higher-order tensors that provide the foundation for all numerical methods that
follow. We first introduce the basic notions of tensor products of abstract vector
spaces. To speak about the asymptotic low-rank approximability of functions
and construct numerical methods with discretization-independent performance, we
need to consider tensor products of infinite-dimensional spaces, where we restrict
ourselves to Hilbert spaces.

2.1. Tensor product Hilbert spaces

For continuous functions 5 and 6, in analogy to the outer product of vectors, we
have ( 5 ⊗ 6)(G, H) = 5 (G)6(H) for G and H from the respective domains. However,
for Hilbert spaces such as !2-spaces for which point evaluation is not defined, a
more generally applicable construction of tensor products is required. Here we
first define the algebraic tensor product of vector spaces, which contains all finite
linear combinations of elementary tensors, and subsequently consider closures in
suitable norms to obtain topological tensor products. Treatments of the basic
notions considered in this section can also be found in Light and Cheney (1985),
Hackbusch (2019) and Khoromskij (2018). For the more general case of Banach
spaces, we refer to Defant and Floret (1993), Ryan (2002) and Hackbusch (2019).
For arbitrary vector spaces + ,, , the algebraic tensor product + ⊗0 , provides

an abstract notion of finite sums of elementary tensor products of the form
A∑
:=1

_: E: ⊗ F: , (2.1)

where A ∈ N and _: ∈ R, E: ∈ + , F: ∈ , for : = 1, . . . , A . To this end, we define

)0(+,,) =
∞⋃
==1

(R ×+ ×,)=
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with the natural addition operation by concatenation, and we identify expressions

C = ((_: , E: , F:)):=1,...,A ∈ )0(+,,) (2.2)

with functionals on all bilinear forms 1 on + ×, by

C(1) =
A∑
:=1

_:1(E: , F:).

We then define an equivalence relation ∼0 on)0(+,,) by treating two expressions
C, C̃ ∈ )0(+,,) as equivalent if and only if they give rise to the same such functional,
that is, if C(1) = C̃(1) for all bilinear forms 1 on + ×, .

Definition 2.1. The algebraic tensor product + ⊗0 , of two vector spaces is
defined as the quotient vector space )0(+,,)/∼0.

For the equivalence class in + ⊗0 , represented by C as in (2.2), we use the
notation (2.1). We have the following basic properties; see Light and Cheney
(1985, Sec. 1) and Hackbusch (2019, Sec. 3.2).

Proposition 2.2.

(i) For U, V, W, X ∈ R, E1, E2 ∈ + and F1, F2 ∈ , ,

(UE1+ VE2)⊗ (WF1+XF2) = UWE1 ⊗F1+UXE1 ⊗F2+ VWE2 ⊗F1+ VXE2 ⊗F2.

(ii) If {E1, . . . , EA1} ⊂ + and {F1, . . . , FA2} ⊂ , with A1, A2 ∈ N are linearly
independent, then {E8 ⊗ F 9 : 8 = 1, . . . , A1, 9 = 1, . . . , A2} ⊂ + ⊗0 , is
linearly independent.

The construction of algebraic tensor products can be iterated and is associative
up to isomorphism, that is, * ⊗0 (+ ⊗0 ,) ' (* ⊗0 +) ⊗0 , for vector spaces
*,+,, ; we thus simply write* ⊗0 + ⊗0 , .

Topological tensor products are obtained by taking closures of algebraic tensor
products in specific norms. For the purposes of this article, it will be sufficient
to consider topological tensor products of Hilbert spaces. In contrast to the case
of more general Banach spaces, we then have a single canonical choice of tensor
product norm. Let �1, . . . , �3 be Hilbert spaces. For elementary tensors E =⊗3

8=1 E8 , F =
⊗3

8=1 F8 ∈ �1 ⊗0 · · · ⊗0 �3 , we define the inner product

〈E, F〉� =
3∏
8=1
〈E8 , F8〉�8 , (2.3)

extend this to sums of elementary tensors by bilinearity, and define the tensor
product Hilbert space � = �1 ⊗ · · · ⊗ �3 as the closure of �1 ⊗0 · · · ⊗0 �3
with respect to the induced norm. By definition, the norm induced by (2.3) is a
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cross-norm, that is,

‖E1 ⊗ · · · ⊗ E3 ‖� =
3∏
8=1
‖E8 ‖�8 for E8 ∈ �8 , 8 = 1, . . . , 3. (2.4)

Unless otherwise stated, for tensor product Hilbert spaces, we assume this canonical
choice of inner product (2.3) and induced norm in what follows.
For tensor product Hilbert spaces � =

⊗3

8=1 �8 and � =
⊗3

8=1�8 and bounded
linear operators �8 : �8 → �8 for 8 = 1, . . . , 3, we define the tensor product
operator �1 ⊗ · · · ⊗ �3 by its action on elementary tensor products as

(�1 ⊗ · · · ⊗ �3)(E1 ⊗ · · · ⊗ E3) = (�1E1) ⊗ · · · ⊗ (�3E3). (2.5)

This definition is uniquely extended to finite sums of elementary tensors by linearity
and to infinite sums by the unique extension of bounded operators defined on dense
subsets. The following identity can be obtained immediately from Light and
Cheney (1985, Lem. 1.30).

Theorem 2.3. For �1, . . . , �3 as in (2.5),

‖�1 ⊗ · · · ⊗ �3 ‖�→� =
3∏
8=1
‖�8 ‖�8→�8 .

When each of the mappings �1, . . . , �3 in (2.5) is an isomorphism, the corres-
ponding tensor product operator �1⊗· · ·⊗�3 is called a tensor space isomorphism,
and we have (�1 ⊗ · · · ⊗ �3)−1 = �−1

1 ⊗ · · · ⊗ �−1
3
.

Remark 2.4. For countable sets I1, I2, we have ℓ2(I1 × I2) = ℓ2(I1) ⊗ ℓ2(I2). In
other words, the norm ‖·‖ℓ2(I1)⊗ℓ2(I2) defined by (2.4) coincides with the norm of
ℓ2(I1 × I2) and span{v1 ⊗ v2 : v1 ∈ ℓ2(I1), v2 ∈ ℓ2(I2)} is dense in ℓ2(I1 × I2).
Similarly, for measurable sets Ω1,Ω2, we have !2(Ω1 × Ω2) = !2(Ω1) ⊗ !2(Ω2);
for a proof, see Light and Cheney (1985, Thm 1.39).

It will suffice to restrict ourselves to separable Hilbert spaces in what follows.
Any such space, by any choice of orthonormal basis, is isometrically isomorphic to
ℓ2(N). In general, such an isomorphism does not respect tensor product structures.
These are preserved, however, in the case of tensor product orthonormal bases, as
formulated in the following theorem; for a proof, see Weidmann (1980, Thm 3.12).

Theorem 2.5. Let �1, . . . , �3 be separable Hilbert spaces, and for 8 = 1, . . . , 3,
let {i(8)

a }a∈N be an orthonormal basis of �8 . Then{
3⊗
8=1

i(8)
a8

}
(a1,...,a3)∈N3

is an orthonormal basis of
⊗3

8=1 �8 .
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Remark 2.6. With the basis isomorphisms

�8 : ℓ2(N)→ �8 , v ↦→
∑
a∈N

v[a] i(8)
a ,

as a consequence of the cross-norm property (2.4), the isomorphism associated to
the tensor product basis

� : ℓ2(N3)→
3⊗
8=1

�8 , v ↦→
∑
a∈N3

v[a]
3⊗
8=1

i(8)
a8

can be written in tensor product form as � =
⊗3

8=1 �8 and is thus a tensor space
isomorphism.

For countable sets I1, I2, elements of ℓ2(I1 × I2) = ℓ2(I1) ⊗ ℓ2(I2) can be
identified with bounded linear operators from ℓ2(I2) to ℓ2(I1) by interpreting their
entries as those of an infinite matrix: the operator associated to u ∈ ℓ2(I1) ⊗ ℓ2(I2)
is given by

ℓ2(I2) 3 v ↦→
(∑
a∈I2

u[a′, a]v[a]
)
a′∈I1

, (2.6)

where the right-hand side is in ℓ2(I1) as a consequence of the Cauchy–Schwarz
inequality.

Definition 2.7. For countable sets I1, I2 and u ∈ ℓ2(I1 × I2), we define

rank(u) = dim range(u) ∈ N0 ∪ {∞},

where we identify u with the operator given by (2.6).

For u ∈ ℓ2(I1×I2), the operator defined by (2.6) belongs to the Hilbert–Schmidt
class, where theHilbert–Schmidt inner product is simply the inner product in ℓ2(I1×
I2). In particular, Hilbert–Schmidt operators are compact. As a consequence, we
obtain the following adaptation of a classical result that goes back to Schmidt
(1907).

Theorem 2.8 (Hilbert–Schmidt decomposition). For each u ∈ ℓ2(N2), there
exist orthonormal systems {U(1)

:
}:∈N and {U(2)

:
}:∈N in ℓ2(N) as well as a non-

increasing, non-negative sequence (f:):∈N ∈ ℓ2(N) such that

u =
∞∑
:=1

f:U(1)
:
⊗ U(2)

:
(2.7)
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with convergence in ℓ2(N2). Moreover, for any A ∈ N, we have the best approxim-
ation propertyu − A∑

:=1
f:U(1)

:
⊗ U(2)

:


ℓ2(N2)

=

( ∞∑
:=A+1

f2
:

)1/2

= min{‖u − v‖ℓ2(N2) : rank(v) ≤ A}, (2.8)

and the best approximation is unique precisely when fA > fA+1.

The expansion (2.7) is also called the singular value decomposition (SVD) of the
operator induced by u. In this context, the expansion is identified with the mapping
on ℓ2(N) given by

∞∑
:=1

f:
〈
U(2)
:
, · 〉U(1)

:
.

The orthonormal systems
{
U(1)
:

}
:∈N and

{
U(2)
:

}
:∈N are called the left and right

singular vectors, respectively, and (f:):∈N is the sequence of singular values.

Remark 2.9. Let us note the following immediate consequences of Theorem 2.8.
(i) The same statement applies to arbitrary countable index sets I1, I2, in which

case it yields orthonormal systems in ℓ2(I1) and ℓ2(I2). In particular, in this
section we also use it with I1 = N

31 and I2 = N
32 with 31, 32 ∈ N.

(ii) When supp u ⊆ I1 × I2 with finite I1, I2, which corresponds to the case
of the singular value decomposition of a matrix in RI1×I2 representing a
linear mapping from RI2 to RI1 , the sum in (2.7) has at most min{#I1, #I2}
summands. In this case Theorem 2.8 is also known as the Eckart–Young
theorem (Eckart and Young 1936).

2.2. Operations on low-rank matrices

Before turning to higher-order tensors, it may be instructive to first take a closer
look at low-rank matrices from the computational point of view, that is, at the
procedures for performing typical operations such as addition or singular value
decomposition in low-rank form.

There are different possibilities for representing matrices in low-rank form that
leave different types of redundancy in the representation. As mentioned in Sec-
tion 1.4, matrices of rank at most A in R<×= can be represented by A ∈ R<×A and
B ∈ R=×A via the representation mapping

g(A,B) = AB>,

where g(A,B) = g(AG−1,BG>) for any G ∈ GL(A,R). In addition, we can demand
that either A or B have orthonormal columns, in which case g(A,B) = g(AG,BG)
for any G ∈ O(A). An alternative representation is via

g(U, S,V) = USV>, (2.9)
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where U,V are required to have orthonormal columns and S ∈ RA×A . In this case
g(U, S,V) = g(UG1,G>1 SG2,VG2) for all G1,G2 ∈ O(A). Here S is diagonal
precisely when the columns of U and V are left and right singular vectors of
g(U, S,V), respectively, in which case the diagonal entries of S are (up to sign) the
corresponding singular values.
In the following description of operations, we focus on representations of the

form (2.9) with S not necessarily diagonal, since this case is conceptually closest
to higher-order tensor representations.

2.2.1. Orthogonalization
Let Ũ ∈ R<×A , Ṽ ∈ R=×A and S̃ ∈ RA×A be given. Then a representation satisfying
the orthogonality requirement can be found as follows. PerformQRdecompositions
Ũ = UR1, Ṽ = VR2 to obtain U ∈ R<×A and V ∈ R=×A with orthonormal
columns, as well as (triangular) R1,R2 ∈ RA×A ; then set S = R1S̃R>2 to obtain
g(U, S,V) = g(Ũ, S̃, Ṽ), where U,V have orthonormal columns. Note that in this
form the Hilbert–Schmidt and spectral norms of g(U, S,V) can be obtained as the
respective norms of the matrix S, which in this case is generally not diagonal.

Remark 2.10. To perform orthogonalization as outlined above, performing the
QR decompositions requires $((< + =)A2) operations, and computing S in addi-
tion requires $(A3) operations. These QR decompositions can be computed by a
numerically stable direct method, for instance by applying at most A orthogonal
Householder reflectors.

2.2.2. Addition of low-rank matrices
For _1, _2 ∈ R and two given representations g(U1, S1,V1) and g(U2, S2,V2) of
compatible sizes with ranks A1 and A2, respectively, to obtain a low-rank represent-
ation of _1g(U1, S1,V1) + _2g(U2, S2,V2) we assemble the block matrices

Ũ =
[
U1 U2

]
, S̃ =

[
_1S1

_2S2

]
, Ṽ =

[
V1 V2

]
corresponding to a representation with rank at most A1+A2, and subsequently ortho-
gonalize with results U, S,V as above to arrive at g(U, S,V) = _1g(U1, S1,V1) +
_2g(U2, S2,V2).

2.2.3. Singular value decomposition
To obtain the SVD form of a given representation g(U, S,V) with U,V having
orthonormal columns, we compute an SVD of the matrix S,

S = Q�P>,

where Q,P ∈ O(A) and � is diagonal. Then, as summarized for later use in the
following simple observation, the sought SVD form is given by g(UQ,�,VP).
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Proposition 2.11. Let M = USV>, where U ∈ R<×A and V ∈ R=×A have ortho-
normal columns and S ∈ RA×A . Let S = Q�P> be a singular value decomposition
of S; then M = Û�V̂> with Û = UQ, V̂ = VP is a singular value decomposition
of M.

Remark 2.12 (computation of the SVD). Truncation of the SVD yields solu-
tions of best low-rank approximation problems by Theorem 2.8, and the computa-
tion of SVDs as outlined above is thus of central importance. Note that the SVD
of a rectangular matrix A can be obtained from the eigendecompositions of the
symmetric matrices A>A and AA>, which necessarily require an iterative scheme.
These latter eigenvalue problems can be solved by transformation to tridiagonal
form by a direct method, followed by a QR iteration for the resulting symmet-
ric tridiagonal eigenvalue problems that has been shown by Wilkinson (1968) to
be globally at least linearly convergent; see also Parlett (1998, Sec. 8.10). This
implies that we obtain an algorithm for approximating the SVD with guaranteed
convergence and complexity bounds.
When performedwithmachine precision, the approach via symmetric eigenvalue

problems has the disadvantage that a loss of relative precision can occur for the
smallest singular values. This is avoided by the specialized numerical SVDmethods
of Golub and Kahan (1965) and Golub and Reinsch (1970). There are also variants
of the SVD algorithm with potentially improved quantitative performance based on
divide-and-conquer strategies (Gu and Eisenstat 1995), but these can occasionally
be observed to fail to converge in practical computations.
For each fixed relative precision, the work required for the SVD of an A×A-matrix

scales as $(A3), and thus the above procedure for the SVD of low-rank matrices
requires

$
(
A3 + (< + =)A2)

operations in total, which is of the same order as the costs of orthogonalization,
despite the different type of numerical algorithms.

2.3. Matricizations of tensors and product notation

We now introduce basic notions that play a role in the definitions of the different
tensor formats that we consider below. We consider these for tensors of order
3 with countable index sets, that is, for tensors in ℓ2(N3). Considering tensors
in infinite-dimensional spaces is essential for discretization-independent notions
of low-rank approximability of functions and for formulating algorithms that are
robust under discretization refinement. Note that the corresponding definitions
contain tensors of finite size as special cases with support on finite subsets of N3 ,
and practical computations are carried out on such finite subsets as described above
for the matrix case.
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In what follows, for the set of all modes of a tensor of order 3, we use the
abbreviation

U∗ = {1, . . . , 3}.
For a multi-index a ∈ N3 and U ⊆ U∗, we write aU = (a8)8∈U for its sub-index for
the modes in U and set

Uc = U∗ \ U.
Definition 2.13. For non-empty U ⊆ U∗, the U-matricization of v ∈ ℓ2(N3) (also
referred to as unfolding or flattening of v) is given by

matU(v) = (v[a])aU∈N#U , aUc ∈N3−#U ∈ ℓ2(N#U) ⊗ ℓ2(N3−#U). (2.10)

For matricizations with respect to single coordinates 8 = 1, . . . , 3, we also write
mat8(v) in place of mat{8 }(v). The associated U-rank of v is defined by

rankU(v) = rank matU(v) ∈ N0 ∪ {∞}
with the abbreviation rank8(v) = rank{8 }(v) for 8 = 1, . . . , 3.

For U ⊆ U∗, the bijective linear mapping matU provides an identification of
tensors in ℓ2(N3) with infinite matrices, where indices of modes in U are used as
row indices and the remaining ones as column indices. As in (2.6), these infin-
ite matrices matU(v) are identified with linear operators matU(v) : ℓ2(N3−#U) →
ℓ2(N#U). Note that matU(v)> = matUc(v) and thus

rankUc(v) = rank matUc(v) = rank matU(v)> = rank matU(v) = rankU(v).

Remark 2.14. For general separable Hilbert spaces �8 , 8 = 1, . . . , 3, an analog-
ous notion of matricizations of elements of � =

⊗3

8=1 �8 can be introduced; the
U-matricization is then an element of

⊗
8∈U �8 ⊗

⊗
8∈Uc �8 , identified with an

operator from
⊗

8∈U �8 to
⊗

8∈Uc �8 . The corresponding U-ranks are invariant
under tensor space isomorphisms. In view of Remark 2.6, by choosing a suit-
able orthonormal basis for each space �8 , it thus suffices to consider tensors in
ℓ2(N3) =

⊗3

8=1 ℓ2(N).

Definition 2.15. Let t ∈ ℓ2(N3), let U : ℓ2(N) → ℓ2(N) be linear and bounded,
and let 8 ∈ {1, . . . , 3}. The (8th) mode product of t and U is defined by

t ×8 U = mat−1
8 (U mat8(t)),

or entrywise, with the identification (2.6),

(t ×8 U)[a1, . . . , a3] =
∑
a′
8
∈N

U[a8 , a′8]t[a1, . . . , a8−1, a
′
8 , a8+1, . . . , a3]

for all a1, . . . , a3 ∈ N. In addition, for non-empty U ⊂ U∗ and W : ℓ2(N#U) →
ℓ2(N#U), we introduce the U-mode product

t ×U W = mat−1
U (W matU(t))
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acting on the modes in U.

2.4. Tucker format

We have already briefly considered the Tucker tensor format in Section 1.4. In the
general definition of the multilinear rank of a tensor in ℓ2(N3), for 8 = 1, . . . , 3, we
rely on mode-wise matricizations

mat8(v) = (v[a])a8 ∈N, (a1,...,a8−1,a8+1,...,a3)∈N3−1 (2.11)

as special cases of Definition 2.13.

Definition 2.16. The multilinear rank of a tensor v ∈ ℓ2(N3) is the tuple

rankML(v) = (rank8(v))8=1,...,3 ∈ (N0 ∪ {∞})3 .
For each 8 ∈ {1, . . . , 3}, since rank8(v) = dim range mat8(v), we can choose an

orthonormal system
{
U(8)
:

}
:=1,...,rank8(v) in ℓ2(N) that is an orthonormal basis of

range mat8(v), referred to as orthonormal mode frame. Let U(8) be the matrix with
columns U(8)

:
. In terms of the mode product, the representation in Tucker format of

v ∈ ℓ2(N3) generalizing (1.11) can then be written in the form

v = a ×1 U(1) ×2 U(2) ×3 · · · ×3 U(3), (2.12)

where the core tensor a of size rank1(v) × · · · × rank3(v) satisfies

a[:1, . . . , :3] =
〈
v,U(1)

:1
⊗ · · · ⊗ U(3)

:3

〉
.

Note that since an isometric isomorphism on ℓ2 is applied in each mode, we have

‖v‖ℓ2 = ‖a‖ℓ2 . (2.13)

Remark 2.17 (storage costs). Let rankML(v) = (A8)8=1,...,3 with A8 ∈ N, 8 =
1, . . . , 3, and supp v ⊆ {1, . . . , =1}× · · ·× {1, . . . , =3}. Then the number of storage
locations used for the corresponding representation of v in Tucker format is

3∏
8=1

A8 +
3∑
8=1

A8=8 .

The multilinear rank refers to the minimum number of basis vectors required in
each mode frame. Tensors can also be given in the form (2.12) in a potentially
redundant representation with non-orthogonal mode frames. In this case we refer
to the corresponding rank parameters (that is, the mode sizes of the core tensor) as
representation ranks.

Remark 2.18 (basic operations). For the operations considered in Section 2.2
for low-rank matrices, we have the following analogous results for the Tucker
format.
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(i) Addition of tensors in Tucker format can be performed analogously to the
matrix case described in Section 2.2.2 by concatenation of mode frames and
diagonal stacking of core tensors, so that the multilinear rank of the sum is at
most the componentwise sum of multilinear ranks.

(ii) Orthogonalization. Given ã ×1 Ũ(1) · · · ×3 Ũ(3), where Ũ(1), . . . , Ũ(3) have
non-orthogonal columns, one can orthonormalize in a similar way to the
matrix case in Section 2.2.1: perform a QR decomposition Ũ(1) = U(1)R1 and
replace the core tensor by ã ×1 R1; carry out the same steps for 8 = 2, . . . , 3.
The total computational costs scale as

$

( 3∑
8=1

A2
8

∏
B≠8

AB +
3∑
8=1

A2
8 =8

)
.

(iii) Higher-order singular value decomposition. In addition, the mode frames
can be chosen to be left singular vectors of the respective matricizations.
The resulting representation has been termed higher-order singular value
decomposition (HOSVD) in De Lathauwer, DeMoor and Vandewalle (2000);
its properties, which to some extent parallel those of the SVD of matrices,
are considered in Section 2.7. To compute the HOSVD numerically, assume
that a representation v = a×1 U(1) · · · ×3 U(3) with orthonormal mode frames
is given. Perform a QR factorization mat1(a)> = V1R1 with V1 having
orthonormal columns and R1 ∈ RA1×A1 , and compute the SVD R>1 = Q�P>.
By Proposition 2.11, the columns of Û(1) = U(1)Q are then left singular
vectors of mat8(v). After replacing the core tensor by a ×1 Q>, the same
can be carried out for the further tensor modes, which eventually yields a
decomposition â ×1 Û(1) · · · ×3 Û(3), where the columns of each Û(8) are left
singular vectors of the respective matricization. In view of Remark 2.12, the
total number of operations for this procedure scales as

$

( 3∑
8=1

A2
8

∏
B≠8

AB +
3∑
8=1

A2
8 (=8 + A8)

)
.

Note that for 3 > 2, in contrast to the classical SVD, â is in general a fully
populated tensor without diagonal structure.

In summary, the Tucker format can be used to express a given tensor, separately
in each mode, with respect to adapted basis vectors given by the mode frames.
However, the number of entries of the core tensor still scales exponentially with
respect to the number of modes.

2.5. Tensor trains or matrix product states

The tensor train (TT) format, introduced in Oseledets (2009b), Oseledets and
Tyrtyshnikov (2009a,b) and Oseledets (2011b), is based on a different set of mat-
ricizations such that an application to very high tensor orders becomes feasible. In
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quantum physics these tensor representations are known as matrix product states.
In this context they were introduced in Vidal (2003) for the purpose of approximat-
ing wavefunctions; for an overview of corresponding applications, see Schollwöck
(2011).

Definition 2.19. The tensor train rank of a tensor v ∈ ℓ2(N3) is given by the
vector

rankTT(v) = (rank{1,...,8 }(v))8=1,...,3−1.

We now again deduce from this notion of rank a corresponding tensor repres-
entation. To this end, we use that for v ∈ ℓ2(N3),

range mat{1,...,8−1,8 }(v) ⊆ range mat{1,...,8−1}(v) ⊗ ℓ2(N). (2.14)

This can be deduced from Hackbusch (2019, Thm 6.31).
To simplify notation, we abbreviate A8(v) = rank{1,...,8 }(v). By the definition of

A8(v), for 8 = 1, . . . , 3 − 1 there exist orthonormal bases
{
U{1,...,8 }
:

}
:=1,...,A8(v) of

range mat{1,...,8 }(v) ⊆ ℓ2(N8). In particular,

v[ 91, . . . , 93] =
A3−1(v)∑
:3−1=1

U{1,...,3−1}
:3−1

[ 91, . . . , 93−1]V3 [:3−1, 93]

with the coefficients

V3 [:3−1, 93] =
∑

( 91,..., 93−1)∈N3−1

U{1,...,3−1}
:3−1

[ 91, . . . , 93−1] v[ 91, . . . , 93−1, 93] .

We now proceed recursively: by (2.14), for 1 < 8 < 3 we obtain a third-order
coefficient tensor V8 such that

U{1,...,8 }
:

[ 91, . . . , 98] =
A8−1(v)∑
:8−1=1

U{1,...,8−1}
:8−1

[ 91, . . . , 98−1] V8 [:8−1, 98 , :] .

Setting V1 [ 91, :] = U{1}
:
[ 91], we arrive at the tensor train representation

v[ 91, . . . , 93] =
A1(v)∑
:1=1
· · ·

A3−1(v)∑
:3−1=1

V1 [ 91, :1]V2 [:1, 92, :2] · · ·V3 [:3−1, 93] . (2.15)

Remark 2.20 (storage costs). Let v ∈ ℓ2(N3) such that rankTT(v) = (A8)8=1,...,3−1
with A8 ∈ N, 8 = 1, . . . , 3 − 1, and supp v ⊆ {1, . . . , =1} × · · · × {1, . . . , =3}, with
=1, . . . , =3 ∈ N. Then the number of entries to be stored for the representation
(2.15) is

3∑
8=1

A8−1=8A8 ,

where we set A0 = A3 = 1.
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Although the above bound has only a linear explicit dependence on 3, note that
the scaling with respect to 3 also depends on the ranks, which can in principle still
scale exponentially with respect to 3. Suitable rank bounds are thus crucial for
actually avoiding the curse of dimensionality.
As a shorthand notation for explicitly specifying tensor train representations,

individual cores V ∈ RA1×=×A2 with V[:1, 9 , :2] = a:1,:2 [ 9] for certain vectors
a:1,:2 can be written in the block form

V =


a1,1 · · · a1,A2
...

. . .
...

aA1,1 · · · aA1,A2

 . (2.16)

This can be combined with the following special notion of product, introduced by
De Launey and Seberry (1994), to obtain a compact notation.

Definition 2.21 (strong Kronecker product). For V1 ∈ RA1×=1×A2 and V2 ∈
RA2×=2×A3 , we define

(V1 Z V2)[:1, 91, 92, :3] =
A2∑
:2=1

V1 [:1, 91, :2]V2 [:2, 92, :3] .

This product thus acts like standard matrix multiplication on the block form
(2.16), where individual entries are combined by the tensor product. As a specific
example,[

a11 a12
a21 a22

]
Z

[
b11 b12
b21 b22

]
=

[
a11 ⊗ b11 + a12 ⊗ b21 a11 ⊗ b12 + a12 ⊗ b22
a21 ⊗ b11 + a22 ⊗ b21 a21 ⊗ b12 + a22 ⊗ b22

]
,

where the product of two rank-two blocks of tensor order one leads to a new
rank-two block of order two. With this notation, we write (2.15) concisely as

v = V1 Z V2 Z · · · Z V . (2.17)

2.6. Hierarchical tensors and tree tensor networks

We now consider hierarchical tensors as introduced in the context of numerical
analysis by Hackbusch and Kühn (2009); see also Hackbusch (2019) and Falcó,
Hackbusch and Nouy (2021). In the physics literature, these are a special case of
tree tensor networks; see Shi, Duan and Vidal (2006) and Murg, Verstraete, Legeza
and Noack (2010).

Definition 2.22. A set T ⊂ 2{1,...,3 } is called a binary dimension tree (for dimen-
sion 3) if the following conditions hold.
(i) {1, . . . , 3} ∈ T and ∅ ∉ T.
(ii) For each U, V ∈ T with U ≠ V, either U ⊂ V or V ⊂ U or U ∩ V = ∅.
(iii) For each U ∈ T with #U > 1, there exists precisely one subset {V1, V2} ⊆ T

with V1 ∩ V2 = ∅ such that U = V1 ∪ V2.
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As a consequence of this definition, if T is a binary dimension tree, then for all
8 ∈ {1, . . . , 3} we have {8} ∈ T; these singleton elements are referred to as leaves
of the tree.
As in Bachmayr and Schneider (2017), we introduce a set of effective edges E of
T as the pairs

E = {{U, Uc} : U ∈ T \ {U∗}},
for which we have #E = 23 − 3. For each 4 ∈ E, we define the representer [4]
as the U ∈ 4 such that U ∈ T; if this element is not unique, we make an arbitrary
choice of [4] among the elements of 4.

Definition 2.23. Let T be a dimension tree with associated effective edges E. The
hierarchical rank of a tensor v ∈ ℓ2(N3) is given by

rankE(v) = (rank[4](v))4∈E.

Remark 2.24. While for many purposes the elements of the dimension tree T
are the decisive quantities, the ranks are indexed by the effective edges E. These
correspond to the different matricizations associated to T, where those that can
be obtained from each other by transposition are treated as equal (since these
necessarily have the same rank). In general, there are several different T that lead
to the same set of matricizations E. For example, for each of the five different T
for 3 = 4 shown in Figure 2.1, we have the same effective edges

E =
{{{1}, {2, 3, 4}}, {{2}, {1, 3, 4}},
{{3}, {1, 2, 4}}, {{4}, {1, 2, 3}}, {{1, 2}, {3, 4}}}.

These T are thus in principle equivalent in that they lead to tensor representations
with the same ranks; the difference lies in the placement of the root element
{1, 2, 3, 4} in the tree. Intuitively, when looking only at the connectivity of the
tree between modes (rather than its labels), the different T arise by placing the root
element on different effective edges.

Similarly to the tensor train format, the notion of hierarchical rank leads to a
representation of high-order tensors in terms of lower-order tensors, which can be
obtained as follows. Let v ∈ ℓ2(N3) be given. For each U ∈ T \ {U∗}, there exists
an orthonormal system {UU

:
}:=1,...,rankU(v) in ℓ2(N#U) that is an orthonormal basis

of range matU(v). Such an orthonormal system is again called an orthonormal
(U-)mode frame. In what follows, for each U, we write UU for the (potentially
infinite) matrix that has columns UU

:
for : = 1, . . . , rankU(v).

In a first step, for v as above, we have the decomposition

v =
rankU∗1

(v)∑
ℓ1=1

rankU∗2
(v)∑

ℓ2=1
bU
∗ [ℓ1, ℓ2] UU∗1

ℓ1
⊗ UU∗2

ℓ2
, (2.18)
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{1, 2, 3, 4}

{1} {2, 3, 4}

{2} {3, 4}
{3} {4}

{1, 2, 3, 4}

{2} {1, 3, 4}

{1} {3, 4}
{3} {4}

{1, 2, 3, 4}

{1, 2}
{1} {2}

{3, 4}
{3} {4}

{1, 2, 3, 4}

{1, 2, 4}

{1, 2}
{1} {2}

{4}

{3}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}
{1} {2}

{3}

{4}

Figure 2.1. Examples of dimension trees T with 3 = 4 that lead to the same
effective edges E.

where U∗1, U
∗
2 are the children of the root element U∗ and where

bU
∗ [ℓ1, ℓ2] =

〈
v,UU∗1

ℓ1
⊗ UU∗2

ℓ2

〉
;

note that in this particular case rankU∗1 (v) = rankU∗2 (v), since the children of the root
share (up to transposition) the same matricization. For U ∈ T \ {U∗} with #U > 1,
for the children U1, U2 ∈ T of U, we have

range matU(v) ⊆ range matU1(v) ⊗ range matU2(v), (2.19)

which can be shown analogously to (2.14). As a consequence

UU
: =

rankU1(v)∑
ℓ1=1

rankU2(v)∑
ℓ2=1

bU [:, ℓ1, ℓ2] UU1
ℓ1
⊗ UU2

ℓ2
, : = 1, . . . , rankU(v), (2.20)

with the transfer tensors bU of size rankU(v) × rankU1(v) × rankU2(v) given by

bU [:, ℓ1, ℓ2] =
〈
UU
: ,U

U1
ℓ1
⊗ UU2

ℓ2

〉
.

The nestedness property (2.19) implies the restriction

rankU(v) ≤ rankU1(v) rankU2(v).

We letRanks(E) denote the set of feasible rank vectors in (N0∪{∞})E of hierarchical
tensors.
In summary, applying (2.20) recursively, from (2.18) we obtain a representation

of v by the transfer tensors bU for all U ∈ T with #U > 1 and the mode frames
{U{8 }

:
}:=1,...,rank8(v) for 8 = 1, . . . , 3. All operations on hierarchical tensors are then

performed exclusively on these representation components.
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Remark 2.25. One can also specify tensors in this form with non-orthogonal
mode frames in a potentially redundant representation. In this case we refer to
the mode sizes of the transfer tensors (which do not necessarily reflect the true
hierarchical ranks) as representation ranks.

For 3 = 4, in the case of the balanced binary tree

T =
{{1, 2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4}},

the decomposition can be written as

v =
rank1(v)∑
:1=1

· · ·
rank4(v)∑
:4=1

a[:1, . . . , :4] U{1}:1
⊗ · · · ⊗ U{4}

:4
, (2.21)

where, with A12 = rank{1,2}(v), A34 = rank{3,4}(v),

a[:1, . . . , :4] =
A12∑
ℓ1=1

A34∑
ℓ2=1

b{1,2,3,4} [ℓ1, ℓ2] b{1,2} [ℓ1, :1, :2] b{3,4} [ℓ2, :3, :4] .

Since it can be interpreted as a direct generalization of the Tucker format – with
additional constraints on ranks of matricizations and a resulting further decompos-
ition of the core tensor – this tensor format is also referred to in the literature as the
hierarchical Tucker format.

Remark 2.26 (storage costs). The number of coefficients that need to be stored
for a tensor in hierarchical format of size =1 × · · · × =3 , with the abbreviations
AU = rankU(v) and A8 = rank8(v), is∑

U∈T
#U>1

AU AU1 AU2 +
3∑
8=1

A8 =8 ,

where U1, U2 denote the children of each U.

Remark 2.27 (relation to the tensor train format). The tensor train format has
the effective edges

E =
{{{1, . . . , 8}, {8 + 1, . . . , 3}} : 8 = 1, . . . , 3 − 1

}
, (2.22)

which do not directly correspond to a dimension tree according to Definition 2.22,
due to missing leaf elements. From a practical point of view, this means that pairs
of transfer tensors and mode frames that are kept separate in the hierarchical format
are contracted to a single component in the tensor train format. When keeping this
separation, the linear dimension tree{{1, . . . , 3}, {1}, {2, . . . , 3}, {2}, {3, . . . , 3}, . . . , {3 − 1, 3}, {3 − 1}, {3}}
yields a hierarchical tensor representation that is analogous to the tensor train
format. By constraining the mode frames to be identity mappings, the tensor train
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format can alternatively be seen as a special case of this representation (Uschmajew
and Vandereycken 2013). For a comparison of the respective notions of ranks, see
Grasedyck and Hackbusch (2011).

Remark 2.28 (orthogonalization). A representation of a finitely supported v ∈
ℓ2(N3) in hierarchical format by non-orthonormalmode frames Ũ{8 } for 8 = 1, . . . , 3
and transfer tensors b̃U for U ⊆ U∗ with #U > 1 can be transformed such that all U-
mode frames are orthonormal; see Grasedyck (2009/10) and Hackbusch and Kühn
(2009). First, for each leaf {8} with parent V8 ∈ T, perform a QR decomposition
Ũ{8 } = U{8 }R8 . With Ũ{8 } attached to mode < of the third-order tensor b̃V8 ,
replace b̃V8 by b̃V8 ×< R8 . For U ∈ T \ {U∗} with parent V and children U1, U2
such that UU1 and UU2 are already orthonormalized, perform a QR factorization
mat{2,3}(b̃U) = CURU; with b̃U attached to mode< of b̃V , replace b̃V by b̃V×<RU,
and set bU = mat−1

{2,3}(CU).
After performing this recursively for all elements of T \ {U∗}, the computed

bU and U{8 } yield a hierarchical tensor representation of v such that all associated
mode frames UU for U ∈ T\ {U∗} are orthonormal, that is, (UU)>UU = I. To assess
the total computational costs of this procedure, we again assume finite mode sizes
=1, . . . , =3 . We assume the input representation to be given with matricization
ranks (AU)U∈T. This means that for U ∈ T with children U1, U2, the transfer tensor
b̃U has size AU × AU1 × AU2 . In addition, we set AU∗ = 1. The number of operations
then scales as

$

 ∑
U∈T

#U>1

(
A2
U AU1 AU2 + AU A2

U1 AU2 + AU AU1 A
2
U2

) + 3∑
8=1

A2
{8 } =8

. (2.23)

Here, orthogonalization is performedwith respect to the root element U∗. Hence,
as a consequence of (2.18), we have

‖v‖ℓ2 = ‖bU
∗ ‖ℓ2 .

We can also orthogonalize towards different edges in the dimension tree, which
amounts to switching between alternative dimension trees that have the same ef-
fective edges E (as illustrated in Figure 2.1); see Bachmayr and Schneider (2017)
for details. Tensor train representations can be orthogonalized in a similar fashion,
where we distinguish between left and right orthogonality; see Oseledets (2011b)
and Holtz, Rohwedder and Schneider (2012b).

Addition of tensors in hierarchical or tensor train format can be done by con-
catenation of representations similarly to the case of low-rank matrices as in Sec-
tion 2.2.2 and Tucker tensors in Remark 2.18(i). The hierarchical or tensor train
ranks of such sums are then again bounded componentwise by the sums of the
ranks of summands.
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Proposition 2.29. With v(8)
:
∈ ℓ2(N) for : = 1, . . . , A and 8 = 1, . . . , 3, let

v =
A∑
:=1

v(1)
:
⊗ · · · ⊗ v(3)

:
.

Then we have the componentwise estimate rankE(v) ≤ A .
Proof. Each elementary tensor product v: = v(1)

:
⊗ · · · ⊗ v(3)

:
can be represented

in hierarchical format with rankE(v:) ≡ 1 for any T, where all transfer tensors have
size 1 × 1 × 1. The statement thus follows by addition of these representations.

Remark 2.30. Tree tensor networks can be considered based on trees of more
general arities than the binary ones used Definition 2.22. These arities, however,
enter exponentially into the storage costs (with the Tucker format as an extreme
case), and thus binary trees are typically the most favourable choice.
In certain application scenarios, it can also be of interest to consider tensor

networks without tree structure, where components are connected according to a
more general graph with cycles. A simple example is given by tensor chains (which
are also known as cyclic MPS in physics) with three components in the form

t[ 91, 92, 93] =
A1∑
:1=1

A2∑
:2=1

A3∑
:3=1

U[:1, 91, :2]V[:2, 92, :3]W[:3, 93, :1] .

However, tensor networks with cycles lead to computational issues similar to those
described for the canonical format in Section 1.4 (Landsberg, Qi and Ye 2012),
and the algorithmic framework for subspace formats based on matricizations is
not applicable to such networks. For a detailed discussion, see Hackbusch (2019,
Sec. 12.4) and Hackbusch (2014, Sec. 9.4).

2.7. Hierarchical singular value decomposition and low-rank approximations

For tensor order 3 = 2, by Theorem 2.8, low-rank best approximations in ℓ2(N2)
(and thus in any separable tensor product Hilbert space) can be obtained by trunca-
tion of the SVD. As noted in Remark 2.12, for finite matrices, these best approxim-
ations can be computed by a polynomial-time algorithm that is actually not much
more costly than other standard matrix factorizations.
As we saw in Section 1.4, in the case of the canonical tensor format (1.9), low-

rank best approximations generally do not exist. This is different in subspace tensor
formats, where we have the following result.

Theorem 2.31. For any v ∈ ℓ2(N3), any dimension tree T and any r = (A4)4∈E ∈
(N ∪ {∞})E, there exists a best approximation with respect to the ℓ2-norm in
{w ∈ ℓ2(N3) : rankE(w) ≤ r}.
Proof. Let (r = {w ∈ ℓ2(N3) : rankE(w) ≤ r}. Then

(r =
⋂
4∈E
{w ∈ ℓ2(N3) : rank[4](w) ≤ A4},
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and for each 4, the set {w ∈ ℓ2(N3) : rank[4](w) ≤ A4} with constraint on
rank[4](w) = rank mat[4](w) is weakly sequentially closed. This can be deduced
from the lower semicontinuity of the rank of finite-dimensional matrices; see for
example Uschmajew (2013, Lem. 6.5) or Hackbusch (2014, Sec. 6.4). Thus (r is
weakly sequentially closed. Since ℓ2(N3) is reflexive, this allows us to obtain the
weak limit of a minimizing sequence in (r, which is a minimizer by weak lower
semicontinuity of the norm.

Related results, including the case of the Tucker format, have been obtained in
Uschmajew (2010). In the case of general Banach spaces, the existence of best
low-rank approximations has been treated by Falcó and Hackbusch (2012) using
the notion of minimal subspaces.
In the case of subspace tensor formats for 3 > 2 considered in this section,

there exist normal forms of tensor representations that share certain features of the
SVD of matrices, such as the higher-order SVD discussed in Remark 2.18 in the
case of the Tucker format. For general hierarchical tensors, we have an analogous
notion developed in Grasedyck (2009/10) and Hackbusch and Kühn (2009); see
also Hackbusch (2019, Sec. 11.3.3).

Definition 2.32. A hierarchical tensor representation of v ∈ ℓ2(N3) with dimen-
sion tree T is a hierarchical singular value decomposition (HSVD) if, for all
U ∈ T \ {U∗}, the mode frame {UU

:
}:=1,...,rankU(v) is made up of left singular vec-

tors of matU(v), ordered such that the corresponding sequence of singular values,
denoted by fU(v) =

(
fU
:

(v)
)
:=1,...,rankU(v), is non-increasing.

In the case of the tensor train representation, the analogous form in terms of
left singular vectors of matricizations is referred to as tensor train SVD (TT-SVD),
introduced in Oseledets (2011b). In physics, an equivalent representation is known
as the Vidal representation of matrix product states (Vidal 2003).

Remark 2.33 (existence and uniqueness). Wecan always choose themode frames
for each U ∈ T \ {U∗} as left singular vectors of the U-matricization, whose exist-
ence is ensured by Theorem 2.8. Thus a hierarchical singular value decomposition
exists for every v ∈ ℓ2(N3). It is unique precisely when the sequences fU(v) are
strictly decreasing for all U.

A procedure for numerically transforming a hierarchical tensor representation to
HSVD formwas introduced byGrasedyck (2009/10). Starting froma representation
with orthonormalized mode frames, the matrices transforming these mode frames
can be extracted from eigenvalue decompositions of certain recursively assembled
Gramians associated to the nodes in T. The computational costs are of the same
order (2.23) as the orthogonalization, which for v of mode sizes =1 × · · · × =3 is
bounded by

$

(
3max
U∈T

rank4
U(v) +

3∑
8=1

rank8(v)2=8

)
. (2.24)
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For the details of this procedure, we refer to Grasedyck (2009/10) and Hackbusch
(2019, Sec. 11.4.2). Oseledets (2011b) has introduced a procedure for computing
TT-SVD representations of tensor trains following similar lines to the HOSVD in
Remark 2.18(iii).

2.7.1. Truncated hierarchical SVD
We now consider rank truncation of HSVD representations in analogy to the trun-
cated SVD of matrices in Theorem 2.8.
Let v ∈ ℓ2(N3) be given in HSVD form with orthonormal mode frames UU for

U ∈ T \ {U∗}. For each U and A , we write UU,A for UU truncated to its first A
columns. For each 4 ∈ E, we define the orthogonal projector

P4v,Av = v ×[4] U[4],A
(
U[4],A

)>
.

We now introduce a notion of level of nodes in T as the distance to the root element
U∗, so thatU∗ has level zero and the children ofU∗ have level one. We next choose an
ordering 4(1), 4(2), . . . , 4(#E) ofE such that [4(1)], [4(2)], . . . have non-decreasing
level. With this ordering, for r = (A4)4∈E ∈ Ranks(E) we define the sequence of
projections

Pv,r = P4(#E)
v,A4(#E) · · · P4(2)

v,A4(2)P
4(1)
v,A4(1) , (2.25)

which projects onto truncated mode frames starting from the root of T. This
sequence of projections realizes a truncation to hierarchical rank at most r.

Lemma 2.34. Let v ∈ ℓ2(N3) and r ∈ Ranks(E) with r ≤ rankT(v). Then
rankE(Pv,rv) ≤ r.

Proof. As a consequence of the ordering in (2.25), for each 4 = {U, Uc} ∈ E, once
the projection P4v,A4 has been applied, all projections that follow in the ordering act
only on modes that are subsets of either U or Uc and thus act from either the left or
right on matU(v). The subsequent projections can thus only decrease rankU(v).

Note that the ordering of the projections in (2.25) is essential: without the
ordering from root to leaves, applying the projections may indeed increase the
ranks beyond the prescribed r; see Grasedyck (2009/10).

Remark 2.35 (applying the truncation). It is easy to see that applying Pv,r to an
HSVD representation amounts to selecting a subset of basis vectors in each mode
frame. Since the mode frames are ordered by non-increasing singular values, this
is accomplished by simply truncating all transfer tensors and mode frames in the
HSVD to match the hierarchical rank r. A completely analogous procedure can be
performed for the tensor train format (Oseledets 2011b).

Truncating the HSVD does not provide the best approximation with the given
ranks from Theorem 2.31. However, we instead obtain a quasi-best approximation:
the truncation error can be estimated by a fixed multiple of the best approximation
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error. The following result to this effect was obtained for hierarchical tensors in
Grasedyck (2009/10).

Theorem 2.36. Let v ∈ ℓ2(N3) and r = (A4)4∈E ∈ Ranks(E) with r ≤ rankE(v).
Then

‖v − Pv,rv‖ℓ2 ≤
(∑
4∈E

∑
:>A4

(
f [4]
:

(v)
)2
)1/2

≤
√

#E min
{‖v − w‖ℓ2 : w ∈ ℓ2(N3), rankE(w) ≤ r

}
.

Proof. Let % be an orthogonal projection and & a bounded operator on ℓ2(N3),
respectively. Then, since range(� − %)⊥ range(%) and ‖%‖ℓ2→ℓ2 = 1,

‖v − %&v‖2ℓ2
= ‖(� − %)v + %(� −&)v‖2ℓ2

= ‖(� − %)v‖2ℓ2
+ ‖%(� −&)v‖2ℓ2

≤ ‖(� − %)v‖2ℓ2
+ ‖(� −&)v‖2ℓ2

.

Applying this inductively, starting from

% = P4(#E)
v,A4(#E) and & = P4(#E−1)

v,A4(#E−1) · · · P4(1)
v,A4(1) ,

we arrive at
‖v − Pv,rv‖2ℓ2

≤
∑
4∈E
‖v − P4v,A4v‖2ℓ2

.

By Theorem 2.8, for each 4 ∈ E,
‖v − P4v,A4v‖2ℓ2

=
∑
:>A4

(
f [4]
:

(v)
)2
= min

{‖v − w‖2ℓ2
: rank[4](w) ≤ A4

}
.

Since min{‖v − w‖ℓ2 : rank[4](w) ≤ A4} ≤ min{‖v − w‖ℓ2 : rankE(w) ≤ r}, the
statement follows.

Remark 2.37. Theorem 2.36 applies to all subspace tensor formats discussed
so far.

(i) In the case of the Tucker format, which corresponds to the non-binary dimen-
sion tree T = {{1, . . . , 3}, {1}, . . . , {3}} with #E = 3, Theorem 2.36 reduces
to the error bounds for truncated higher-order singular value decompositions
obtained by De Lathauwer et al. (2000).

(ii) For matricizations (2.22) of the tensor train format, we have #E = 3 − 1. In
this case Theorem 2.36 yields the result for the tensor train format obtained
by Oseledets (2011b).

Remark 2.38. The rank truncation described here is based on transforming the
entire representation to HSVD form and then performing the truncation. Vari-
ants that sequentially transform single matricizations into SVD form and directly
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perform the corresponding truncation have been investigated in Kühn (2012) (see
also Hackbusch 2019, Sec. 11.4.2.2); the procedure for truncating the TT-SVD
proposed by Oseledets (2011b) is also of this type. An analogous method for
general tree tensor networks has been analysed by Ceruti, Lubich and Sulz (2023).
Due to the decreased ranks of intermediate results, in practice this sequential trun-
cation can reduce the total computational costs. A potential disadvantage is that
error tolerances need to be allocated to matricizations before all singular values are
known.

2.7.2. Soft thresholding of hierarchical tensor representations
We now turn to an alternative strategy for rank reduction of hierarchical tensors
with the additional feature of non-expansiveness, which can be exploited in the
construction of iterative methods.
Let v ∈ ℓ2(I1 × I2), where I1, I2 are countable index sets, have the singular

value decomposition

v =
∞∑
:=1

f:U(1)
:
⊗ U(2)

:
(2.26)

according to Theorem 2.8. For X ≥ 0 and G ∈ R, let BX(G) = sgn(G) max{|G | − X, 0},
which satisfies

BX(G) = arg min
H∈R

{
1
2
|G − H |2 + X |H |

}
. (2.27)

We define the nonlinear soft thresholding operator (X on ℓ2(I1 × I2) in terms of
the singular value decomposition (2.26) by

(X(v) =
∞∑
:=1

BX(f:) U(1)
:
⊗ U(2)

:
. (2.28)

Lemma 2.39. For each X ≥ 0, the operator (X is non-expansive, that is,

‖(X(v) − (X(w)‖ℓ2 ≤ ‖v − w‖ℓ2 for all v,w ∈ ℓ2(I1 × I2).

Proof. We have the characterization

(X(v) = arg min
w∈ℓ2(I1×I2)

{
1
2
‖v − w‖2ℓ2

+ X‖f(w)‖ℓ1

}
, (2.29)

where f(w) denotes the sequence of singular values of w. This is shown in
Bachmayr and Schneider (2017, Lem. 2.3) by a reduction to the scalar case (2.27);
an alternative proof for #I1, #I2 < ∞ based on subgradient characterizations is
given in Cai, Candès and Shen (2010). The right-hand side (2.29) is the definition
of the proximity operator on ℓ2(I1 × I2) of the functional ‖f(·)‖ℓ1 . As shown by
Moreau (1965), every proximity operator is non-expansive.
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Based on (2.28), we now define a soft thresholding operation for hierarchical
tensors in ℓ2(N3) that preserves the non-expansiveness. For a given dimension tree
T and associated effective edges E, for each 4 ∈ E, we set

(4X = mat−1
[4] ◦(X ◦mat[4] .

We now choose an enumeration 4(1), . . . , 4(#E) of the elements of E and define the
hierarchical tensor soft thresholding operator

STX = (4(#E)
X
◦ · · · ◦ (4(1)

X
(2.30)

of Bachmayr and Schneider (2017). By repeated application of Lemma 2.39, we
immediately obtain non-expansiveness of STX on ℓ2(N3).

Proposition 2.40. For any X ≥ 0,

‖STX(v) − STX(w)‖ℓ2 ≤ ‖v − w‖ℓ2 for all v,w ∈ ℓ2(N3).

Remark 2.41. For any dimension tree, by a suitable enumeration of E, the action
of STX can be implemented with the same asymptotic complexity (2.24) as the
computation of the HSVD; see Bachmayr and Schneider (2017, Alg. 1).

The following characterization of the X-dependence of the error incurred by ap-
plication of STX in terms of singular values of matricizations is proved in Bachmayr
and Schneider (2017, Lem. 3.4).

Theorem 2.42. For X > 0, 4 ∈ E and v ∈ ℓ2(N3), with

A4X(v) = #
{
: ∈ N : f [4]

:
(v) > X

}
, �4X(v) =

√
X2A4

X
(v) +

∑
:>A4

X
(v)

��f [4]
:

(v)
��2,

we have the bounds

max
4∈E

�4X(v) ≤ ‖STX(v) − v‖ℓ2 ≤
∑
4∈E

�4X(v).

Moreover, �4
X
(v)→ 0 as X→ 0 for each 4 ∈ E.

2.8. Matrices and operators in tensor formats

When applying operators on ℓ2(N3) to subspace representations, we again need
to represent the results in the same format. For this to be efficiently realizable
we require a representation of operators that is compatible with the considered
low-rank format. In the case 3 = 2 corresponding to low-rank matrices, as outlined
in (1.14), sums of tensor product operators can be applied in this format and are in
this sense compatible: we obtain a representation of the same form, generally with
increased ranks.
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In the case of the Tucker format, corresponding representations of operators on
ℓ2(N3) are of the analogous form

'1∑
ℓ1=1
· · ·

'3∑
ℓ3=1

c[ℓ1, . . . , ℓ3] A(8)
ℓ1
⊗ · · · ⊗ A(8)

ℓ3
(2.31)

with component operators A(8)
ℓ
, ℓ = 1, . . . , '8 , for 8 = 1, . . . , 3. Applying this

representation to a Tucker representation of multilinear ranks (A1, . . . , A3) then
leads to a (potentially redundant) representation of the result with representation
ranks ('1A1, . . . , '3A3).

The case of hierarchical tensors is similar: we have the same basic form as in
(2.31), but the core tensor c needs to be decomposed in terms of transfer tensors
as in (2.21) according to the given dimension tree T. In the particular case of the
tensor train representation, the shorthand notation in terms of the block form (2.16)
can also be applied to operators, for instance[

I A1
]
Z

[
I A2
0 I

]
Z

[
A3
I

]
= A1 ⊗ I ⊗ I + I ⊗ A2 ⊗ I + I ⊗ I ⊗ A3. (2.32)

Applying this representation to a tensor train of representation rank (2, 2),[
u1 u2

]
Z

[
v1,1 v1,2
v2,1 v2,2

]
Z

[
w1
w2

]
,

yields the result with representation rank (4, 4),

[
u1 u2 A1u1 A1u2

]
Z


v1,1 v1,2 A2v1,1 A2v1,2
v2,1 v2,2 A2v2,1 A2v2,2

0 0 v1,1 v1,2
0 0 v2,1 v2,2

 Z

A3w1
A3w2

w1
w2

 .
2.9. Condition numbers of tensor representations

The subspace tensor formats considered in this section avoid some of the difficulties
associated with the canonical format that are outlined in Section 1.4. However, un-
der certain conditions these representations can still be sensitive to round-off errors.
This can happen in particular when the components are in non-orthogonalized form
with redundancies that lead to large cancellations, which can occur in intermediate
results in numerical methods.

Example 2.43. In order to illustrate how this issue can arise in tensor decompos-
itions, let us consider the tensor v ∈⊗3

ℓ=1 R
2 with all entries equal to one, which

can be represented in TT format with rank one in the form

v =
(

1
1

)
⊗ · · · ⊗

(
1
1

)
.
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However, one can also write v in a redundant rank-two representation

v = X1 Z · · · Z X3

with, for any ' > 0,

X1 =

[
(1 + '−3)

(
'
'

)
−
(
'
'

)]
,

X2 = · · · = X3−1 =


(
'
'

) (
0
0

)
(

0
0

) (
'
'

)
 , X3 =


(
'
'

)
(
'
'

)
 .

(2.33)

We now define vY by replacing precisely one of the cores X8 with 1 < 8 < 3 by

X8, Y =


(1 + Y)

(
'
'

) (
0
0

)
(

0
0

) (
'
'

)
 ,

so that vY has all entries equal to 1 + ('3 + 1)Y. For the relative error in the
represented tensor, we thus obtain

‖v − vY ‖2
‖v‖2 = ('3 + 1)Y.

Even when ' is of moderate size, a significant loss of precision can thus occur for
large 3.

Redundancies similar to those in Example 2.43 can arise in particular when ap-
plying operators in low-rank representation. Although one can subsequently apply
orthogonalization to remove the redundancies, in general these orthogonalizations
will already lead to large numerical errors. This effect can be quantified by the
following notion introduced in Bachmayr and Kazeev (2020).

Definition 2.44. Let g : C → ℓ2(N3) be the representation mapping of a tensor
format, where C is the set of admissible tuples of components, and let X =

(X1, . . . ,X# ) ∈ C. For = = 1, . . . , # , we define the representation condition
numbers of X by

rcond=(X) = lim
Y→0

1
Y

sup
{ ‖g(X) − g(Y)‖ℓ2(N3)

‖g(X)‖ℓ2(N3)
:

Y = (X1, . . . ,X=−1,Y=,X=+1, . . . ,X# ),

‖X= − Y=‖ℓ2 ≤ Y‖X=‖ℓ2

}
. (2.34)
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For tensor trains and more general hierarchical tensors, the quantities defined in
(2.34) can be computed directly from norms of components; see Bachmayr and
Kazeev (2020, Prop. 1). By multilinearity of g for these tensor formats, if x = g(X)
and y = g(Y) with X = (X1, . . . ,X# ) and Y = (Y1, . . . ,Y# ) such that

‖X= − Y=‖ℓ2 ≤ Y‖X=‖ℓ2 for = = 1, . . . , # ,

we obtain
‖x − y‖ℓ2

‖x‖ℓ2

≤
#∑
==1

rcond=(X) Y +$(Y2).

Definition 2.45. With the notation of Definition 2.44, let A be an operator repres-
entation acting on elements of C and let A • X be the result of applying A to X ∈ C.
For = = 1, . . . , # , we then define the operator representation condition number of
A as

oprcond=(A) = sup
X∈C

rcond=(A • X)
rcond=(X)

. (2.35)

Hence operator representations that are ill-conditioned in the sense of large
condition numbers (2.35) can lead to a correspondingly large deterioration of the
representation condition numbers of the tensors that they are acting on, for instance
by introducing cancellations in the representation as in Example 2.43. This can
occur in certain representations of differential operators considered in Sections 3.4
and 4.5.

2.10. Manifold structure

The set of matrices of a given size < × = of fixed rank A ∈ N is a smooth embedded
submanifold of R<×= (Helmke and Shayman 1995). This means that techniques
of Riemannian optimization can be applied for solving minimization problems on
fixed-rank matrices (Absil, Mahony and Sepulchre 2008), considered in further
detail in Section 5.1.3. The structure of such fixed-rank matrix manifolds and their
tangent spaces is also utilized in dynamical low-rank approximation (Koch and
Lubich 2007a) of initial value problems; see Section 7.1.

Analogous manifold properties hold for Tucker tensors, tensor trains and hier-
archical tensors with fixed ranks. This has been established for tensors with finite
mode sizes for Tucker tensors in Koch and Lubich (2010), for tensor trains in
Holtz et al. (2012b) and, using a different approach, for hierarchical tensors and
tensor trains in Uschmajew and Vandereycken (2013); see also Arnold and Jahnke
(2014). These constructions can be transferred to the tensor product Hilbert space
setting of ℓ2(N3); see Uschmajew (2013). The Tucker format in Banach spaces
is considered in Falcó, Hackbusch and Nouy (2019). For a general discussion of
manifold properties in the context of tensor networks, we refer to Bachmayr et al.
(2016, Sec. 3.8).
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3. Approximations of functions and operators in low-rank tensor
formats

When using tensor formats in approximation problems, a natural approach is to
directly assign tensormodes to coordinates in the given problem. In this case entries
of a tensor representing a function typically correspond to values on a product grid
or to coefficients in a basis expansion. However, tensors can also be used for
encoding functions in completely different ways, where the modes are associated
to basis functions or to scales in the problem. We now consider some common
ways of representing functions by tensors and corresponding representations of
operators. As a particular example, we consider representations of the Laplacian
as the most basic example of an elliptic operator and the simplest corresponding
boundary value problem.

Example 3.1. On the bounded domainΩ, the classical formulation of the Poisson
problem reads: for a given 5 ∈ �(Ω), find D ∈ �2(Ω) ∩ �(Ω) such that

− ΔD = 5 in Ω, D = 0 on mΩ. (3.1)

The corresponding weak formulation is: for 5 ∈ �−1(Ω), find D ∈ �1
0(Ω) such that∫

Ω

∇D · ∇E dG = 5 (E) for all E ∈ �1
0(Ω). (3.2)

Wefirst consider grid-based discretizations by finite differences or finite elements
in Section 3.1. In Section 3.2we then turn to representations in terms ofRiesz bases,
which play a central role in the following sections in obtaining well-conditioned
problems and in adaptively refining discretizations. More specialized uses of low-
rank tensors are considered in Section 3.3 on occupation number representations
and Section 3.4 on tensorized representations, where tensor modes correspond to
basis functions and to scales in the approximation problem, respectively.

3.1. Uniform grids

The most common way of representing function approximations in low-rank tensor
methods is by point values on a regular tensor product grid. As an example, let
us consider a uniform product grid in Ω = �3 with # points in each coordinate
direction. With the grid spacing ℎ = 1/(# + 1), the set of grid points in Ω is
given by

Ωℎ =
{
G 91,..., 93 : 9 ∈ {1, . . . , #}3}, where G 91,..., 93 = ( 91ℎ, . . . , 93ℎ).

3.1.1. Finite differences
In finite difference discretizations, the original solution D of the PDE on Ω is
replaced by a grid function Dℎ : Ωℎ → R given by the coefficient tensor uℎ ∈
R#×···×# with entries

uℎ [ 91, . . . , 93] = Dℎ(G 91,..., 93 ) ≈ D(G 91,..., 93 ).
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Using low-rank tensor approximations of uℎ in finite difference methods requires
suitable representations of the corresponding discretization matrices. In Ex-
ample 3.1 with Ω = �3 and 5 ∈ �(Ω), we obtain a linear system of equations
AFDuℎ = fℎ, where fℎ [ 9] = 5 (G 9) for 9 ∈ {1, . . . , #}3 and

AFD = ℎ
−2�2 ⊗ I ⊗ I ⊗ · · · ⊗ I + I ⊗ ℎ−2�2 ⊗ I ⊗ · · · ⊗ I
+ · · · + I ⊗ I ⊗ · · · ⊗ I ⊗ ℎ−2�2, (3.3)

where the I are # × # identity matrices and where we set

�2 =


2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2

. (3.4)

Although the right-hand side of (3.3) has 3 summands, the matrix AFD can be
written in the operator versions of the Tucker, tensor train or hierarchical tensor
formats with all ranks equal to two. In particular, as observed by Kazeev and
Khoromskij (2012), in the tensor train format we have, analogously to (2.32),

AFD =
[
I ℎ−2�2

]
Z

[
I ℎ−2�2
0 I

]Z(3−2)
Z

[
ℎ−2�2

I

]
,

where for a core X we write XZ= for the =-fold strong Kronecker product of X with
itself. It is easy to see that for the condition numberwith respect to the spectral norm,
we have cond(AFD) = cond(�2) independently of 3, where cond(�2) = $(ℎ−2).

We thus obtain a discretization with simple structure that serves as a benchmark
problem in many works, where it is typically considered with rather coarse grids of
sizes # = 25 to # = 27 that can be treated without preconditioning. For large grid
sizes, the use of a preconditioner in low-rank format becomes necessary due to the
large condition number of AFD. However, an important limitation of such finite
difference discretizations is that they offer no mechanism for obtaining a 3-robust
computable error bound for the discretization error. This is especially important in
the high-dimensional setting, since the scaling with respect to 3 of the quantities
arising in a priori error estimates is typically unknown. Moreover, finite differences
are less suitable for problems with non-smooth data (such as 5 ∉ �(Ω)).

3.1.2. Finite elements
An alternative discretization that also uses the values on the grid Ωℎ, but that
is suitable for problems with low regularity and offers more advanced means for
error control, is provided by lowest-order multilinear finite elements. In this case,
with the univariate piecewise linear hat functions i 9(G) = max{1 − |G − 9 ℎ|/ℎ, 0},
9 ∈ {1, . . . , #}, with ℎ = 1/(# +1) as above, we consider a Galerkin discretization
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of (3.2): find Dℎ ∈ +ℎ such that∫
Ω

∇Dℎ · ∇Eℎ dG = 5 (Eℎ) for all Eℎ ∈ +ℎ, (3.5)

with the subspace

+ℎ = span

{
3⊗
8=1

i 98 : 9 ∈ {1, . . . , #}3
}
⊂ �1

0(Ω).

The coefficients uℎ ∈ R#×···×# such that

Dℎ =
∑

9∈{1,...,# }3
uℎ [ 9]

3⊗
8=1

i 98

then again correspond to the values of Dℎ at the grid points. The system of equations
resulting from (3.5) is AFEuℎ = fℎ with

fℎ [ 9] = 5

( 3⊗
8=1

i 98

)
and

AFE = A1 ⊗M1 ⊗M1 ⊗ · · · ⊗M1 +M1 ⊗ A1 ⊗M1 ⊗ · · · ⊗M1

+ · · · +M1 ⊗M1 ⊗ · · · ⊗M1 ⊗ A1, (3.6)

where

A1 =

(∫ 1

0
i′8i

′
9 dG
)
8, 9=1,...,#

= ℎ−1�2

and

M1 =

(∫ 1

0
i8i 9 dG

)
8, 9=1,...,#

=
ℎ

6


4 1
1 4 1

. . .
. . .

. . .
. . .

. . . 1
1 4

.
Concerning representation ranks, AFE can be represented analogously to AFD with
all ranks equal to two in the formats considered.

Remark 3.2. In contrast to the finite difference case, since cond(M1) > 1, it
is easy to see that the condition number of AFE deteriorates exponentially with
increasing 3. This means in particular that iterative methods applied to AFE
become extremely inefficient for large 3. Note that once the discrete problem is
represented in the basis of multilinear hat functions, this problem is not easy to
circumvent, since any application of M1 ⊗ · · · ⊗ M1 or its inverse may incur a
relative error increasing exponentially with respect to 3.
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3.2. Basis representations

Rather than working with grid values, in many approximation problems it is more
advantageous to consider expansions in terms of bases of the relevant function
spaces that can serve as dictionaries for nonlinear sparse approximation as outlined
in Section 1.6.

Example 3.3. In parametric and stochastic problems, we are often interested in
approximation in spaces !2(RN , `) with ` =

⊗
8∈N `8 , where N can be finite or

countable and `8 is a probability measure on R for each 8 ∈ N . To approximate
smooth functions in such spaces, a natural choice of basis is given by tensor
products of orthonormal polynomials (%(8)

a )a∈N0 in !2(R, `8) for 8 ∈ N , so that
each D ∈ !2(RN , `) has an expansion of the form

D =
∑
a∈F

u[a]
⊗
8∈N

%(8)
a8 , where u[a] =

∫
RN

D
⊗
8∈N

%(8)
a8 d`, a ∈ F ,

with the index set

F =
{
a ∈ NN

0 : a8 ≠ 0 for finitely many 8 ∈ N }
.

The coefficient sequences u, restricted to suitable finite Cartesian product subsets
of F , can be approximated in low-rank formats. For a detailed treatment of such
product polynomial expansions, we refer to Schwab andGittelson (2011) andCohen
and DeVore (2015).

In many scenarios, the notion of orthonormal bases is too restrictive, and we
instead work with bases satisfying the following weaker requirements.

Definition 3.4. Let � be a separable Hilbert space, let I be a countable set and
let Wa ∈ � for a ∈ I. Then {Wa}a∈I is a Riesz sequence if there exist 2, � > 0 such
that for all v ∈ ℓ2(I),

2‖v‖ℓ2(I) ≤
∑
a∈I

v[a] Wa

�

≤ �‖v‖ℓ2(I), (3.7)

and a Riesz basis of � if in addition span{Wa : a ∈ I} is dense in �.
In other words, in addition to the density requirement, for a Riesz basis the

mapping taking coefficient sequences to represented elements in the Hilbert space
is an isomorphism; when 2 = � = 1, the Riesz basis is in fact an orthonormal basis,
where this mapping is an isometric isomorphism.
When approximating an arbitrary D =

∑
a∈I u[a] Wa with coefficient sequence

u ∈ ℓ2(I) by an expansion D̃ =
∑
a∈Λ u[a] Wa with Λ ⊂ I, by (3.7) we have in

particular
2‖u − ũ‖ℓ2 ≤ ‖D − D̃‖� ≤ �‖u − ũ‖ℓ2 , (3.8)

which means that up to the fixed constants 2, �, approximation in �-norm is equi-
valent to approximation of coefficient sequences in ℓ2(I). This is particularly useful
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in the context of low-rank methods, since the methods discussed in Section 2.7 for
rank truncation of tensors based on the HSVD yield error bounds in ℓ2-norm.
For Riesz bases in tensor product Hilbert spaces, we have the following analogue

of Theorem 2.5 for orthonormal bases.

Proposition 3.5. For 8 = 1, . . . , 3, let {W(8)
a }a∈N be a Riesz basis of the separable

Hilbert space �8 with

28 ‖v‖ℓ2(N) ≤
∑
a∈N

v[a] W(8)
a


�8

≤ �8 ‖v‖ℓ2(N) for all v ∈ ℓ2(N).

Then
{
W(1)
a1 ⊗· · ·⊗W(3)

a3

}
a∈N3 is a Riesz basis of� =

⊗3

8=1 �8 , and for all v ∈ ℓ2(N3),( 3∏
8=1

28

)
‖v‖ℓ2(N3) ≤

 ∑
a∈N3

v[a]
3⊗
8=1

W(8)
a8


�

≤
( 3∏
8=1

�8

)
‖v‖ℓ2(N3).

The natural spaces for treating variational formulations of linear elliptic PDEs
are the Hilbertian Sobolev spaces �:(Ω) with : ∈ N on the given domain Ω,
in particular �1(Ω) in the case of second-order problems as in Example 3.1. In
particular, the weak formulation of a problem of this type with homogeneous
Dirichlet boundary conditions as in (3.2) can be written as an operator equation
�D = 5 for D ∈ �1

0(Ω), where 5 ∈ �−1(Ω), and � : �1
0(Ω)→ �−1(Ω) is defined by

〈�E, F〉 =
∫
Ω

∇E · ∇F dG, E, F ∈ �1
0(Ω). (3.9)

Note that by the Lax–Milgram theorem, � is an isomorphism.
With the aid of a Riesz basis of �1

0(Ω), such operator equations can be reduced
to problems on ℓ2-sequence spaces; see Cohen, Dahmen and DeVore (2001) and
Dahmen (1997).

Proposition 3.6. Let + be a separable Hilbert space, let � : + → + ′ be an
isomorphism satisfying ‖�‖+→+ ′ ≤ �� and ‖�−1‖+ ′→+ ≤ 2−1

�
with 2�, �� > 0,

and let {Wa}a∈I be a Riesz basis of + such that with 2Γ, �Γ > 0,

2Γ‖v‖ℓ2(I) ≤
∑
a∈I

v[a] Wa

�

≤ �Γ‖v‖ℓ2(I) for all v ∈ ℓ2(I).

In addition, let the bi-infinite matrix A ∈ RI×I and the sequence f ∈ RI be
defined by

A[a, a′] = 〈�Wa′, Wa〉, f [a] = 5 (Wa), for a, a′ ∈ I. (3.10)

Then A is an isomorphism on ℓ2(I) with

2�2
2
Γ‖v‖ℓ2(I) ≤ ‖Av‖ℓ2(I) ≤ ���2

Γ‖v‖ℓ2(I) for all v ∈ ℓ2(I). (3.11)

Moreover, f ∈ ℓ2(I) and the unique solution D ∈ + of �D = 5 is given by
D =

∑
a∈I u[a]Wa , where u ∈ ℓ2(I) is the unique solution of Au = f.
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Proof. With the isomorphism (Γ : ℓ2(I) → + , v ↦→ ∑
a∈I v[a]Wa , we have

A = (′
Γ
�(Γ and f = (′

Γ
5 . Since 2Γ‖v‖ℓ2 ≤ ‖(Γv‖+ ≤ �Γ‖v‖ℓ2 for all v ∈ ℓ2(I)

and (′
Γ

: + ′ → ℓ2(I) is also an isomorphism with 2Γ‖6‖+ ′ ≤ ‖(′Γ6‖ℓ2 ≤ �Γ‖6‖+ ′
for all 6 ∈ + ′, the statements follow.

Remark 3.7. The spaces �1(Ω) and �1
0(Ω) for Ω = �3 cannot be character-

ized as tensor product Hilbert spaces, which means that no simple tensor product
constructions of Riesz bases as in Proposition 3.5 are applicable. Note that

3⊗
8=1

�1(0, 1) = �1
mix(�3),

where the cross-norm defined by (2.4) reads

‖E‖2
� 1

mix
=

∑
U∈N30

max8 U8≤1

∫
�3

��mUE��2 dG.

In contrast, �1(�3) can be obtained by taking the closure of �1
mix(�3) with respect

to the standard �1-norm

‖E‖2
� 1 =

∑
U∈N30

U1+···+U3≤1

∫
�3

��mUE��2 dG, (3.12)

and �1
mix ( �

1. The norm (3.12) can also be characterized as the canonical norm
on an intersection of tensor product Hilbert spaces, that is,

�1(�3) =
3⋂
8=1

3⊗
9=1

-8 9 , -8 9 =

{
�1(0, 1) 8 = 9 ,

!2(0, 1) 8 ≠ 9 ,

and the analogous characterization holds for the subspace �1
0(�3) with �1(0, 1)

replaced by �1
0(0, 1). A detailed treatment of related questions is given in Ali and

Nouy (2020a).

In order to still obtain Riesz bases of �1(�3) with some degree of product
structure, one can consider tensor product bases of !2(�3) that become Riesz
bases of �1(�3) by appropriate normalization.

Example 3.8. Let q 9(G) =
√

2 sin( 9cG) for 9 ∈ N, G ∈ (0, 1). Then {q 9} 9∈N is
an orthonormal basis of !2(0, 1) and by Theorem 2.5, setting Φ 9 =

⊗3

8=1 q 98 for
9 ∈ N3 , {Φ 9} 9∈N3 is an orthonormal basis of !2(�3). We easily verify that{‖Φ 9 ‖−1

� 1Φ 9

}
9∈N3 , where ‖Φ 9 ‖� 1 =

√
1 + c2

(
921 + · · · + 923

)
, (3.13)

is a Riesz basis (in fact, even an orthonormal basis) of�1
0(�3)with the norm (3.12).

Here the tensor product functions Φ 9 are modified by the factor ‖Φ 9 ‖−1
� 1 , which
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is not separable with respect to 91, . . . , 93 . This lack of separability subsequently
needs to be dealt with in any low-rank approximation method using the basis (3.13).

One construction of Riesz bases that is more suitable for locally refined ap-
proximations of potentially less regular functions is that of wavelets. A classical
example of such a basis is the Haar wavelet: we define the scaling function i and
the mother wavelet k by

i = j [0,1] , k = j [0,1/2] − j(1/2,1)

and, for 9 ∈ N0 and : = 0, . . . , 2 9 − 1, we introduce the notation

i 9 ,:(G) = 2 9/2i(2 9G − :), k 9 ,:(G) = 2 9/2k(2 9G − :). (3.14)

Then, for each � ∈ N,
span

({i0,0} ∪
{
k 9 ,: : 9 ∈ {0, . . . , � − 1}, : ∈ {0, . . . , 2 9 − 1}})

= span{i� ,: : : ∈ {0, . . . , 2� − 1}}. (3.15)

Since the union over � of the spaces of piecewise constant functions on the right is
dense in !2(0, 1), and by the orthonormality properties of the functions defined in
(3.14), we obtain that

{i0,0} ∪
{
k 9 ,: : 9 ∈ N0, : ∈ {0, . . . , 2 9 − 1}}

is an orthonormal basis of !2(0, 1). Due to their lack of regularity, Haar wavelets
are not suitable for the construction of Riesz bases of �1-spaces.

Based onmore general hierarchies of nested spaces, referred to asmultiresolution
analyses, wavelet bases of any desired regularity can be constructed. Here we give
a brief overview, and refer to the survey by Dahmen (1997) and the monographs
by Daubechies (1992) and Cohen (2003) for further details.
The wavelets constructed by Daubechies (1988) provide orthonormal bases of

!2(R) with compactly supported scaling function and mother wavelet, and they can
be constructed to have arbitrarily high Hölder and Sobolev regularity (at the price
of increasing support size). The Haar wavelet arises as the case of lowest order
of this construction. The wavelets in this family of higher regularity, however, are
fractals that are given only in terms of refinement relations, and are thus difficult
to use in numerical methods.
The biorthogonal wavelets constructed by Cohen, Daubechies and Feauveau

(1992) are also compactly supported and can be constructed to have arbitrarily
high regularity, but are obtained as linear combinations of spline functions and
are thus easy to handle numerically. However, the price to pay is that these
wavelets yield non-orthonormal Riesz bases of !2(R). The use of such wavelets on
bounded intervals requires modifications to basis elements that touch the boundary.
Such adaptations to wavelet Riesz bases of !2(0, 1) that are suitable for numerical
methods have been constructed by Dahmen, Kunoth and Urban (1999) and Primbs
(2010).
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For such wavelet bases, we use the following customary generic notation: we
write wavelet bases as {ka}a∈∨, where∨ denotes a suitable countable index set such
that the functions {ka}a∈∨ comprise both the scaling functions on the lowest level
and the wavelets that form the basis. In addition, each a includes a level 9 , denoted
by |a |, and a translation parameter : in (3.14). Without loss of generality, for the
lowest level in the basis, we assume mina∈∨ |a | = 0. The boundary adaptations
mentioned above then lead to wavelet bases that in particular have the following
properties: with some C > 0, for all a ∈ ∨,

ka ∈ �1+C (0, 1), diam suppka . 2−|a |, (3.16)

and there exist 20, 21 > 0 and �0, �1 > 0 such that for all v ∈ ℓ2(∨),

20‖v‖ℓ2(∨) ≤
∑
a∈∨

v[a] ka

!2(0,1)

≤ �0‖v‖ℓ2(∨) (3.17)

as well as

21‖v‖ℓ2(∨) ≤
∑
a∈∨

v[a] ‖ka ‖−1
� 1(0,1) ka


� 1(0,1)

≤ �1‖v‖ℓ2(∨). (3.18)

Remark 3.9. In constructing Riesz bases of �1(�3) using properties (3.17),
(3.18), we face a similar issue to that observed for finite elements in Remark 3.2:
as shown by Dijkema, Schwab and Stevenson (2009), for the �1-normalized tensor
product wavelets

Ψa =

 3⊗
8=1

ka8

−1

� 1(�3)

3⊗
8=1

ka8 , a ∈ ∨3 , (3.19)

we obtain the bounds

212
3−1
0 ‖v‖ℓ2(∨3) ≤

 ∑
a∈∨3

v[a] Ψa

� 1(�3)

≤ �1�
3−1
0 ‖v‖ℓ2(∨3) (3.20)

for all v ∈ ℓ2(∨3). Similarly to Remark 3.2, one can show that whenever 20 < �0,
the bounds in (3.20) and in the equivalence of errors (3.8) deteriorate exponentially
with respect to 3. In general, this equally affects the condition numbers of operator
representations (3.11).

The above observation shows that to obtain a wavelet Riesz basis of �1(�3)
with 3-robust constants we essentially need to start from an orthonormal wavelet
basis of !2(0, 1) satisfying (3.17) with 20 = �0 = 1. By the wavelet constructions
mentioned above, we do not obtain the regularity and support properties (3.16)
at the same time as orthonormality in !2(0, 1) when using wavelets that are at
the same time piecewise polynomials. However, this is achieved by certain spline
multiwavelets, which are generated by dilations and translations of more than one
mother wavelet, constructed by Donovan, Geronimo and Hardin (1996, 1999). For
such multiwavelets we keep the above notation, where each index in ∨ now also

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000125


Low-rank tensor methods for partial differential equations 47

encodes the respective mother wavelet. The Riesz basis {Ψa}a∈∨3 of �1(�3)
obtained from these spline multiwavelets according to (3.19) then satisfies (3.20)
with 20 = �0 = 1, and thus with constants independent of 3.

Remark 3.10. If, in addition to (3.16), (3.17) with 20 = �0 = 1, and (3.18), we
have ka ∈ �1

0(0, 1) for all a ∈ ∨, then with

Ψa =

( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2 3⊗
8=1

ka8 ,

{Ψa}a∈∨3 is a Riesz basis of �1
0(�3).

For the isomorphism � : �1
0(�3)→ �−1(�3) defined by the Laplacian in (3.9),

let us now consider basis representations as in (3.10) with respect to such a Riesz
basis. By (3.11) and (3.20), for A : ℓ2(∨3)→ ℓ2(∨3) defined by

A[a, a′] = 〈�Ψa′,Ψa〉 =
∫
�3

∇Ψa′ · ∇Ψa dG, a, a′ ∈ ∨3 , (3.21)

we then have 21‖v‖ℓ2 ≤ ‖Av‖ℓ2 ≤ �1‖v‖ℓ2 with 21, �2 from (3.18).
Moreover, we have the decompositionA = DTDwith the infinite diagonalmatrix

D[a, a′] =
( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2
Xa,a′, a, a′ ∈ ∨3 ,

and

T[a, a′] =
3∑
8=1

∫ 1

0
k ′a8k

′
a′
8
dG

∏
9≠8

∫ 1

0
ka 9ka′9 dG =

3∑
8=1

∫ 1

0
k ′a8k

′
a′
8
dG

∏
9≠8

Xa 9 ,a′9 ,

so that with T1 [a, a′] =
∫ 1

0 k ′ak ′a′ dG for a, a
′ ∈ ∨,

T = T1 ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ T1. (3.22)

Here we have used the !2-orthonormality of {ka}a∈∨. Note that D can be regarded
as a two-sided diagonal preconditioner for the operator T, which is unbounded
on ℓ2(∨3). For the operator equation �D = 5 with 5 ∈ �−1(�3), the basis
representation Au = f can be written in the form

DTDu = Dg, where g =
(
5

( 3⊗
8=1

ka8

))
a∈∨3

. (3.23)

As already observed in Section 3.1.1, operators of the form (3.22) can be rep-
resented with all ranks equal to two in Tucker, tensor train or hierarchical tensor
formats. However, similarly to Example 3.8, D does not have an explicit low-rank
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representation, which reflects the lack of tensor structure of �1
0(�3) noted in Re-

mark 3.7. Note that since ‖ka ‖� 1(0,1) h 2 |a | for the wavelets under consideration,

D[a, a] =
( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2
h

( 3∑
8=1

22 |a8 |
)−1/2

h 2−max8 |a8 | (3.24)

uniformly for all a ∈ ∨3 . Approaches for obtaining efficient low-rank approxima-
tions of D are considered in Section 4.

Remark 3.11. For {Ψa}a∈∨3 constructed from !2-orthonormal univariate wave-
lets as above, by (3.8), for any D, D̃ ∈ �1

0(�3) with

D =
∑
a∈∨3

u[a]Ψa , D̃ =
∑
a∈∨3

ũ[a]Ψa ,

we have in particular

21‖u − ũ‖ℓ2 ≤ ‖D − D̃‖� 1 ≤ �1‖u − ũ‖ℓ2 .

Thismeans that rank truncations of coefficient tensors can be performed by standard
HSVD-based procedures with controlled �1-error. Without the use of a Riesz
basis, error control in �1 could in principle also be achieved by different means,
for instance direct optimization without the aid of the SVD (which is in general
difficult to do reliably), or by alternative approaches considered in Ali and Nouy
(2020a,b) which, however, involve additional restrictions.
The preconditioning of operators provided by Riesz basis representations also

yields a proportionality between solution error in �1 and residual: with � and A
as in (3.21), if D is the solution of �D = 5 ∈ �−1(�3) with basis representation
Au = f, then

‖D − D̃‖� 1 h ‖A(u − ũ)‖ℓ2 = ‖f − Aũ‖ℓ2

with constants independent of 3. This means that the total approximation error in
�1 with respect to exact solutions of the considered PDE can be estimated from
finitely supported approximations of the residuals f − Aũ, which generally have
infinite support in ∨3 .
Remark 3.12. Adaptively refined Riesz basis expansions are used in combination
with hierarchical tensor representations in infinite-dimensional Hilbert spaces in
Bachmayr (2012a), Bachmayr and Dahmen (2015) and subsequently in Bachmayr
and Dahmen (2016b) and Ali and Urban (2020). A similar formalism focused on
continuous variables rather than basis expansions has been developed independently
in Bigoni, Engsig-Karup and Marzouk (2016) based on the tensor train format,
termed functional tensor train representation. This is combined with heuristic
adaptivity based on spectral basis functions in Gorodetsky, Karaman and Marzouk
(2019); see also Dolgov, Kressner and Strössner (2021).
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3.3. Occupation number representations

In the Schrödinger equations (1.2) and (1.3), solutions describing systems with
# particles are functions depending on # particle coordinates. We additionally
need to ensure symmetry of solutions under exchange of particle coordinates when
considering bosonic particles (due to their indistinguishability), or antisymmetry
in case of fermionic particles (corresponding to the Pauli exclusion principle).
One case of particular importance in chemistry is the electronic Schrödinger

equation, as a special case of the eigenvalue problem (1.3) for a Hamiltonian
operator � of the basic form

� = −1
2
Δ +

∑
8

+1(G8) +
∑
8< 9

+2(G8 , G 9), (3.25)

where G8 , 8 = 1, . . . , # are the coordinates of each particle and +2 is a symmetric
function. Hamiltonians of this structure arise frequently in quantum physics. In
the case of the electronic Schrödinger case, +2 takes the form of a Coulomb inter-
action between electrons, and +1 denotes external Coulomb potentials of atomic
nuclei. The associated eigenfunctions, referred to as wavefunctions, describe the
quantum states of electrons for given nuclear positions. Unless the model under
consideration has certain special features (such as the presence of magnetic fields),
the wavefunctions are real-valued. Since electrons are fermions, they are required
to be antisymmetric under exchange of each pair of electron coordinates. Here
each electron has coordinates in Ω = R3 × Z2, where the binary degree of freedom
in Z2 accounts for electron spin.
The hierarchical tensor format is not well suited to the direct representation of

antisymmetric functions (Hackbusch 2018). However, this issue can be circum-
vented by an indirect parametrization provided by the formalism of second quant-
ization that is widely used in quantum physics and chemistry. The starting point
for this formalism is an orthonormal basis {qa}a∈N of !2(Ω). These basis func-
tions are also referred to as orbitals. From these functions, we form antisym-
metrized tensor products, called Slater determinants, for all a1, . . . , a# ∈ N with
a1 < a2 < · · · < a# ,

Φa1,...,a# (G1, . . . , G# ) =
1√
#!

∑
c∈(#

sgn(c)
#∏
8=1

qa8 (Gc(8))

=
1√
#!

det
(
qa8 (G 9)

)
8, 9=1,...,#

for G1, . . . , G# ∈ Ω, which provide an orthonormal basis of the subspace V# of
antisymmetric functions in !2(Ω# ).
We now restrict to a subset of  ≥ # orbitals q1, . . . , q . These finitely many

orbitals may also be optimized for the problem under consideration; see for instance
Krumnow, Veis, Legeza and Eisert (2016). The corresponding Slater determinants
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are an orthonormal basis of the subspace

V # = span
{
Φa : a ∈ {1, . . . ,  }# , a1 < · · · < a#

} ⊂ V# .

We next introduce an injective mapping from V 
#
to the space

F =

 ⊗
8=1
R2.

To this end, let e0 = (1, 0)>, e1 = (0, 1)> ∈ R2. For each single Slater determinant
Φa ∈ V # and scalar coefficient 2a , we define

2aΦa ↦→ 2a

 ⊗
8=1

e18(a), where 18(a) =

{
1 8 ∈ {a1, . . . , a3},
0 otherwise,

and extend this by linearity to a mapping from V 
#

to F . We obtain an iden-
tification of linear combinations of Slater determinants with tensors in F that
encode the occupations of orbitals in each Slater determinant. This representation
is thus also called occupation number representation. It has the advantage that
the elements of F , referred to as occupation numbers, do not need to satisfy any
antisymmetry requirement.

Operators on F can be expressed in terms of the annihilation operators a8 and
creation operators a∗

8
for 8 = 1, . . . ,  , which are given by

a8 = S⊗(8−1) ⊗ J ⊗ I⊗( −8), a∗8 = S⊗(8−1) ⊗ J> ⊗ I⊗( −8)

in terms of the components

I =
(

1 0
0 1

)
, J =

(
0 1
0 0

)
, S =

(
1 0
0 −1

)
. (3.26)

In the occupation number representation, antisymmetry of Slater determinants is
reflected by the anticommutation relations satisfied by annihilation and creation
operators: for 8, 9 ∈ {1, . . . ,  },

a8a∗9 + a∗9a8 = X8 9 , a∗8 a
∗
9 + a∗9a

∗
8 = a8a 9 + a 9a8 = 0. (3.27)

Making use of the antisymmetry properties of Slater determinants, which lead to
the so-called Slater–Condon rules (Helgaker, Jørgensen and Olsen 2000, Chap. 1),
for � as in (3.25) we obtain the representation

H =

 ∑
8, 9=1

C8 9a∗8 a 9 +
 ∑

8, 9 ,:,;=1
E8 9:;a∗8 a

∗
9a:a; (3.28)
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with the coefficients

C8 9 =

∫
i8(G)

{− 1
2Δ ++1(G)

}
i 9(G) dG,

E8 9:; =

∫
i8(G) i 9(H)+2(G, H) i:(G) i;(H) dG dH.

Note that the number of particles is not fixed a priori for elements of F 

and thus needs to be added as a constraint in this formulation. The occupation
numbers x ∈ F that represent wavefunctions with # particles are precisely the
eigenfunctions with eigenvalue # of the particle number operator

P =
 ∑
8=1

a∗8 a8 , (3.29)

that is, they lie in the subspace

F 
# = {x ∈ F : Px = #x}.

The Ritz–Galerkin approximation in V 
#
of the original eigenvalue problem for �

is then equivalent to

Hx = _x, where x ∈ F 
# , x ≠ 0, (3.30)

and in particular, the approximation in V 
#
of the lowest eigenvalue of � is charac-

terized by

min
0≠x∈F 

#

〈Hx, x〉
〈x, x〉 .

The problem (3.30) in occupation number representation is directly amenable to
approximations in hierarchical tensor format, in this context typically referred to as
tree tensor networks. A frequent choice is tensor trains, in this context known as
matrix product states, corresponding to representing or approximating the sought
x ∈ F in the form

x = X1 Z · · · Z X (3.31)

as in (2.17). For a more detailed survey of this approach, which has been success-
fully applied in quantumchemistry andmany other applications of quantumphysics,
we refer to Szalay et al. (2015). Note that in this formulation the dimensionality #
of the original problem enters only indirectly, and the main parameters determining
the computational complexity are the ranks and the number of orbitals  .

Remark 3.13. It is clear that H can be represented with ranks $( 4), since
each operator a∗

8
a∗
9
a:a; is of rank one. However, this is not sharp: as observed

in Crosswhite and Bacon (2008) and Keller, Dolfi, Troyer and Reiher (2015), H
can generically be represented with ranks $( 2). For a detailed mathematical
treatment, see Bachmayr, Götte and Pfeffer (2022); further rank reductions are
possible, for instance with appropriately localized orbitals.
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Remark 3.14. Since (3.31) yields representations of general elements ofF , the
constraint to the #-particle eigenspace F 

#
of P needs to be handled appropriately.

There are certain cases where this constraint does not need to be enforced, since
it is automatically satisfied by the sought eigenvectors of H. In general, however,
x ∈ F is inF 

#
if and only if it has a representation (3.31) where each of the cores

X8 , 8 = 1, . . . ,  , has a certain block-sparse structure. In a physics context, this
observation goes back to Singh, Pfeifer and Vidal (2011). A mathematical proof,
extending this to more general operators than P with similar structure, is given in
Bachmayr et al. (2022). As a consequence, membership in F 

#
can be enforced

by working directly on the non-zero blocks of such block-sparse representations.
The operator H can be applied to such block-sparse representations in a matrix-free
manner that preserves the block-sparse structure (Bachmayr et al. 2022, Sec. 5.2).

3.4. Multilevel tensorized representations

We now turn to a different way of approximating solutions of PDEs with low-rank
tensors that is aimed at highly compressed approximations of simple discretizations.
Here grid vectors are efficiently encoded in low-rank format such that the use of
extremely fine uniform grids becomes feasible. For PDEs on domains of moderate
dimensionality, this leads to generic approximations for problems with singularities
or multiscale structure that otherwise require specialized approaches. In this case
tensor modes correspond to scales in the approximation problem.
The basic idea is that hierarchical tensor representations can be applied to arbit-

rary vectors when these are reinterpreted as high-order tensors. This is achieved
by a suitable encoding of indices. For instance, for ! ∈ N, we introduce the
isomorphism

J : {0, 1}! → {1, . . . , 2!}, (11, . . . , 1!) ↦→
!∑
ℓ=1

1ℓ2!−ℓ + 1. (3.32)

For a given vector v of length 2! , we define the tensor u ∈ ⊗!

ℓ=1 R
2 indexed by

{0, 1}! as
u[11, . . . , 1!] = v[J (11, . . . , 1!)], 1 ∈ {0, 1}! . (3.33)

In an analogous manner, a vector in R# with # =
∏!
ℓ=1 =ℓ can be mapped to a

tensor of mode sizes =1 × · · · × =! .
We can then approximate u in a suitable tensor format to obtain a compressed ver-

sion of v. Specifically, we can obtain a tensor train representationV = (V1, . . . ,V!)
of u of the form

u = g(V) = V1 Z V2 Z · · · Z V! . (3.34)

Since individual modes are associated to scales, such a representation can be inter-
preted as a type of multilevel TT representation of the underlying function. In the
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literature this is referred to as quantized tensor train (QTT) or as tensorized repres-
entation, introduced by Khoromskij (2011) and Grasedyck (2010). Precursors can
be found in similar ideas based on canonical tensor representations by Tyrtyshnikov
(2003) and in numerical observations on tensor train representations of matrices by
Oseledets (2009a). Detailed accounts of these techniques are given in Khoromskij
(2018) and Hackbusch (2019, Chap. 14).

Example 3.15. Consider the vector v ∈ R# with # = 2! , ! ∈ N, defined by
v[ 9] = exp(_G 9) with _ ∈ C and G 9 = ( 9 −1)/# for 9 = 1, . . . , # , corresponding to
grid values of an exponential function on [0, 1]. Then, as observed by Khoromskij
(2011), for the tensor u defined in (3.33), we have the rank-one representation

u =
!⊗
ℓ=1

(
1

exp(_2!−ℓ/#)

)
,

which requires only 2! coefficients as opposed to the 2! entries of the vector
v. As an immediate consequence, grid values of trigonometric functions have
representations (3.34) of ranks at most two.

Remark 3.16. A variety of further results on representations and approxima-
tions of more general functions in the multilevel form (3.34) have been obtained,
including the following.

(i) Values of polynomials of degree ? on uniform grids can be represented in
analogous form with ranks bounded by ? + 1; see Grasedyck (2010) and
Khoromskij (2011).

(ii) In Grasedyck (2010), this representation of polynomials is applied on sub-
intervals in combination with local refinement to obtain approximations of
the form (3.34) of functions on intervals with isolated singularities. These
approximations converge exponentially, uniformly on an equispaced grid of
points, with respect to the number of parameters in the representation, simil-
arly to ℎ?-type piecewise polynomial approximations.

(iii) Explicit representations (3.34) of continuous multivariate functions, with
functions as components, have been constructed in Oseledets (2013).

(iv) A general formulation of tensorized approximations on a function space level
has been developed in Ali and Nouy (2023), where convergence rates for
functions with Besov regularity are also obtained.

Various transformations with particular structure have been shown to be effi-
ciently realizable for multilevel representations as in (3.34), including convolu-
tions (Hackbusch 2011), Toeplitz matrices (Kazeev, Khoromskij and Tyrtyshnikov
2013a) and wavelet transforms (Khoromskij and Miao 2014).

Finding representation (3.34) as approximate solutions of differential equations
requires suitable representations of discretized differential operators in a compatible
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format. In the case of the second derivative on an interval, we have the following
basic result.

Example 3.17. As shown by Kazeev and Khoromskij (2012), the matrix �2
defined in (3.4) that appears in the finite difference or finite element discretization
of the second derivative can be represented as L1 Z · · · Z L! , where

L1 =
[
I J> J

]
, L2 = · · · = L!−1 =


I J> J
0 J 0
0 0 J>

 , L! =

2I − J − J>
−J
−J>


with component matrices as in (3.26). This representation can be applied to grid
vectors represented in the format (3.34).
Concerning the operator representation condition number, as verified in Bach-

mayr and Kazeev (2020, Prop. 4.10), the above representation L = (L1, . . . ,L!)
satisfies

max
ℓ=1,...,!

oprcondℓ(L) h 22! .

This means that applying the representation L to some V as in (3.34) may generate
redundancies leading to cancellations (as in Example 2.43) with a loss of relative
precision by a factor proportional to 22! . This is indeed confirmed by numerical
tests (Bachmayr and Kazeev 2020, Ex. 4.3), which means that the direct application
of L is limited to moderately large ! (where with double precision, all digits of
accuracy are lost when ! ≈ 25). This issue, which affects such representations of
differential operators in general, can be dealt with by suitable preconditioners that
also improve the representation condition number of the representation, rather than
just the usual condition number of the represented matrix. A construction of such
preconditioners is considered in Section 4.5.

Remark 3.18. The concepts outlined above for univariate functions can also be
applied in the multivariate case. For problems in 3 dimensions, one can devise an
isomorphism analogously to (3.32) but depending on parameters (18,1, . . . , 18,!) for
8 = 1, . . . , 3. There are two canonical ways of ordering this larger set of parameters
in an isomorphism as in (3.32): either the modes in the TT representation are
ordered in the form

(11,1, . . . , 11,! , 12,1, . . . , 12,! , . . . , 13,1, . . . , 13,!),

which has been used, for instance, in Khoromskij and Oseledets (2011), closely
related to a standard tensor representation in 3 dimensions where multilevel TT
representations are applied in each mode (Dolgov and Khoromskij 2013); or the
modes are arranged in the so-called transposed ordering

(11,1, 12,1, . . . , 13,1, 11,2, 12,2, . . . , 13,2, . . . , 11,! , . . . , 13,!),

used, for instance, by Kazeev and Schwab (2018), which corresponds to a para-
metrization in terms of a hierarchy of 3-dimensional patches. This latter form has
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proved to be particularly suitable for efficient approximations in dimensions 3 = 2
or 3 = 3; see also Ali and Nouy (2021).

Corresponding representations of operators in the general 3-dimensional case
are studied in Khoromskij and Oseledets (2011), Dolgov and Khoromskij (2013),
Kazeev, Reichmann and Schwab (2013b) and Bachmayr and Kazeev (2020). Ap-
plications to elliptic boundary value problems are considered in further detail in
Section 5.5.3.

4. Approximate inverses and preconditioning of elliptic operators
For bounded elliptic operators � : + → + ′ on Hilbert spaces + , where we focus in
particular on the case+ = �1

0(�3) as in (3.9), in this sectionwe consider two closely
related tasks. The first is finding approximate inverses of �, that is, approximating
�−1 by low-rank expressions in suitable operator norms. Such approximations can
be used for the direct construction of approximate solutions in low-rank format;
however, they are applicable only to operators with particular structure such as the
Laplacian-type form (1.6).
The second is the construction of preconditioners, where for a discretization or

basis representation A of �, we aim to find C such that for all v,

2〈Cv, v〉 ≤ 〈A−1v, v〉 ≤ �〈Cv, v〉
with uniform constants 2, � > 0, where C can be applied efficiently. Although
this second aim of establishing a spectral equivalence can be accomplished by
sufficiently accurate approximate inverses, more direct constructions of precon-
ditioners can generally provide more efficiency, in particular concerning more
favourable representation ranks. Low-rank preconditioners are again obtained for
operators with Laplacian-type structure, but are equally applicable to more general
elliptic operators.

4.1. Exponential sums

Let us first consider the case of a tensor product Hilbert space � =
⊗3

8=1 �8 ,
with � : dom(�) ⊆ � → � a potentially unbounded densely defined, self-adjoint,
positive definite operator with Laplacian-type structure as in (1.6), that is,

� =
3∑
8=1

3⊗
9=1

�8, 9 , �8, 9 =

{
�8 , 8 = 9 ,

I, 8 ≠ 9 ,
(4.1)

with densely defined, self-adjoint and positive definite �8 : dom(�8) ⊆ �8 → �8 .
An instance of such an operator would be the Laplacian regarded as an unbounded
operator on !2(�3), but we will also apply the following to operators on ℓ2(N3)
arising from basis representations. The observation that is fundamental henceforth
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is that for U ≥ 0,

4−U� =
3⊗
8=1

4−U�8 .

The basic strategy is now to find l: , U: > 0 for : = 1, . . . , A such that

C−1 ≈
A∑
:=1

l:4
−U: C for C ∈ f(�) (4.2)

in an appropriate sense, and by applying this exponential sum approximation to �
via its spectral decomposition to conclude

�−1 ≈
A∑
:=1

l:4
−U:� =

A∑
:=1

l:

3⊗
8=1

4−U:�8 ,

which provides an approximation in terms of a sum of A tensor product operators.
By the continuous spectral calculus for self-adjoint operators (or, in the finite-
dimensional case, the eigenvalue decomposition of �), we have the following
estimates.

Proposition 4.1. Let � be as in (4.1) and let 5 , 5̃ : R+ → R+ be continuous
functions on an interval containing the spectrum f(�).
(i) Under these conditions, we have the estimate

‖ 5 (�) − 5̃ (�)‖�→� ≤ sup
C ∈f(�)

| 5 (C) − 5̃ (C)|.

(ii) Assume that for some X ∈ (0, 1) we have | 5 (C)− 5̃ (C)| ≤ X 5 (C) for all C ∈ f(�).
Then

(1 − X)〈 5 (�)E, E〉 ≤ 〈 5̃ (�)E, E〉 ≤ (1 + X)〈 5 (�)E, E〉 for all E ∈ �.
For related results under slightly different assumptions, see also Hackbusch

(2014, Sec. 5.9).

4.1.1. Inverse Laplace transform and quadrature approximation
A first construction principle for exponential sum approximations as in (4.2) for a
given function 5 , such as 5 (C) = C−1, is applying a quadrature rule to its represent-
ation as a Laplace transform of a function 6,

5 (C) =
∫ ∞

0
4−BC6(B) dB.

This can be done by sinc quadraturemethods: after applying a suitable substitution
f : R → R+, we use the trapezoidal rule on R with step size g > 0 to obtain the
approximations

5 (C) =
∫ ∞

−∞
4−f(G)C6

(
f(G)

)
f′(G) dG ≈ g

∑
:∈Z

4−f(:g)C6
(
f(:g)

)
f′(:g). (4.3)
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We then exploit decay properties of the integrand to truncate the sum on the right.
For 5 (C) = C−_ with _ > 0, the following result of this kind, which provides the

conditions of Proposition 4.1(ii), is obtained in Beylkin and Monzón (2010); see
also Beylkin and Monzón (2005) and Scholz and Yserentant (2017).

Theorem 4.2. Let g, _ > 0 and

X(g, _) =
1
Γ(_)

∑
=∈Z
=≠0

|Γ(_ + 2ci=/g)|.

Then, for all C > 0, ���� 1
C_
− g

Γ(_)

∑
:∈Z

4_:g exp
(−4:gC)���� ≤ X(g, _)

C_
, (4.4)

and for each X̂ ∈ (0, 1], if

g ≤ 2c
ln 3 + _ |ln(cos 1)| + |ln X̂ | ,

then X(g, _) ≤ X̂.
We thus obtain approximations on all of (0,∞) with infinitely many exponential

terms. In the restriction to finitely many summands, we arrive at approximations
with prescribed relative error on finite intervals as required in Proposition 4.1(ii).
The following result is adapted from Bachmayr and Dahmen (2016b).

Corollary 4.3. Let _ ∈ (0, 1], X = X0 +[ < 1 with X0, [ ∈ (0, 1), and ) > 1. With

g =
2c

ln 3 + _ |ln(cos 1)| + |ln(X0/2)| ,

< =
⌈
g−1 ln|ln(X0/2)|⌉, = =

⌈
g−1(_−1 |ln [ | + ln)

)⌉
,

(4.5)

define the truncated exponential sums

(_, X0(C) =
g

Γ(_)

<∑
:=−∞

4_:g exp
(−4:gC),

(_, X0,[,) (C) =
g

Γ(_)

<∑
:=−=

4_:g exp
(−4:gC).

Then

|C−_ − (_, X0(C)| ≤ X0C
−_, for all C ∈ [1,∞), (4.6a)

|(_, X0(C) − (_, X0,[,) (C)| ≤ [C−_, for all C ∈ [1, )], (4.6b)
|C−_ − (_, X0,[,) (C)| ≤ XC−_, for all C ∈ [1, )] . (4.6c)
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Proof. For < as in (4.5),

g
∑
:><

4_:g exp
(−4:gC) ≤ ∫ ∞

<g

exp(−C4G + _G) dG =
1
C_

∫ ∞

C exp(<g)
H_−14−H dH,

where we have used monotonicity and the substitution G = ln(H/C). Since _ ≤ 1,
for C ≥ 1 we have ∫ ∞

C exp(<g)
H_−14−H dH ≤ exp

(−4<g),
and thus (4.6a) follows from Theorem 4.2 and the choice of g and <. With the
bound

g
∑
:<−=

4_:g exp
(−4:gC) ≤ ∫ ∞

=g

4−_G dG =
1
_
4−=_g

and using _Γ(_) = Γ(_ + 1) ∈ (0, 1], we obtain the two further estimates.

Note that with g, <, = as in (4.5), for the cases _ = 1 and _ = 1
2 of particular

interest we obtain the exponential sums

(1, X0,[,) = g
<∑

:=−=
4:g exp

(−4:gC), (1/2, X0,[,) =
g√
c

<∑
:=−=

4(1/2):g exp
(−4:gC)

with < + = + 1 terms. The parameters g, < and = can be optimized further for
particular cases; see Scholz and Yserentant (2017, Sec. 5).

Results analogous to Corollary 4.3 are obtained in Bachmayr and Dahmen
(2016a,b). The construction used there, however, is slightly different from the
one in (4.4) and based on general results on sinc quadrature by Stenger (1993).
These results can be applied whenever the integrands in (4.3) are holomorphic
on {I ∈ C : |Im I | < [} for some [ > 0 and integrable on the boundary of this
strip. This technique can also be used for obtaining approximations with bounds on
supC ∈[0,1] |C−_ − (A (C)| for a given interval [0, 1]; see Hackbusch and Khoromskij
(2006a) and Hackbusch (2015a, Sec. D.4). However, stronger results for uniform
approximation can be obtained by a different approach, which we consider next.

4.1.2. Uniform best approximation
The application of Proposition 4.1(i) requires uniform approximations on intervals.
To this end, rather than aiming for explicit constructions, we can consider best
approximations by exponential sums. These are in general not analytically com-
putable, but lead to stronger results. The existence of such best approximations
for a class of functions including 5 (C) = C−_ for any _ > 0 is shown in Braess
(1986). The following result on exponential convergence is proved in Braess and
Hackbusch (2005, 2009).
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Theorem 4.4. For each ' > 1, _ > 0 and A ∈ N, there exist l: , U: > 0,
: = 1, . . . , A , such that

sup
C ∈[1,']

���� 1
C_
−

A∑
:=1

l:4
−U: C

���� ≤ 2_8 exp
(
− c2A

ln(8')

)
.

In contrast to Theorem 4.2, we thus obtain a bound on the absolute rather than
the relative approximation error. By choosing suitable ' and rescaling, from the
above we obtain the following result on intervals [0,∞) with 0 > 0; see Braess and
Hackbusch (2009) and Dahmen, DeVore, Grasedyck and Süli (2016).

Corollary 4.5. Let 0 > 0. Then, for each A ∈ N, there exist l: , U: > 0,
: = 1, . . . , A such that with (̂A (C) =

∑A
:=1 l:4

−U: C ,

sup
C ∈[0,∞)

����1C − (̂A (C)���� ≤ 16
0

exp(−c√A).

Such best approximations are computed in Hackbusch (2005) by a Remez-type
algorithm based on alternation properties of uniform best approximation errors.

4.2. Low-rank approximate inverses of Laplacian-type operators

For the finite difference discretization matrix AFD as in (3.3), combining Corol-
lary 4.5 and Proposition 4.1(i), we obtain a bound in the spectral norm and thusA−1

FDf − (̂A (AFD)f


2 ≤
16

minf(AFD)
exp
(−c√A)‖f‖2 (4.7)

for all right-hand sides f, where

(̂A (AFD) =
A∑
:=1

l:

3⊗
8=1

exp
(−U:ℎ−2�2

)
.

Results of this type, including further matrix functions, are shown in Grasedyck
(2004), Gavrilyuk, Hackbusch and Khoromskij (2005), Hackbusch and Khorom-
skij (2006b) and Khoromskij (2009). As proposed in these works, the required
matrix exponentials exp(−U:ℎ−2�2) for each : can be evaluated, for instance, by
diagonalization or by hierarchical matrix approximations (Hackbusch 2015a).

However, estimates as in (4.7) do not reflect the natural norms of the problem.
This can also be seen on the level of function spaces: for � = −Δ : �1

0(�3) →
�−1(�3), considering � as an unbounded operator on �3 of the form (4.1), from
Proposition 4.1(i) we also obtain

‖�−1 5 − (̂A (�) 5 ‖!2(�3) ≤ 16
3c2 exp(−c√A)‖ 5 ‖!2(�3) for all 5 ∈ !2(�3).

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000125


60 M. Bachmayr

Here the norm for 5 is too strong (!2 rather than �−1), whereas the approximation
error is measured in a norm that is too weak (!2 rather than �1); in particular, �−1

is compact as an operator on !2(�3).
The approximation error achieved by (̂A in appropriate norms is investigated in

Dahmen et al. (2016). Specializing a result from this work that holds for more
general scales of norms (Dahmen et al. 2016, Prop. 1), for the present choice of �
and approximation in �1-norm, we obtain the following.

Theorem 4.6. For B ∈ (0, 1), for all 5 ∈ �−1+B(�3),

‖�−1 5 − (̂A (�) 5 ‖�−1+B(�3)→� 1
0 (�3) ≤ 8 exp

(
− B

2
c
√
A

)
‖ 5 ‖�−1+B(�3).

The convergence rate is thus strongly dependent on additional regularity of cor-
responding right-hand sides 5 higher than�−1, and thus on compactness of �−1. In
Dahmen et al. (2016), the approximations (̂A (�) are combined with quadrature ap-
proximations of contour integral representations of required operator exponentials
to obtain bounds on the total computational complexity of approximating �−1 5
in �1

0(�3); provided that 5 has suitable low-rank structure, these bounds are in
particular polynomial with respect to 3.

4.3. Low-rank preconditioners for finite difference and finite element
discretizations

Let us again consider AFD ∈ R#×# as in (3.3), rescaled without loss of generality
such that f(AFD) ⊂ [1, cond(AFD)]; recall that cond(AFD) = $(ℎ−2) with ℎ =
1/(# +1). We then obtain the following from Proposition 4.1(ii) and Corollary 4.3.

Proposition 4.7. With (_, X0,[,) as in Corollary 4.3, with X ∈ (0, 1) and ) =

cond(AFD), for _ ∈ (0, 1] let
C_ = (_, X/2, X/2,) (AFD).

Then, for _ = 1 and _ = 1/2, we have

cond(C1AFD) ≤ 1 + X
1 − X , cond(C1/2AFDC1/2) ≤

(
1 + X
1 − X

)2
,

whereC1 andC1/2 are each sums of$(|log X | + |log ℎ|) elementary tensor products.

Exponential sum preconditioners have also been constructed in Khoromskij
(2009) based on uniform approximation bounds as in Section 4.1.2; however, this
leads to ranks scaling with respect to ℎ as $(log2 ℎ) instead of $(|log ℎ|).
Remark 4.8. Compared to the commonly used left preconditioning C1AFD, the
two-sided preconditioningC1/2AFDC1/2 based on the exponential sum for C ↦→ C−1/2

can be of particular interest in the context of low-rank methods, for the following
reason: starting from the original system AFDuℎ = fℎ, when using two-sided
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preconditioning we solve the equivalent system C1/2AFDC1/2ũℎ = C1/2fℎ with
ũℎ = C−1

1/2uℎ. This means that ‖ũℎ ‖22 h 〈AFDuℎ, uℎ〉; similarly to Riesz basis
representations as in Remark 3.11, when working with two-sided preconditioning,
the Euclidean norm of solution coefficients (which is controlled in HSVD rank
truncations) is thus equivalent to the discrete energy norm induced by AFD.

Remark 4.9. As an alternative preconditioner for finite difference and finite ele-
ment discretizations, standard multigrid methods performed in tensor representa-
tion are proposed in Ballani and Grasedyck (2013) and Hackbusch (2015b). When
such methods are used on a grid hierarchy on product domains such as �3 , prolong-
ation and restriction operations are elementary tensor products of corresponding
one-dimensional grid hierarchies. Addition of fine- and coarse-grid corrections as
well as iterative smoothers performed in tensor representations generally increase
the representation ranks of iterates, and these operations thus need to be combined
with rank truncations. The convergence analysis of this approach with truncation
errors is an open problem.

4.4. Low-rank diagonal preconditioners

Recall the wavelet Riesz basis representation A of the Laplacian defined in (3.21)
with the decomposition A = DTD. Here T is the representation of the Laplacian
with respect to the orthonormal basis{

3⊗
8=1

ka8

}
a∈∨3

of !2(�3), and

D[a, a′] =
( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2
, a, a′ ∈ ∨3 . (4.8)

In this setting, D thus acts as a diagonal preconditioner on the sequence space
ℓ2(∨3), ensuring that A : ℓ2(∨3) → ℓ2(∨3) is an isomorphism. The issue we are
facing here is that (4.8) does not have low-rank form. We thus consider how D can
be replaced by low-rank substitutes.

Remark 4.10. For any sequence (3a)a∈∨3 of positive numbers with

3a h

( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2
, a ∈ ∨3 ,

{
3a

⊗3

8=1 ka8
}
a∈∨3 is a Riesz basis of �

1
0(�3).

We now choose such 3a to obtain a substitute with efficient low-rank approx-
imations for D. For any fixed X0 ∈ (0, 1), with (1/2, X0 as in Corollary 4.3 and
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defining

"0 = min
a∈∨3

3∑
8=1
‖k ′a8 ‖2!2(0,1),

let

3a = "
−1/2
0 (1/2, X0

(
"−1

0

3∑
8=1
‖k ′a8 ‖2!2(0,1)

)
.

By Corollary 4.3,����( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2
− 3a

���� ≤ X0

( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2
, a ∈ ∨3 .

Thus {Ψ̃a}a∈∨3 with Ψ̃a = 3a
⊗3

8=1 ka8 is indeed a Riesz basis of �
1
0(�3).

Representing � in terms of this basis, we obtain the new infinite matrix repres-
entation

Ã =
(〈�Ψ̃a′, Ψ̃a〉)a,a′∈∨3 = D̃TD̃,

where
D̃[a, a′] = 3aXa,a′ for all a, a′ ∈ ∨3 .

Note that with g and < as in (4.5), with

l: = g

√
4:g

"0c
, U: =

4:g

"0
,

we have

D̃[a, a] = 3a =
<∑

:=−∞
l:

3∏
8=1

4
−U: ‖k′a8 ‖2!2(0,1) , (4.9)

in other words D̃ has an explicit expansion in terms of tensor product diagonal
operators with infinitely many terms.
The strategy pursued in Bachmayr and Dahmen (2016b) is now to formulate the

problem in terms of the basis {Ψ̃a}a∈∨3 with operator representation D̃TD̃, with
the representation (3.23) of the operator equation �D = 5 ∈ �−1(�3) modified to

D̃TD̃u = D̃g, (4.10)

and introduce additional low-rank approximations of D̃. This can be done for any
finite subset Λ ⊂ ∨3 , for which we define

)(Λ) = "−1
0 max

a∈Λ

3∑
8=1
‖k ′a8 ‖2!2(0,1).
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For [ > 0 such that X0 + [ < 1, we define the diagonal operator

D̃[,Λ [a, a] = "−1/2
0 (1/2, X0,[,) (Λ)

(
"−1

0

3∑
8=1
‖k ′a8 ‖2!2(0,1)

)

=

<∑
:=−=

l:

3∏
8=1

4
−U: ‖k′a8 ‖2!2(0,1) , (4.11)

with (1/2, X0,[,) (Λ) and = as in Corollary 4.3, where = from (4.5) satisfies

= =
⌈
g−1(2|ln [ | + ln)(Λ))

⌉
and the l: , U: are as in (4.9). The modified rescaling D̃ and its low-rank approx-
imations D̃[,Λ have the following properties by Corollary 4.3 and Proposition 4.1.

Proposition 4.11. Let X0 ∈ (0, 1); then, for D as in (4.8) and D̃ defined in (4.9),
we have ‖D−1D̃‖ℓ2→ℓ2 ≤ 1 + X0, ‖D̃−1D‖ℓ2→ℓ2 ≤ (1 − X0)−1, and

〈D̃TD̃v, v〉 h ‖v‖2ℓ2
for all v ∈ ℓ2(∨3).

Moreover, for [ > 0 such that X = X0 +[ < 1 and finiteΛ ⊂ ∨3 , let D̃[,Λ be defined
as in (4.11). Then

〈D̃[,ΛTD̃[,Λv, v〉 h ‖v‖2ℓ2
for all v ∈ ℓ2(∨3) with supp v ⊆ Λ

with constants independent of Λ. In addition,

sup
‖v‖ℓ2=1

supp v⊆Λ

‖D−1(D̃ − D̃[,Λ)v‖ℓ2 ≤ [, sup
‖v‖ℓ2=1

supp v⊆Λ

‖D−1(D − D̃[,Λ)v‖ℓ2 ≤ X.

For the number of summands in D̃[,Λ in terms of [ and Λ, we have

< + = + 1 . 1 + |log [ | + log
(

max
a∈Λ

max
8=1,...,3

|a8 |
)
. (4.12)

In summary, we obtain low-rank approximations of the wavelet Riesz basis
representation of �. In this particular case, the evaluation of exponential sums
requires only trivial matrix exponentials of diagonal matrices that can be evaluated
entrywise as in (4.11).

Remark 4.12. Note that by (4.12) we have a dependence of the representation
rank of D̃[,Λ on the maximum wavelet level max8 |a8 | in the index set Λ ⊂ ∨3 .
This dependence becomes more transparent when using, based on the observation
(3.24), the alternative rescaling by 3a = 2−max8 |a8 |, a ∈ ∨3 , which satisfies

2−max8 |a8 | ≤
( 3∑
8=1
‖k ′a8 ‖2!2(0,1)

)−1/2
≤
√
3 2−max8 |a8 | .

Note that the spectral bounds for the resulting operator representations may then
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deteriorate by a factor
√
3, but for any finite Λ ⊂ ∨3 , we obtain a simple ex-

plicit low-rank representation as follows. For ( ⊂ ∨, let 1( ∈ ℓ2(∨) denote
the sequence with entries equal to one on (, and zero otherwise. Moreover, let
�(Λ) = maxa∈Λ max8 |a8 |. Then(

2−max8 |a8 |)
a∈∨3 =

1
2

� (Λ)−1∑
;=1

2−;
3⊗
8=1

1{a∈∨ : |a | ≤; } + 2−� (Λ)
3⊗
8=1

1{a∈∨ : |a | ≤� (Λ)},

with maxa∈Λ max8 |a8 | separable terms.
A further approach based on this alternative rescaling sequence is to construct

a partition of ∨3 = ⋃∞
:=1 Λ: such that for each Λ: , the vector (2−max8 |a8 |)a∈Λ: is

an elementary tensor product. When using a separate tensor representation for
each Λ: , applying these rescalings then leaves the respective ranks unchanged.
Partitions with this property of finite subsets {a ∈ ∨3 : max8 |a8 | ≤ �} ⊂ ∨3 for
any � ∈ N into $(�3−22� ) elements are constructed in Bachmayr (2012a).

4.5. Preconditioning tensorized discretizations

Let us now return to the tensorized multilevel representations considered in Sec-
tion 3.4. As noted in Example 3.17, for high discretization levels ! corresponding
(in 3-dimensional problems) to grids of size $(23!), naive tensorized repres-
entations of differential operators have large representation condition numbers
according to Definition 2.45.
In certain special cases, this issue can be circumvented by explicit inverses,

constructed for instance for the matrix �2 considered in Example 3.17 in Kazeev
and Khoromskij (2012), but for more general problems these are not available and
suitable preconditioning is required.
The unusual aspect here is that such a preconditioner needs to remedy not only

the large standard condition number of the represented matrix but also, as noted
in Example 3.17, the equally large representation condition number of the under-
lying low-rank representation. Such a preconditioner is proposed and analysed
in Bachmayr and Kazeev (2020), with finite element discretizations of diffusion
problems on �3 (where in this context we aim at 3 = 2 or 3 = 3) with diffusion
coefficient "̂ as model problems. With a dyadically refined hierarchy of tensor
product finite element discretizations with nested spaces +ℓ on levels ℓ = 0, . . . , !,
where {i8}8∈N! with #N! = $(23!) is the basis of hat functions on level !, the
considered discretization matrices read

A =

(∫
�3

"̂∇i8 · ∇i 9 dG
)
8, 9∈N!

with a uniformly positive definite "̂ ∈ R3×3 . These discretization matrices are
represented in multilevel tensorized format in transposed ordering, according to
Remark 3.18, in the form

A = g(A0, . . . ,A!) = A0 Z · · · Z A! ,
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where each Aℓ for ℓ = 0, . . . , ! acts on modes of size 23 with indices in {0, 1}3 .
We have a decomposition A = G>MG, where M = g(M) is a matrix depend-

ing on the diffusion coefficient "̂ with well-conditioned representation M, and
G = g(G) has an ill-conditioned representation similarly to Example 3.17, where
maxℓ oprcondℓ(G) h 2! . Here G can be interpreted as a discrete gradient that
maps span{i8}8∈N! to a space of discontinuous piecewise polynomials.
As a first step towards a suitable preconditioner, we have the following result

(Bachmayr and Kazeev 2020, Thm 2, Thm 3).

Theorem 4.13. Let C =
∑!
ℓ=0 2−ℓPℓ,!P>

ℓ,!
, where Pℓ,! is the matrix representa-

tion of the canonical prolongation operator from+ℓ to+! . Then 〈CACv, v〉 h ‖v‖22
for all v, with constants that depend only on " and 3. Moreover, there exists C
with C = g(C) with ranks bounded independently of !.

Note that the matrix C provides a two-sided version of the classical BPX pre-
conditioner (Bramble, Pasciak and Xu 1990). Although CAC is well-conditioned
as a matrix uniformly in !, performing the multiplication by CAC by separately
applying C and A does not remove the representation ill-conditioning. To arrive at
a well-conditioned representation, however, we can combine G and C into a new
rank-reduced representation B (again with ranks bounded independently of !) such
that g(B) = GC. We arrive at

CAC = g(B)>g(M)g(B),

which provides a well-conditioned representation of CAC for all !. For the tech-
nical details of the construction, we refer to Bachmayr andKazeev (2020). Based on
this preconditioner, numerically stable computations with ! ≈ 50, corresponding
to represented grid sizes near machine precision, are demonstrated to be feasible.

5. Solving operator equations in low-rank format
In this section we turn to the central task of computing low-rank approximations
of solutions of elliptic operator equations �D = 5 , where � : + → + ′, 5 ∈ + ′ with
a separable Hilbert space + . Here our aim is, for each given error tolerance Y > 0,
to find an approximation DY to the exact solution D ∈ + such that ‖D − DY ‖+ ≤ Y.
A guiding model case will again be the Poisson problem as in Example 3.1, where
+ = �1

0(�3).
In the context of low-rank approximations, guaranteeing convergence to the

exact solution with respect to the +-norm involves two central issues: on the one
hand, we need to find highly nonlinear representations of approximate solutions,
where the required rank parameters are not known a priori. This is addressed by
iterative solvers operating on suitable basis representations of the PDE problem.
On the other hand, we need to ensure sufficiently small discretization errors, which
requires a posteriori error estimates computable in high dimensions as well as
adaptive discretization refinement that is compatible with the low-rank format.
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Convergence guarantees alone, however, are not very informative: to give an
extreme example, one could use a standard solver to obtain a sufficiently accurate
approximate solution in full format, and only then compute a compressed low-
rank approximation. With such an approach, one can easily ensure convergence,
but without any benefits concerning computational complexity of using low-rank
approximations. An essential question is therefore how the computational costs
of a low-rank solver compare to the minimal required costs, which depend on the
intrinsic low-rank approximability of solutions and problem data. In particular,
can the curse of dimensionality be avoided in the total computational complexity?
In Section 5.1 we first survey different approaches for computing low-rank ap-

proximations of solutions of linear systems of equations. In Section 5.2 we con-
sider iterative methods for finding low-rank approximate solutions with two main
features: first, they can always be guaranteed to converge, and second, for certain
typical model classes of low-rank approximability, the approximations produced by
the iterations have near-optimal ranks in relation to the currently achieved accuracy.
Two approaches for achieving this are discussed, based on HSVD truncation (see
Section 2.7.1) and on soft thresholding of hierarchical tensors (see Section 2.7.2),
respectively. At this point, these methods are formulated as operating on fixed
discretizations or on function spaces.
In Section 5.3 we turn to the issue of combining rank adaptation with adaptive

refinement of discretizations. Again we obtain methods that can be guaranteed
to converge, and that, for solutions in certain model classes of approximability,
exhibit near-optimal performance in terms of ranks and discretization sizes. Note
that the resulting algorithms are universal: the respective degree of approximability
of the exact solution does not need to be known but is automatically detected by
the adaptive scheme. Altogether, this leads to bounds on the total computational
complexity of approximately solving elliptic PDEs in high dimensions by such
methods, which we discuss in Section 5.4. In Section 5.5 we survey what is known
on the low-rank approximability of particular classes of elliptic problems.

5.1. Iterative solvers in low-rank format

Iterative solvers operating on low-rank representations are often introduced in
the literature for discretized problems on finite-dimensional spaces, such as the
finite difference discretization AFDuℎ = fℎ discussed in Section 3.1.1. However,
the methods considered below can also be formulated to operate on tensors in
sequence spaces ℓ2(N3), which with an appropriate choice of bases is equivalent
to performing iterations on function spaces. This is the case with the Riesz basis
representations Au = f, where A is an isomorphism on ℓ2(N3), as obtained in
Section 3.2. Based on such formulations, we obtain iterative methods that are
robust with respect to the choice of discretization. Note that by ellipticity of � we
also have ellipticity of A on ℓ2(N3), that is,

〈Av, v〉 & ‖v‖2ℓ2
for all v ∈ ℓ2(N3).
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5.1.1. Krylov subspace methods with rank truncation
In Krylov subspace methods, approximate solutions are generated by repeated
application of the linear mapping AFD or A under consideration. One of the
simplest instances of such methods, outlined in Section 1.7, is Richardson iteration.
Applied to a fixed discretization AFD, with a suitable left preconditioner C, in its
basic form the method reads

u=+1ℎ = u=ℎ − lC
(
AFDu=ℎ − fℎ

)
. (5.1)

As described in Section 1.7, when applying the method in this form directly in low-
rank format, the representation ranks of u=

ℎ
will in general increase exponentially

with respect to =. It is thus natural to combine the basic iteration (5.1) with a
suitable rank reduction operationR=,

u=+1ℎ = R=

(
u=ℎ − lC

(
AFDu=ℎ − fℎ

))
. (5.2)

One option is to choose R=(v) as the truncation of the HSVD of the given v ∈
ℓ2(N3) to fixed hierarchical rank. With different tensor formats, such strategies are
used inKhoromskij and Schwab (2011) andBillaud-Friess, Nouy and Zahm (2014).
However, the resulting truncated iterative scheme can generally be guaranteed to
converge only under extremely restrictive conditions on the error reduction achieved
in each step of (5.1); seeHackbusch, Khoromskij and Tyrtyshnikov (2008), Billaud-
Friess et al. (2014) and Bachmayr et al. (2016, Prop. 6.1).

A generally more practical alternative is to choose R= as the truncation of the
HSVD to lower ranks up to a prescribed error tolerance, potentially dependent
on =, based on the computable error bounds in terms of matricization singular
values of Theorem 2.36. In combination with Richardson iteration, such a strategy
is used in Matthies and Zander (2012). Error-controlled truncations can also be
combined with more advanced Krylov space methods, such as the preconditioned
conjugate gradient (PCG) method with rank truncation proposed in Kressner and
Tobler (2011a) and Tobler (2012) for positive definite problems, or the general-
ized minimal residual (GMRES) method with truncation proposed in Ballani and
Grasedyck (2013). The variants are typically observed to require fewer iterations
than the truncated Richardson iteration, although the orthogonality properties that
are crucial for the standard convergence analysis of PCG and GMRES are not
preserved by the truncations. However, the analysis by Ali and Urban (2020) of
rank-truncated PCG with appropriate truncation tolerances as a perturbed descent
method shows that worst-case performance comparable to (5.2) can still be ensured.
In iterations with truncations up to specified tolerances, however, the crucial

question is how the ranks of the iterates evolve, that is, whether the truncation
tolerances are sufficiently large to ensure the appropriate rank reduction. Ideally,
the ranks of iterates should behave similarly to the ranks of best approximations of
comparable accuracy. How this can be achieved in a general setting is treated in
Section 5.2.
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To enable a useful comparison to low-rank best approximations, rank truncations
need to be performed with errors with respect to the appropriate norm, in our
present setting in +-norm. As discussed in Remark 4.8, this can be achieved by
two-sided preconditioning and is inherent in Richardson iteration performed on a
Riesz basis representation Au = f with A = DTD, f = Dg. For such a Riesz basis
representation, ‖u − u=‖ℓ2 h ‖f − Au=‖ℓ2 , and both quantities are proportional to
the error of approximating the exact solution D in +-norm. In this case (5.2) takes
the form

u=+1 = R=(u= − lr=),

where r= is a sufficiently accurate low-rank approximation of the residual Au= −
f = D(TDu= − g), with the infinite diagonal scaling matrix D acting as a two-
sided preconditioner. In this form, Richardson iteration serves as the basis of
low-rank methods with adaptively refined discretizations, considered in detail in
Section 5.3.2.

5.1.2. Alternating optimization
Solution strategies that sequentially optimize individual components of tensor rep-
resentations are based on reformulations of the original systems of equations as
minimization problems. In particular, when A is symmetric, the solution u of
Au = f can be characterized as the unique minimizer of the functional � defined by

�(v) =
1
2
〈Av, v〉 − 〈f, v〉. (5.3)

Methods of this kind have been considered for the canonical tensor format (1.9),
where the issues discussed in Section 1.4 apply; see for instance Uschmajew (2012).
In the context of subspace tensor formats, although alternating optimization ap-
proaches are applicable to general hierarchical tensors, they have been investigated
primarily for the tensor train format, for which they are easiest to formulate.

A first classical method of this type is known, depending on context, as al-
ternating least squares (ALS), the alternating linear scheme (Holtz, Rohwedder
and Schneider 2012a) or as one-site density matrix renormalization group (White
2005). Starting from a tensor train representation

u= = g
(
X=1 , . . . ,X

=
3

)
= X=1 Z · · · Z X=3 , (5.4)

the next iterate u=+1 = X=+11 Z · · · Z X=+1
3

is obtained by sequentially solving the
substeps

X=+11 = arg min
Y

�
(
g
(
Y,X=2 ,X

=
3 , . . . ,X

=
3

))
,

X=+12 = arg min
Y

�
(
g
(
X=+11 ,Y,X=3 , . . . ,X

=
3

))
,

...

X=+13 = arg min
Y

�
(
g
(
X=+11 ,X=+12 ,X=+13 , . . . ,Y

))
.

(5.5)
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Note that since g is multilinear and � is quadratic, the solution of the minimization
problem in each substep amounts to a linear system of equations for Y. In this
method, only one component is modified at a time and all rank parameters are
determined by the remaining components. As a consequence, in this basic form,
there is no mechanism for the adaptation of approximation ranks, and the ranks of
u= remain bounded by those of the initial iterate u0 for all =. Effectively, we are thus
minimizing � under a rank constraint. The iteration may in general fail to converge
to the constrained solution. Convergence can be shown under additional conditions
that, however, cannot generally be verified; see Rohwedder and Uschmajew (2013),
Wang and Chu (2014) and Oseledets, Rakhuba and Uschmajew (2018).
In the (two-site) density matrix renormalization group (DMRG) algorithm in-

troduced by White (1992) in the context of eigenvalue problems, and formulated
by Vidal (2003) in terms of matrix product states, the iteration (5.5) is modified by
optimizing two components at a time as follows: in the first substep, starting again
from u= as in (5.4), we combine X=1 Z X=2 into a single component carrying two
modes of the represented tensor, and minimize over this fourth-order component
to obtain

X̃=+11,2 = arg min
Ỹ

�
(
Ỹ Z X=3 Z X=4 Z · · · Z X=3

)
.

We then perform a low-rank approximation, for instance by truncated SVD, to split
the intermediate result again into two components:

X̃=+11,2 ≈ X=+11 Z X̃=+12 .

In the next substep, we combine X̃=+12 Z X=3 , and so forth. As a solver for linear
systems formulated as a minimization problem (5.3), this approach is considered in
Holtz et al. (2012a) and Oseledets and Dolgov (2012); see also Oseledets (2011a).
Although this approach offers a mechanism for the adaptation of approximation
ranks, it may fail to converge in certain cases. An explicit example is given in
Pfeffer (2018, Ex. 5.12).
A further variant that can achieve guaranteed convergence is the alternating

minimal energy (AMEn) method of Dolgov and Savostyanov (2014). The basic
iteration is performed as in (5.5), but in outer iteration =, before performing the 8th
substep for 8 = 2, . . . , 3, the previously updated component X=+1

8−1 is augmented by
a certain number of vectors from a projected residual approximation. The available
analysis of this methods guarantees convergence, but with an error reduction that
may in the worst case deteriorate exponentially with respect to the tensor order
3. With additional practical modifications proposed in Dolgov and Savostyanov
(2014), including rank truncation of iterates, themethod is demonstrated to perform
far better in practice than indicated by the analysis, in particular on test problems
with coarse discretizations and low ranks. Although with fine discretizations
its performance can degrade for ill-conditioned problems requiring large ranks
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(Bachmayr and Dahmen 2016a, Sec. 4.3), it shows very good practical efficiency
when combinedwith optimal preconditioning (Bachmayr andKazeev 2020, Sec. 7).

5.1.3. Riemannian optimization
Solving linear systems by minimization of functionals � as in (5.3) can also be
approached differently, using the manifold structure of tensors of fixed hierarchical
ranks discussed in Section 2.10. Specifically, for a given dimension tree T, for each
r ∈ Ranks(E), the set {v ∈ ℓ2(I1 × · · · × I3) : rankE(v) = r} can be regarded as an
embedded submanifold Mr with Riemannian metric inherited from the ambient
space ℓ2(I1 × · · · × I3). Note that while results using this manifold structure are in
most cases formulated for finite I1, . . . , I3 , the approach can be generalized to the
case of general separable Hilbert spaces corresponding to countable index sets.

For given v ∈ Mr we let TvMr denote the tangent space of Mr at v, and let
Πv denote the orthogonal projection onto this tangent space. Basic versions of
Riemannian optimization methods can be obtained using, for a given iterate u=, the
negative Riemannian gradient

p= = −Πu=∇�(u=)

as a search direction. To obtain a new iterate on the manifold, we then use a
retraction, that is, a mapping 'Mr : Mr × TvMr →Mr with the property

‖v + p − 'Mr (v, p)‖ = >(‖p‖) for v ∈Mr, p ∈ TvMr.

With such a mapping, we set u=+1 = 'Mr (u=, l=p=) with a suitable damping
parameter l= > 0. As shown in Steinlechner (2016), the HSVD truncation to rank
r is a retraction. For a comparative overview of several different types of retractions
in the case of low-rank matrices, see Absil and Oseledets (2015). In addition to
gradient information, the Riemannian Hessian can be used for the construction of
Newton-type methods.
For an overview of such methods in the case of low-rank matrices, see Absil

et al. (2008). In their basic form operating on fixed ranks, they are applied to tensor
completion problems in Kressner, Steinlechner and Vandereycken (2014b) and
Da Silva and Herrmann (2015), where tensors are to be recovered from a limited
number of entries under rank constraints. Riemannian optimization methods for
solving linear systems, in particular finite difference discretizations, are studied in
Kressner, Steinlechner and Vandereycken (2016). In this case rank adaptation is
performed by applying the solver repeatedly with successively increased ranks.
While the representation ranks that can arise during the iteration are fixed, this

comes at the price that convergence to the minimizer of � with ranks constrained
to r is not generally guaranteed. For a detailed discussion and numerical compar-
isons demonstrating accelerated convergence of Riemannian methods in certain
cases, see Uschmajew and Vandereycken (2020). In the case of finite-dimensional
matrices, systematic approaches to rank adaptation are considered in Uschmajew

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000125


Low-rank tensor methods for partial differential equations 71

and Vandereycken (2015), Schneider and Uschmajew (2015), Zhou et al. (2016)
and Gao and Absil (2022).

5.1.4. Greedy methods
A further construction principle of optimization-based methods is given by greedy
strategies of the basic form

u=+1 = u= + w=, w= = min
w∈S

�(u= + w),

where � can be quadratic as in (5.3) or amore general functional, andS is a restricted
set of tensors, for instance the set of elementary tensor products. Methods of this
type are also known as proper generalized decomposition; see Ammar, Chinesta
and Falcó (2010) and Falcó and Nouy (2011, 2012). Closely related approaches
are analysed in Cancès, Ehrlacher and Lelièvre (2011, 2013, 2014). Convergence
of such methods can be obtained from variational arguments for fairly general
classes of functionals on Banach spaces. Unless combined with an additional rank
reduction strategy, the ranks of approximations produced by this approach may in
general be substantially higher than best approximation ranks for similar accuracies.

5.2. Maintaining quasi-optimal ranks

A crucial point when analysing the computational complexity of low-rank solvers
is to derive bounds on the ranks of iterates. These have a major impact on the
computational costs, since for hierarchical tensor representations, the costs of
orthogonalization and HSVD – as in (2.23) and (2.24) – scale like the fourth
power of the maximum hierarchical ranks. The natural point of reference for the
ranks arising in an iterative method is given by the ranks required for low-rank best
approximations of comparable accuracy. The best behaviour of the ranks of iterates
one can hope for is that they remain of similar size to these best approximation
ranks.
We next consider two constructions of methods that achieve this goal. We

formulate these on ℓ2(N3), corresponding to methods operating on the infinite-
dimensional function spaces under consideration. The methods then automatically
remain robust under a suitable selection of discretizations. Starting from an initial
iterate u0 represented in a subspace tensor format, both constructions take the basic
form

u=+1 = (R= ◦ F=)(u=).

Here, for each = ∈ N0, F= provides an error reduction with respect to the exact
solution u ∈ ℓ2(N3) of Au = f in the sense that

‖u − F=(u=)‖ℓ2 ≤ d‖u − u=‖ℓ2 (5.6)

with d ∈ (0, 1) independent of =. The mapping R= provides a rank reduction that
may increase the error with respect to u.
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In principle, the error reduction operation F= can be realized by any iterative
solver that guarantees the property (5.6). However, to eventually allow for com-
plexity estimates, this reduction should be sufficiently robust with respect to the
dimensionality and other features of the problem. A simple suitable choice for F=
– as used in Bachmayr (2012a), Bachmayr and Dahmen (2015) and Bachmayr and
Schneider (2017) – is one or more steps of Richardson iteration, which may also
be performed inexactly such that (5.6) is guaranteed.

5.2.1. HSVD truncation
We first consider an approach for obtaining approximations with near-optimal
ranks by HSVD truncation with sufficiently large error tolerance. In the case of
low-rank tensor approximation, this was analysed in Bachmayr and Dahmen (2015)
based on the iterative scheme developed in Bachmayr (2012a). The basic idea for
establishing a connection to ranks of best approximations is applicable in a more
general context, and we therefore first state this result in abstract terms.
Let � be a Hilbert space and let (BA )A ∈N with BA ⊂ � be a sequence of

subsets, with
⋃
A ∈N BA dense in �, from which approximations are selected, where

increasing A corresponds to increasing complexity of approximations. For E ∈ �
and Y > 0, we define

1(E, Y) = min{A ∈ N : ∃F ∈ BA : ‖E − F‖� ≤ Y}.
In other words, 1(E, Y) is the minimal complexity parameter such that B1(E,Y)
contains a best approximation of accuracy Y. In addition, for each E ∈ � and
Y > 0, we assume that we have a linear orthogonal projection �E,Y onto B1(E,Y)
such that ‖E − �E,YE‖� ≤ Y.

Depending on the sets BA , it may be infeasible to compute best approximations,
or even to exactly evaluate corresponding approximation errors. We thus assume
that for all A ∈ N we have mappings �A : � → BA and �A : � → [0,∞) such that
for some ^ ≥ 1,

‖E − �A (E)‖� ≤ �A (E) ≤ ^ inf
F ∈BA
‖E − F‖� . (5.7)

Here �A plays the role of a computable quasi-optimal error bound for the ap-
proximations provided by �A , which play the role of computable substitutes of
best approximations. In our present setting of hierarchical tensor approximations,
the HSVD truncation provides such a quasi-optimal substitute for low-rank best
approximations, where a computable error bound is provided by the hierarchical
singular values as in Theorem 2.36.

Lemma 5.1. For each Y > 0, let 0(E, Y) ∈ N be chosen as the minimal in-
tegers such that �0(E,Y)(E) ≤ Y. Then, for any U, [ > 0 and any D, E ∈ � with
‖D − E‖� ≤ [,

‖D − �0(E,^(1+U)[)(E)‖� ≤ (1 + ^(1 + U))[,
0(E, ^(1 + U)[) ≤ 1(D, U[).

(5.8)
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Proof. Concerning the first estimate in (5.8), by the triangle inequality

‖D − �0(E,^(1+U)[)(E)‖� ≤ ‖D − E‖� + ‖E − �0(E,^(1+U)[)(E)‖�
≤ [ + �0(E,^(1+U)[(E),

and �0(E,^(1+U)[)(E) ≤ ^(1 + U)[ by definition.
For the proof of the second estimate, note that by linearity and orthogonality of

�D,U[ ,

‖E − �D,U[E‖� ≤ ‖(E − D) − �D,U[(E − D)‖� + ‖D − �D,U[D‖� ≤ (1 + U)[.

With (5.7), we obtain

�1(D,U[)(E) ≤ ^ inf
F ∈B1(D,U[)

‖E − F‖� ≤ ^‖E − �D,U[E‖� ≤ ^(1 + U)[.

As a consequence,

0(E, ^(1 + U)[) = min{A ∈ N : �A (E) ≤ ^(1 + U)[} ≤ 1(D, U[),

which is the second estimate in (5.8).

In other words, Lemma 5.1 states that when an approximation E to D is re-
approximated with a sufficiently large error tolerance, the complexity parameter of
this reapproximation can be estimated by that of a best approximation of D with
proportional error.
In its basic form, Lemma 5.1 goes back to Cohen, Dahmen and DeVore (2001,

2002), where it was used in the context of best =-term approximation; see also
Cohen (2003, Thm 4.9.1). In this case we take � = ℓ2(N) and for each = ∈ N,
B= = {v ∈ ℓ2(N) : # supp v ≤ =}. The mapping �=(v) is realized by retaining =
entries of v of largest absolute value, so that here

‖v − �=(v)‖ℓ2 = inf
v∈B=
‖v − w‖ℓ2 , (5.9)

and thus (5.7) holds with ^ = 1. The orthogonal projections realizing best approx-
imations �E,Y in Lemma 5.1 are then the mappings that restrict to the respective
supports and extend by zero.
For later use, we state the definition of approximation spaces for quantifying

algebraic rates of best =-term approximation; see for example Dahmen (1997),
DeVore (1998) and Cohen et al. (2001).

Definition 5.2. For B > 0 and v ∈ ℓ2(N), we set

|v|AB(N) = sup
=∈N0

=B min{‖v − w‖ℓ2 : # supp w ≤ =}

and ‖v‖AB(N) = ‖v‖ℓ2(N) + |v|AB(N), and define

AB(N) = {v ∈ ℓ2(N) : |v|AB(N) < ∞}.
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The same definition applies to other countable index sets, and we simply write
AB when no confusion can arise. In other words, the linear spaces AB comprise
those elements v ∈ ℓ2(N) that satisfy

min
# supp w≤=

‖v − w‖ℓ2 ≤ �=−B

for some � > 0, where the smallest possible such � is precisely |v|AB(N). Con-
versely, these are the sequences that can be approximated to ℓ2-error Y > 0 using
|v|1/BAB(N)Y

−1/B non-zero coefficients. As a particular conclusion from Lemma 5.1,
for elements of AB we obtain approximations using at most a fixed multiple of the
optimal number of coefficients.

In our setting of low-rank approximations by hierarchical tensors, we now apply
Lemma 5.1 on the Hilbert space ℓ2(N3) with

BA = {v ∈ ℓ2(N3) : ‖rankE(v)‖∞ ≤ A}.
Aquasi-optimal error bound of the form (5.7) is then provided for HSVD truncation
by Theorem 2.36. For v ∈ ℓ2(N3) and r = (A4)4∈E, it yields

‖v − Pv,rv‖ℓ2 ≤
(∑
4∈E

∑
:>A4

(
f [4]
:

(v)
)2
)1/2

≤ ^Emin{‖v − w‖ℓ2 : w ∈ ℓ2(N3), rankE(w) ≤ r} (5.10)

with ^E =
√

#E, and where Pv,rv is the HSVD truncation of v to hierarchical rank
r. We adapt this to ensure prescribed truncation errors as follows.

Definition 5.3. For each [ > 0 and v ∈ ℓ2(N3), we choose r = (A4)4∈E ∈ Ranks(E)
with minimal ‖r‖∞ such that(∑

4∈E

∑
:>A4

(
f [4]
:

(v)
)2
)1/2

≤ [. (5.11)

With such r, we define Trunc[(v) as the truncation of the HSVD representation of
v to rank r.

Our point of reference is provided by the maximum hierarchical ranks of best
approximations with error at most [ > 0,

Abest(v, [) = min{A ∈ N0 : (∃w ∈ ℓ2(N3) : ‖rankE(w)‖∞ ≤ A ∧ ‖v − w‖ℓ2 ≤ [)},
where best approximations can trivially be written as orthogonal projections. Then,
for the computable HSVD truncation operation defined in Definition 5.3, combin-
ing (5.10) and Lemma 5.1, we obtain the following rank bound in terms of best
approximation ranks. Note that here the role of the quasi-optimal computable error
bound is played by the expression on the left in (5.11), and the parameter that
controls the approximation complexity is the maximum entry of the hierarchical
rank as in Definition 5.3.
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Lemma 5.4. Let ^E =
√

#E and U > 0. Then, for any u, v ∈ ℓ2(N3) with
‖u − v‖ℓ2 ≤ [ and

v̂ = Trunc^E(1+U)[(v),

we have

‖u − v̂‖ℓ2 ≤
(
1 + ^E(1 + U)

)
[, ‖rankE(v̂)‖∞ ≤ Abest(u, U[).

For low-rank approximations of operators corresponding to 3 = 2, a similar
result is found independently in Dölz, Egger and Schlottbom (2021, Lem. 2.7).

We now turn to the construction of an iterative scheme using Lemma 5.4 based
on a mapping F= with the error reduction property (5.6). Here we assume that F=
satisfies (5.6) with a reduction factor

d <
1

2
(
1 + (1 + U)^E

) , (5.12)

where ^E =
√

#E =
√

23 − 3 in the case of the hierarchical tensor format. This
can always be achieved when F= is realized by sufficiently many steps of (inexact)
Richardson iteration.
Then, starting from u0 = 0 with ‖u−u0‖ℓ2 = ‖u‖ℓ2 ≤ ‖A−1‖ℓ2→ℓ2 ‖f‖ℓ2 = [0, for

= = 0, 1, 2, . . . , iterate

u=+1 = Trunc\ [=
(
F=(u=)

)
with \ =

(1 + U)^E
2(1 + (1 + U)^E)

, (5.13)

and set [=+1 = 1
2[=. We then have the following convergence result with rank

estimates, which is used implicitly in Bachmayr and Dahmen (2015).

Theorem 5.5. For the sequence (u=)=∈N0 defined by (5.13), for each = ∈ N0 we
have

‖u − u=‖ℓ2 ≤ [=, ‖rankE(u=)‖∞ ≤ Abest
(
u, (1 + (1 + U)^E)−1U[=

)
. (5.14)

Proof. For = = 0, the statement is clear. Assume now that it holds for an = ∈ N.
By (5.12), we have

‖u − F=(u=)‖ℓ2 ≤
[=

2(1 + (1 + U)^E)
.

Then, by combining (5.13) and Lemma 5.4, we obtain ‖u − u=+1‖ℓ2 ≤ 1
2[= = [=+1

as well as

‖rankE(u=+1)‖∞ ≤ Abest
(
u, 1

2 (1 + (1 + U)^E)−1U[=
)

≤ Abest
(
u, (1 + (1 + U)^E)−1U[=+1

)
,

and the statement thus follows by induction.

Note that Theorem 5.5 yields rank bounds only for each u=, = ∈ N0, but not for
the intermediate results produced by F=. The possible growth of such ranks of
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intermediate results depends strongly on the problem and on the particular method
used for F=. We return to this point in Section 5.2.3.

Remark 5.6. The precise meaning of the rank bound in (5.14) depends on the
low-rank approximability of u.

(i) Under the assumption of algebraic decay of best low-rank approximation
errors with respect to ranks, that is,

inf
‖rankE(w)‖∞≤A

‖u − w‖ℓ2 ≤ �A−B

with �, B > 0, from (5.14) we obtain

‖rankE(u=)‖∞ . 31/(2B)[−1/B
= .

Ranks are thus ensured to increase at the optimal rate with respect to the
achieved accuracy, where a moderate algebraic dependence on 3 is possible.

(ii) The most interesting case for low-rank methods is that of best approximation
errors with exponential-type decay with respect to ranks, as obtained for
certain elliptic problems in Section 4.2. Assuming that

inf
‖rankE(w)‖∞≤A

‖u − w‖ℓ2 ≤ �4−2A
V

(5.15)

with some 2, � > 0 and V > 0, recalling that ^E =
√

23 − 3, we obtain

‖rankE(u=)‖∞ ≤
[
1
2

ln
(
�
(
1 + (1 + U)

√
23 − 3

)
(U[=)−1)]1/V

. (ln 3 + |ln [= |)1/V .

Remark 5.7. To quantify low-rank approximability, we can also introduce ap-
proximation classes generalizing Definition 5.2 based on strictly increasing se-
quences W = (W=)=∈N0 with W0 = 1, W= → ∞, with membership of v ∈ ℓ2(N3) in
the corresponding class AE(W) determined by the condition

‖v‖AE(W) = sup
A ∈N0

WA inf{‖v − w‖ℓ2 : ‖rankE(w)‖∞ ≤ A} < ∞.

This allows for a more fine-grained analysis of low-rank approximability: provided
that W grows at most exponentially, which corresponds to a restriction to V ≤ 1 in
(5.15), we have in particular the additional estimate

‖u=‖AE(W) . ‖u‖AE(W), = ∈ N0,

which shows that the generated low-rank approximations inherit the low-rank ap-
proximability of u. For details, see Bachmayr and Dahmen (2015, Sec. 3.1).

5.2.2. Soft thresholding
An alternative approach to controlling hierarchical ranks of iterates, proposed and
analysed in Bachmayr and Schneider (2017), is based on the soft thresholding
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procedure STX , with X > 0, discussed in Section 2.7.2. In this case the analysis is
more strongly tied to the underlying fixed point iteration, and for the basic analysis
we thus assume that F= = F , where u = F(u) and

‖F(v) − F(w)‖ℓ2 ≤ d‖v − w‖ℓ2 for all v,w ∈ ℓ2(N3) (5.16)

with d ∈ (0, 1). This immediately implies

‖u − F(v)‖ℓ2 ≤ d‖u − v‖ℓ2 for all v ∈ ℓ2(N3). (5.17)

Note that the following applies with any d ∈ (0, 1), and we do not need a stronger
error reduction assumption as in (5.12). Thus, in the present case, F satisfying
(5.17) can always be realized by a single step of Richardson iteration.
Let us first observe that by the non-expansiveness of STX according to Proposi-

tion 2.40, the mapping STX ◦F retains the same contractivity property asF for any
X > 0. This leads to the following result; for a proof, see Bachmayr and Schneider
(2017, Lem. 4.1).

Lemma 5.8. Let F satisfy (5.16) with d ∈ (0, 1), and let X > 0. Then STX ◦F is
also a contraction with Lipschitz constant d on ℓ2(N3), and the unique fixed points
u of F and uX of STX ◦F satisfy

(1 + d)−1‖u − STX(u)‖ℓ2 ≤ ‖u − uX ‖ℓ2 ≤ (1 − d)−1‖u − STX(u)‖ℓ2 .

As a consequence, on the one hand, by contractivity of STX ◦F for each fixed
X > 0 we obtain

‖uX − (STX ◦F)(v)‖ℓ2 ≤ d‖uX − v‖ℓ2 for all v ∈ ℓ2(N3).

In other words, the thresholded iteration always converges at the same rate as
the original one, but to a modified fixed point. On the other hand, combining
Lemma 5.8 with Theorem 2.42 yields

‖u − uX ‖ℓ2 . ‖u − STX(u)‖ℓ2 → 0 as X→ 0.

Rank bounds can be obtained with the aid of the following lemma, which is
obtained in Bachmayr and Schneider (2017, Lem. 4.3) by a generalization of an
observation in Cohen et al. (2001, Lem. 5.1), adapted to soft thresholding of
sequences as in Dahlke, Fornasier and Raasch (2012).

Lemma 5.9. Let u, v ∈ ℓ2(N3), let X > 0 and let [ > 0 be such that ‖u−v‖ℓ2 ≤ [.
Then, for all 4 ∈ E,

rank[4]
(
STX(v)

) ≤ 4[2

X2 + #
{
: ∈ N : f [4]

:
(u) > X/2}. (5.18)

This means that rank estimates can be obtained by balancing the two terms on
the right in (5.18) depending on the currently achieved accuracy [. The second
term is a function of X that depends on decay of matricization singular values of
the exact solution u.
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A scheme for appropriate adjustment of thresholding parameters that does not
require explicit knowledge of the singular value decay is given in Bachmayr and
Schneider (2017). It requires a functional E : ℓ2(N3)→ [0,∞) such that with some
W, Γ > 0, we have

W‖u − v‖ℓ2 ≤ E(v) ≤ Γ‖u − v‖ℓ2 for all v ∈ ℓ2(N3).

In particular, when solving Au = f, where A is an isomorphism on ℓ2(N3), we may
take E(v) = ‖Av − f‖ℓ2 with W = ‖A−1‖−1

ℓ2→ℓ2
, Γ = ‖A‖ℓ2→ℓ2 .

The scheme proceeds as follows. With u0 = 0 and X0 = (#E)−1‖F(u0)‖ℓ2 , for
each = = 0, 1, 2, . . . :

Set u=+1 = (STX= ◦F)(u=). (5.19a)

If ‖u=+1 − u=‖ℓ2 ≤
(1 − d)

2Γd
E(u=+1), then set X=+1 =

X=
2
;

otherwise, set X=+1 = X=.
(5.19b)

The basic idea is that by contractivity of F ,
d

1 − d ‖u
=+1 − u=‖ℓ2

is an upper bound for ‖uX=−u=+1‖ℓ2 , whereasE(u=+1) is proportional to ‖u−u=+1‖ℓ2 .
The condition in (5.19b) thus ensures that the thresholding parameter is adjusted
when the iterates are closer to uX= than to u. The following convergence result
with rank estimates for this iteration is shown in Bachmayr and Schneider (2017,
Thm 5.1, Remark 5.6). On F , we assume here only (5.16) with any d ∈ (0, 1).

Theorem 5.10. The iterates defined by (5.19) satisfy ‖u−u=‖ℓ2 → 0. In addition
we have the following.

(i) If f [4](u) ∈ AB for an B > 0 for all 4 ∈ E, then
‖rankE(u=)‖∞ ≤ �13

2+1/B max
4∈E
‖f [4](u)‖1/BAB ‖u − u=‖−1/B

ℓ2
,

where �1 depends on d, W, Γ and B.
(ii) If there exist 2, �, V > 0 such that f [4]

:
(u) ≤ �4−2:V for all : and 4 ∈ E, then

‖rankE(u=)‖∞ ≤ �23
2(ln 3 + |ln‖u − u=‖ℓ2 |)1/V ,

where �2 depends on d, W, Γ, 2, � and V.

In both cases (i) and (ii), there exists �3 depending on the same parameters as
�1 and �2, respectively, such that for each Y > 0 we have ‖u − u=‖ℓ2 ≤ Y when
= ≥ �3(|ln Y | + ln 3) ln 3.

Note that by Theorem 2.36, the assumptions on singular value decay made
in Theorem 5.10 are closely connected to the assumptions on the decay of total
approximation errors made in Remark 5.6. Theorem 5.10 thus yields very similar
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near-optimal rank estimates to Theorem 5.5, but, in view of Remark 5.6, involving
less favourable additional constants. Moreover, (5.19) is linearly convergent, where
the number of required iterations may deteriorate logarithmically with respect to 3.

Remark 5.11. Theorem 5.10 can be extended to the case where the evaluation of
F and E is done not exactly but with controlled relative errors, for instance when
the action of A is performed only approximately (as required when working with
Riesz basis representations on sequence spaces with approximate rescaling as in
Section 4.4). For details we refer to Bachmayr and Schneider (2017, Sec. 5.1).

5.2.3. Comparison of rank control strategies
The two strategies for obtaining rank bounds discussed in Sections 5.2.1 and 5.2.2
can both be combined with quite general error reduction steps. As a basic example,
let us now consider solving a linear system Au = f on ℓ2(N3), where A is a sym-
metric elliptic isomorphism on ℓ2(N3), with error reduction done by Richardson
iteration. Note that non-symmetric elliptic operators can be treated completely ana-
logously to what follows, but lead to different convergence estimates for Richardson
iteration.
In the case of the iteration (5.19) with soft thresholding, we may simply take

F(v) = v − l(Av − f), (5.20)

which, with appropriately chosen step size parameter l > 0, yields (5.16) and
(5.17) with a fixed error reduction factor d ∈ (0, 1). Thus, while applying F as
in (5.20) generally increases the ranks of iterates, the subsequent soft thresholding
step immediately returns this intermediate result to a new iterate that satisfies the
rank bounds of Theorem 5.10.
The situation is more delicate in the case of the iteration (5.13) with HSVD

truncation, since here d needs to satisfy condition (5.12), which becomes more
stringent with increasing 3. To satisfy this requirement, for each = we can define
the mapping F= in (5.13) by

F=(v) = v� , where v 9+1 = v 9 − l(Av 9 − f) for 9 ∈ N0 with v0 = v, (5.21)

where the stopping index � is chosen to achieve the required total error reduction.
With appropriately chosen l, by the standard convergence analysis of Richardson
iteration, (5.12) is satisfied when

� = Z cond(A) ln 3

with some Z > 0. In this form, (5.13) consists of an outer iteration with rank
bounds and the inner iteration (5.21). Unlike those for the iterates of the outer
iteration, the rank bounds that can be achieved for the iterates v1, . . . , v� in (5.21)
depend strongly on the available knowledge on A and f.

Remark 5.12. When A is a basis representation of an operator, in general each
column of A has infinitely many non-zero entries. For this reason, in this case
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the iterations (5.20) and (5.21), which are then equivalent to iterating on the
entire represented function spaces, cannot be carried out in practice in this form.
However, as one possible strategy for the adaptive refinement of discretizations,
these iterations can be carried out approximately, with the result of applying A (as
well as f) approximated in each step by a sequence with finitely many non-zero
entries. Such adaptive methods are discussed in Section 5.3.2.

Example 5.13. To give a simple example, let A and f be represented with fixed
rank parameters bounded componentwise by 'A ∈ N and Af ∈ N, respectively.
Then the largest representation ranks of an intermediate result arising with soft
thresholding via (5.20) are bounded for each = by ‖rankE(u=)‖∞('A + 1) + Af .
In the case of (5.13), for the largest representation rank of an iterate arising in

(5.21), in general we only have the bound

‖rankE(u=)‖∞
'�+1A − 1
'A − 1

+ Af
'�A − 1
'A − 1

. (‖rankE(u=)‖∞ + Af)'Z cond(A)ln 3
A .

Note that 'Z cond(A) ln 3
A = 3Z cond(A) ln'A , which means that in this case rank bounds

that depend polynomially on 3 require 3-independent cond(A) and 'A.

Remark 5.14. The above discussion with uniform representation rank bounds for
operators does not apply directly to preconditioned operators on Sobolev spaces.
Recall that in terms of Riesz bases of �1

0(�3) as in Remark 3.10, for � : �1
0(�3)→

�−1(�3) we obtain operator representations of the form A = DTD, where the
diagonal operator D does not have an explicit low-rank form. By Proposition 4.11,
D can be replaced by an equivalent diagonal scaling operator D̃ that is still of infinite
rank but has efficient low-rank approximations D̃[,Λ of relative error [ > 0 on the
selected subset of basis indices Λ. We thus work with the low-rank representations
D̃[,ΛTD̃[,Λ approximating D̃TD̃. This means, on the one hand, that the error
reduction procedures discussed above necessarily need to be applied inexactly. On
the other hand, since the representation rank of D̃[,Λ depends onΛ, it is desirable to
refine the discretization determined by Λ in parallel to the low-rank approximation
of the solution to avoid unnecessarily large ranks.

5.3. Adaptive refinement of discretizations

Refining discretizations based on computable a posteriori error estimates is of
particular interest in high-dimensional problems: in addition to the necessity of
adaptively resolving non-smooth solutions, known a priori estimates are often diffi-
cult to apply in the high-dimensional case due to unknown dimension dependences
in the arising constants.
An important requirement for the practicality of a posteriori estimates for large

3, however, is that both the costs of their evaluation and the constants arising in the
error bounds depend only moderately on 3. For error estimates that are 3-robust in
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this sense, the next question is whether one can use them to drive a similarly robust
adaptive refinement of discretizations.

Remark 5.15. Whether standard mesh-based approaches for error estimation in
finite element discretizations, such as the classical residual error estimator, can be
suitably adapted to high-dimensional finite elements in low-rank formats remains
largely an open problem. A key difficulty, closely related to Remark 3.2, is estab-
lishing 3-robustness of estimates. A finite element error estimate for tensor train
representations using a global auxiliary flux reconstruction problem was proposed
in Dolgov and Vejchodský (2021); it has the disadvantage, however, that for large 3
the auxiliary problem can be substantially more expensive to solve than the original
problem.

In what follows, we focus on error estimation and discretization refinement for
low-rankmethods using basis expansions, which are comparablywell studied. Here
we start from a Riesz basis representation of the problem on ℓ2(N3). We then select
finite index sets Λ ⊂ N3 such that the span of the corresponding basis elements
provides sufficiently accurate approximations.
These concepts have been used in the context of low-rank approximations, for

instance in Bachmayr (2012a), Bachmayr and Dahmen (2015, 2016a,b), and Ali
and Urban (2020) with wavelet Riesz bases. They appear in a similar form in Eigel,
Pfeffer and Schneider (2017), Bachmayr, Cohen and Dahmen (2018) and Eigel,
Marschall, Pfeffer and Schneider (2020) with orthonormal polynomial expansions
as in Remark 3.3. For an overview, see also Bachmayr and Dahmen (2020).

Remark 5.16. As an additional constraint in our present setting of tensor repres-
entations, we restrict ourselves to discretizations defined by subsets of basis indices
that have Cartesian product structure. For instance, discretizations in terms of
basis representations on ℓ2(N3) can be defined by Λ ⊂ N3 of the form

Λ =

3?
8=1

Λ(8) (5.22)

with finite Λ(8) ⊂ N for 8 = 1, . . . , 3. In principle it is also conceivable to
adapt discretizations individually to each basis vector in the mode frames of a
tensor representation. However, since algorithms using HSVD representations
require repeated orthogonalizations of mode frames, such a further adaptation
is impractical: since the discretization subspaces of all vectors are merged by
orthogonalizations, there is no benefit in terms of computational costs.

In what follows, we consider basic techniques for error estimation and discret-
ization refinement in the context of low-rank approximation, as well as their use
within iterative solvers based on HSVD truncation. The approaches for generating
sparse approximations with tensor structure discussed in Section 5.3.1 and the re-
sidual approximations considered in Section 5.3.3 are in fact independent of any
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particular adaptive scheme. The computational methods treated in Sections 5.3.2
and 5.3.4 both rely on an extension of the strategy based on HSVD truncation
in Section 5.2.1. The combination with adaptive discretization refinement of the
alternative soft thresholding-based approach for rank control of Section 5.2.2 is
still open.

5.3.1. Mode-wise sparse approximations
We first consider a method for selecting index sets of the form (5.22) that capture
the entries of largest absolute values of a given tensor, but avoid looking at all
individual entries (which would necessarily scale exponentially with respect to the
tensor order 3). Here we assume tensors on N3 for ease of presentation, but the
following is applicable to general countable Cartesian product index sets.
The following notion was introduced in Bachmayr (2012a) and analysed further

in Bachmayr and Dahmen (2015).

Definition 5.17. For 8 = 1, . . . , 3 and v ∈ ℓ2(N3), we define the sequences
c(8)(v) = (c(8)

a (v))a∈N, called contractions of v, by

c(8)
a8 (v) =

( ∞∑
a1=1
· · ·

∞∑
a8−1=1

∞∑
a8+1=1
· · ·

∞∑
a3=1

��v[a1, . . . , a8−1, a8 , a8+1, . . . , a3]
��2)1/2

,

(5.23)
and in addition, we define

supp8 v = supp c(8)(v) ⊆ N.
The contractions c(8)(v), 8 = 1, . . . , 3, can also be interpreted as the sequences of

ℓ2-norms of the rows of the matricizations mat8(v) of v. They can serve as criteria
for assessing where the ℓ2-norm of v is concentrated on the high-dimensional index
set N3 by considering only sequences on N. An important point in this regard is
the following observation, which states that the high-dimensional summation on
the right in Definition 5.17 can be avoided by exploiting orthogonality properties
of the HSVD form.

Proposition 5.18. For v ∈ ℓ2(N3), let UU, U ∈ T, be the mode frames of an
HSVD of v, and let fU

:
(v) be the associated sequences of singular values. Then

c(8)
a (v) =

(rank8(v)∑
:=1

��U{8 }
:
[a] f {8 }

:

��2)1/2
, a ∈ N.

The following result from Bachmayr and Dahmen (2015) shows how the jointly
sorted sequences c(8)(v) can be used to obtain finite product index sets of the form
(5.22) for approximating v in ℓ2. These index sets are quasi-optimal among all
those of product structure with respect to the sum of the numbers of indices in
each tensor mode. Here, for v ∈ ℓ2(N3) and Λ ⊂ N3 , we define the restriction
RΛv ∈ ℓ2(N3) as the sequence that is equal to v on Λ and vanishes on N3 \ Λ.
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Proposition 5.19. For any v ∈ ℓ2(N3) and # ∈ N, select # largest values in
{c(8)
a (v) : 8 = 1, . . . , 3, a ∈ N}, collect the corresponding indices a ∈ N of selected

c(8)
a (v) in the respective sets Λ(8)

#
⊂ N for 8 = 1, . . . , 3, and define

Λ# (v) =
3?
8=1

Λ
(8)
#

(v).

Then, for each # ,

‖v − RΛ# (v)v‖ℓ2 ≤
( 3∑
8=1

∑
a∈N\Λ(8)

#
(v)

��c(8)
a (v)

��2)1/2

≤
√
3 min

{
‖v − RΛ̂v‖ℓ2 : Λ̂ =

3?
8=1

Λ̂(8),
3∑
8=1

#Λ̂(8) ≤ #
}
. (5.24)

Proof. The first estimate follows from the observation that for any Λ =
>3
8=1 Λ

(8),

‖v − RΛv‖2ℓ2
≤ ‖v − RΛ(1)×N3−1v‖2ℓ2

+ · · · + ‖v − RN3−1×Λ(3)v‖2ℓ2

=

3∑
8=1

∑
a∈N\Λ(8)

��c(8)
a (v)

��2.
By construction of Λ# (v),

3∑
8=1

∑
a∈N\Λ(8)

#
(v)

��c(8)
a (v)

��2 = min∑3
8=1 #Λ̂(8)≤#

3∑
8=1

∑
a∈N\Λ̂(8)

��c(8)
a (v)

��2.
Finally, we note that for Λ̂ =

>3
8=1 Λ̂

(8), we have∑
a∈N\Λ̂(8)

��c(8)
a (v)

��2 ≤ ‖v − RΛ̂v‖2ℓ2

for each 8 ∈ {1, . . . , 3}.
Based on Proposition 5.19, we define a procedure for producing approximations

with finitely many non-zero entries of any desired accuracy [ > 0 for arbitrary
input sequences.

Definition 5.20. For v ∈ ℓ2(v) and [ > 0, with Λ# (v) defined as in Proposi-
tion 5.19, and with # chosen as

# = min
{
# ∈ N :

( 3∑
8=1

∑
a∈N\Λ(8)

#
(v)

��c(8)
a (v)

��2)1/2
≤ [

}
,

we define
Coarse[(v) = RΛ# (v)v.

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000125


84 M. Bachmayr

Note thatCoarse[(v) requires theHSVD form of v for evaluating the contractions
c(8)(v) via Proposition 5.18. The costs of computing the HSVD form dominate
those for subsequently selecting Λ# (v) with the appropriate # . With Lemma 5.1,
the quasi-optimality property (5.24) immediately yields a result analogous to the
one for Trunc[ , as in Lemma 5.4 for the support sizes produced by Coarse[ . More
importantly for the present purposes, however, the two procedures can also be
combined, which leads to a construction of adaptive methods, considered next.

5.3.2. Adaptive basis refinement by approximate Richardson iteration
We now come to our first method to combine rank adaptation with adaptive dis-
cretization refinement, proposed in Bachmayr (2012a) and analysed in Bachmayr
and Dahmen (2015). Here we consider general Riesz basis representations Au = f
on ℓ2(N3), where A : ℓ2(N3)→ ℓ2(N3) is an elliptic isomorphism.
As noted in Remark 5.12, in this setting, the rank-controlled iteration (5.13)

combined with error reduction by an inner Richardson iteration (5.21) becomes
computationally feasible only when the required residuals are approximated by
finitely supported sequences. We thus assume for the moment that we have some
routine Res[ at our disposal that for each [ > 0 and v ∈ ℓ2(N3) with # supp v < ∞
produces an approximation of the residual Av − f (which generally has infinite
support) such that

‖Res[(v) − (Av − f)‖ℓ2 ≤ [, (5.25)

and where Res[(v) is in low-rank representation with finite support.
The basic idea is now to perform Richardson iteration on the Riesz basis rep-

resentation, but with each required residual evaluation replaced by Res[ with
appropriate [ > 0. Similarly to iterations in low-rank format, we face the problem
that when the method is carried out in this form, the number of non-zero basis
indices that are active in each tensor mode may increase too strongly. This can be
remedied by complementing the rank truncation in (5.13) by an additional basis
coarsening by the routine Coarse[ from Definition 5.20.
For this combination we have the following generalization of Lemma 5.4; for the

proof, we refer to Bachmayr and Dahmen (2015, Thm 7). Note that for the exact
solution u, it is natural to assume that c(8)(u) ∈ AB(N) for 8 = 1, . . . , 3 with some
B > 0, since wavelet basis expansions as discussed in Section 3.2 typically lead
to such algebraic convergence rates. These assumptions can be modified for more
rapidly converging spectral approximations.

Lemma 5.21. Let u, v ∈ ℓ2(N3) with c(8)(u) ∈ AB(N) for some B > 0 for 8 =
1, . . . , 3, such that ‖u − v‖ℓ2 ≤ [. Let ^E =

√
#E, ^3 =

√
3. Let U > 0; then for

w = Coarse^3(^E+1)(1+U)[(Trunc^E(1+U)[(v))

we have
‖u − w‖ℓ2 ≤ �1(U, ^E, ^3)[,
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where �1(U, ^E, ^3) = (1 + ^E(1 + U) + ^3(^E + 1)(1 + U)), and moreover

‖rankE(w)‖∞ ≤ Abest(u, U[)

as well as
3∑
8=1

# supp8 w ≤ 23U−1/B
( 3∑
8=1
‖c(8)(u)‖AB

)1/B
[−1/B,

3∑
8=1
‖c(8)(w)‖AB ≤ �2(U, ^E, ^3)

3∑
8=1
‖c(8)(u)‖AB ,

where �2(U, ^E, ^3 , 3, B) = 2B(1 + 3B) + 24BU−1�1(U, ^E, ^3)3max{1,B}.

The resulting rank- and basis-adaptive iterative method can be regarded as a
generalization of the adaptive method or sparse approximation introduced in Cohen
et al. (2002), which follows the same basic strategy. Let l > 0 be chosen such that
‖I − lA‖ℓ2→ℓ2 ≤ d < 1. With ^E =

√
#E =

√
23 − 3, ^3 =

√
3 and U > 0, let

d̂ =
1

1 + (1 + U)(^E + ^3 + ^E^3)
,

\1 = ^3(^E + 1)(1 + U)d̂, \2 = (1 + U)^E d̂,

as well as

� = min
{
9 ∈ N : d 9(1 + l 9) ≤ 1

2 d̂
}
.

Starting with u0 = 0, setting [0 = ‖A−1‖ℓ2→ℓ2 ‖f‖ℓ2 and [= = 2−=[0 for = =
0, 1, 2, . . . ,

v=,0 = u=, v=, 9+1 = v=, 9 − lResd 9 [=(v=, 9), 9 = 0, 1, . . . , � − 1, (5.26a)
u=+1 = Coarse\1[=+1(Trunc\2[=+1(v=,� )). (5.26b)

Remark 5.22. The inner iterations (5.26a) can be performed with additional
rank truncation and basis coarsening steps with sufficiently small tolerances; see
Bachmayr and Dahmen (2015, Alg. 5.1). These do not influence the analysis based
on Lemma 5.21 but in general improve the quantitative performance.

The proof of the following convergence result with rank and discretization size
bounds for (5.26) is given in Bachmayr and Dahmen (2015).

Theorem 5.23. The sequence (u=)=∈N0 defined by (5.26) for each = ∈ N0 satisfies
‖u − u=‖ℓ2 ≤ [= = 2−=[0 and

‖rankE(u=)‖∞ ≤ Abest(u, Ud̂[=) (5.27)
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as well as
3∑
8=1

# supp8 u= .
( 3∑
8=1
‖c(8)(u)‖AB

)1/B
[−1/B
= ,

3∑
8=1
‖c(8)(u=)‖AB .

3∑
8=1
‖c(8)(u)‖AB ,

(5.28)

with constants that depend only on U, B and algebraically on 3.

Concerning the implications of the rank bound (5.27) when assuming algebra-
ically or exponentially decaying best low-rank approximation errors, Remark 5.6
applies also in this case, with minor modifications to the 3-dependence of the
bounds.

Altogether, (5.26) provides a numerical scheme that operates on finitely many
indices of the underlying Riesz basis (that is, on finitely supported coefficient
sequences) in each step, and yet is guaranteed to converge to the exact solution
of the PDE problem, represented by the coefficient sequence u. After every
rank truncation and basis coarsening step (5.26b), the resulting iterates u= are
guaranteed to have near-optimal ranks and support sizes compared to the respective
best approximations of u. A crucial point for the total computational costs of the
method, however, is how precisely the residual approximation Res[ is realized.
Similarly to Example 5.13, in particular, the support sizes should not increase too
strongly during the inner iteration (5.26a).

5.3.3. Residual approximations
The adaptive algorithm (5.26) relies on a routine Res[(v) that for each [ > 0
produces a finitely supported approximation of the residualAv−f (which is generally
a sequence on N3 with infinitely many non-zero entries) with error at most [. In
addition to the direct use ofRes[(v) in an iterative scheme, this procedure also yields
computable a posteriori error estimates. For example, for given v, starting from
a sufficiently large value of [, by successively halving [ until [ ≤ 1

2 ‖Res[(v)‖ℓ2
holds, we obtain

‖Res[(v)‖ℓ2 h ‖Av − f‖ℓ2 h ‖v − u‖ℓ2 . (5.29)

Therefore, due to the Riesz basis property, such a residual approximation also yields
a computable quantity that remains proportional to the total error in approximating
the exact solution of the underlying PDE.

Whereas suitable approximations of f are problem-dependent but can typically be
derived fromproperties of the represented functional 5 , the approximate application
of operators can be performed by universal strategies, which we focus on here. For
the efficient realization of such approximations, we consider a standard construction
introduced in Cohen et al. (2001) that is adapted to the adaptivity in the low-rank
context in Bachmayr and Dahmen (2015, 2016b). It is based on the following
notion of sparse approximability of operators represented by bi-infinite matrices.
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Definition 5.24. Let I be a countable index set, and let B∗ > 0. An operator
B : ℓ2(I) → ℓ2(I) is called B∗-compressible if for any B ∈ (0, B∗) there exist
summable positive sequences (U@)@∈N0 , (V@)@∈N0 such that for each @ ∈ N0 there
exists B@ with at most U@2@ non-zero entries per row and column satisfying ‖B −
B@ ‖ ≤ V@2−B@.

In particular, such approximations can be obtained for representations of dif-
ferential (or integral) operators with respect to wavelet Riesz bases; see Cohen
et al. (2001). For the adaptive compressibility of operators, the following generic
strategy for sparse approximations is developed there based on Definition 5.24.

Remark 5.25. To obtain approximations w[ of Bv such that ‖w[ − Bv‖ℓ2 ≤ [,
for B as in Definition 5.24 and v ∈ ℓ2(I) with # = # supp v < ∞, for each
fixed B ∈ (0, B∗) we can proceed as follows. First, let I[@ ] ⊂ I be the supports
of the best 2@-term approximations of v for @ = 0, 1, . . . , dlog2 #e, so that ‖v −
RI[@ ]v‖ℓ2 ≤ |v|AB2−B@ . Then, for each & ≤ dlog2 #e, with I[−1] = ∅, consider the
approximations

B̂&(v) =
&∑
@=0

B&−@ RI[@ ]\I[@−1]v,

where B&−@ are the approximations of B from Definition 5.24. Note that in this
approximation the most accurate (and expensive) approximations of the operator
B are applied only to the largest entries of the input vector v. By the triangle
inequality, we have the error bound

‖Bv − B̂&(v)‖ℓ2

≤ ‖B‖ℓ2→ℓ2 ‖v − RI[&]v‖ℓ2 +
&∑
@=0
‖B − B&−@ ‖ℓ2→ℓ2 ‖RI[@ ]\I[@−1]v‖ℓ2 .

We now insert the estimates ‖RI[@ ]\I[@−1]v‖ℓ2 ≤ ‖v−RI[@−1]v‖ℓ2 ≤ |v|AB2−B(@−1) as
well as ‖B −B&−@ ‖ℓ2→ℓ2 ≤ V&−@2−B(&−@) to obtain ‖Bv − B̂&(v)‖ℓ2 . |v|AB2−B&.
Taking & as the smallest value such that ‖Bv − B̂&(v)‖ℓ2 ≤ [, we set w[ = B̂&(v).
Then

# supp w[ ≤
&∑
@=0

2&−@#
(
I[@ ] \ I[@−1]

)
≤

&∑
@=1

2&−@2@−1 + 2& . 2& . |v|1/BAB [
−1/B .

In addition, we verify as in Cohen et al. (2001) that

‖w[ ‖AB ≤ �AB ‖v‖AB
with a constant �AB > 0 independent of v and [.
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Next we turn to the generalization of this strategy to the setting of low-rank
approximations, where we consider A : ℓ2(N3)→ ℓ2(N3) of the form

A =

'1∑
=1=1
· · ·

'3∑
=3=1

c[=1, . . . , =3]
3⊗
8=1

A(8)
=8 , (5.30)

with the core tensor c represented in hierarchical format. Our aim is to approx-
imate Av for finitely supported v ∈ ℓ2(N3) that is given in the same hierarchical
tensor format. We assume that all component operators A(8)

= : ℓ2(N) → ℓ2(N) for
8 = 1, . . . , 3, = = 1, . . . , '8 , are B∗-compressible, with the corresponding approx-
imations according to Definition 5.24 denoted by A(8)

=,@, @ ∈ N0. We then consider
approximations of the form

Â =

'1∑
=1=1
· · ·

'3∑
=3=1

c[=1, . . . , =3]
3⊗
8=1

Â(8)
=8 . (5.31)

For the definition of Â(8)
= for 8 = 1, . . . , 3, = = 1, . . . , '8 , we choose suitable

Λ
(8)
@ ⊂ N for @ = 0, . . . , &8 such that

⋃&8
@=0 Λ

(8)
@ = supp8 v and Λ(8)

@ ∩ Λ(8)
? = ∅

whenever @ ≠ ?. We now take

Â(8) =

&8∑
@=0

A(8)
=,@R

Λ
(8)
@
. (5.32)

For approximations of the form (5.31), (5.32), we have the following simple obser-
vation.

Proposition 5.26. Let v ∈ ℓ2(N3) with # supp v < ∞, let A be as in (5.30) and Â
as in (5.31), (5.32). Then

‖Av − Âv‖ℓ2(N3) ≤
3∑
8=1

�(8)
A

'8∑
==1

&8∑
@=0

A(8)
= − A(8)

=,@


ℓ2(N)→ℓ2(N)

R
Λ

(8)
@
c(8)(v)


ℓ2(N)

with �(8)
A > 0, 8 = 1, . . . , 3, which can be determined from A.

For a proof and a discussion of the constants �(8)
A , we refer to Bachmayr and

Dahmen (2015, Lem. 4). We now follow a similar strategy to Remark 5.25, com-
bining the bounds from Definition 5.24 for ‖A(8)

= − A(8)
=,@ ‖ℓ2(N)→ℓ2(N) with choosing

the sets Λ(8)
@ for 8 = 1, . . . , 3 based on 2@-term approximations of the respective

(lower-dimensional) contractions c(8)(v). Proceeding in this manner, assuming
that c(8)(v) ∈ AB for 8 = 1, . . . , 3 with an B < B∗, for each [ > 0 we obtain a
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finitely supported w[ = Âv that maintains the structure and ranks of the low-rank
representation of Av, such that ‖w[ − Av‖ℓ2(N3) ≤ [ and

# supp8 w[ ≤ �1

( 3∑
8=1
‖c(8)(v)‖AB

)1/B
[−1/B,

‖c(8)(w[)‖AB ≤ �2‖c(8)(v)‖AB
(5.33)

for 8 = 1, . . . , 3, where�1, �2 > 0 depend only on A and B (Bachmayr and Dahmen
2015, Thm 8).
Altogether, the computation of approximate residuals is thus reduced to oper-

ations on single tensor components. Note that in this case the entries of c(8)(v)
determine to what accuracy the respective individual columns of the component
operators of A in mode 8 are approximated.

Remark 5.27. Some further modifications are required for wavelet Riesz basis
representations on ℓ2(∨3) of problems on Sobolev spaces, which take the form
(3.23). As noted in Remark 5.14, this can be replaced by (4.10) with the oper-
ator representation D̃TD̃ with diagonal operators D̃ from Proposition 4.11. Here
T depends on the coefficients in the differential operator. In the case of the
Laplacian, T has the explicit low-rank representation (3.22) with rank two, but its
lower-dimensional component operatorsT1 generally have infinitelymany non-zero
entries in each column. For given v ∈ ℓ2(∨3), we thus consider approximations
w[ such that ‖D̃TD̃v − w[ ‖ ≤ [ of the form

w[ = D̃[1,Λ1T̃D̃[2,Λ2v. (5.34)

Here D̃[ 9 ,Λ 9 , 9 = 1, 2, is defined as in Proposition 4.11 with suitable [ 9 h [,
where Λ2 ⊇ supp v and Λ1 ⊇ supp(T̃D̃[2,Λ2v). The operator T̃ is obtained by
componentwise sparse approximations analogously to (5.31), (5.32), additionally
taking into account the effect of the basis rescaling by D̃. We thus combine
sparse approximations of T with low-rank approximations of D̃. For details and
the corresponding estimates replacing (5.33), we refer to Bachmayr and Dahmen
(2016b).

Remark 5.28. The estimates (5.33) can now be combinedwith the estimates from
Theorem 5.23 for the iterates of the adaptive scheme (5.26). As noted above, for
the evolution of the ranks of the iterates v=, 9 of the inner iterations (5.26a), the
conclusions of Remark 5.6 apply. As shown in Bachmayr and Dahmen (2016b,
Sec. 6.5), if also ‖c(8)(f)‖AB < ∞ for 8 = 1, . . . , 3 and certain technical assumptions
on the low-rank representation of A hold true (which are satisfied in the case of
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Remark 5.27), combining (5.28) with (5.33) we obtain estimates
3∑
8=1

# supp8 v=, 9 ≤ �1, 9

( 3∑
8=1

max
{‖c(8)(u)‖AB , ‖c(8)(f)‖AB

})1/B
[−1/B
= ,

3∑
8=1
‖c(8)(v=, 9)‖AB ≤ �2, 9

3∑
8=1

max
{‖c(8)(u)‖AB , ‖c(8)(f)‖AB

}
.

Here �1, 9 , �2, 9 > 0 depend polynomially on 3, but may in general increase expo-
nentially with respect to the inner iteration number 9 . After a fixed number of inner
iteration steps, however, by the complexity reduction step (5.26b) we return to the
estimates (5.28). In summary, we thus retain quasi-optimal sums of mode-wise
support sizes throughout the entire iteration (5.26).

5.3.4. Iteratively refined Galerkin discretizations
An alternative construction of adaptive methods that is conceptually closer to
adaptive finite element methods is based on solving successively refined Galerkin
discretizations. Methods of this type with quasi-optimal computational costs for
sparse approximation by wavelets were developed and analysed in Cohen et al.
(2001).

We first sketch the basic approach. Here we need to assume, in addition to
boundedness and ellipticity, that A is a symmetric operator, so ‖v‖A = 〈Av, v〉1/2
for v ∈ ℓ2(N3) defines a norm on ℓ2(N3); note that symmetry is not required for
the scheme (5.26). The method proceeds by stepwise refinement of finite index
sets Λ= ⊂ N3 , = = 0, 1, 2, . . . , starting from a given Λ0. For each =, we first
determine the Galerkin solution uΛ= , which is uniquely defined by the conditions
supp uΛ= ⊆ Λ= and

RΛ=AuΛ= = RΛ=f. (5.35a)

With rΛ= = AuΛ= − f and a fixed U ∈ (0, 1], we select the smallest Λ̂ ⊇ Λ= such
that

‖RΛ̂rΛ= ‖ℓ2 ≥ U‖rΛ= ‖ℓ2 (5.35b)

and set Λ=+1 = Λ̂. Here, for computational purposes, rΛ= is again replaced by
a finitely supported approximation. As shown in Cohen et al. (2001, Lem. 4.1),
(5.35b) ensures

‖u − uΛ=+1 ‖A ≤ d‖u − uΛ= ‖A,
with d ∈ (0, 1) that depends on U and cond(A). Cohen et al. (2001) combined this
error reduction with a basis coarsening by application of Lemma 5.1 to best =-term
approximation as in (5.9). Assuming u ∈ AB for some B > 0, this again leads to a
method using a quasi-optimal number of non-zero coefficients for each iterate.
Gantumur, Harbrecht and Stevenson (2007) adapted the method to avoid the

coarsening steps: provided that U in (5.35b) is chosen in (0, cond−1/2(A)), the
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index sets Λ= obtained from (5.35b) have quasi-optimal cardinality without further
coarsening. This variation of the method, termed the adaptive wavelet-Galerkin
method, yields improved quantitative performance. For an overview, see also
Stevenson (2009).
The above approach, based on successively refined Galerkin discretizations, has

been adapted to the setting of low-rank tensor approximations in Ali and Urban
(2020). The Galerkin solutions uΛ= are approximated by a rank-truncated PCG
method, and finitely supported low-rank approximations of rΛ= are computed by
the techniques discussed in Section 5.3.3. Index sets Λ̂ with product structure in
(5.35b) are obtained by applying Coarse[ to rΛ= with a suitable tolerance [ > 0,
as in Definition 5.3.
To obtain rank and discretization size estimates as in Theorem 5.23, this variant

also relies on the combination of Coarse[ and Trunc[ as in (5.26b). In principle,
the scheme is thus of a similar structure to the adaptive low-rank Richardson
iteration (5.26), but with the inner iteration (5.26a) replaced by sufficiently many
steps of solving a Galerkin discretization and selecting new degrees of freedom
via (5.35b). The conclusions concerning rank and discretization size bounds for
all iterates obtained in Ali and Urban (2020) are analogous to those for (5.26), but
with quantitative advantages concerning the practical performance.
In contrast to the setting of best =-term approximations, the question remains

open whether it is possible to obtain quasi-optimal discretization sizes without
applying a basis coarsening step as with Coarse[ in (5.26b). The reason is that the
effective value of U obtained in (5.35b) when selecting Λ̂ using Coarse[ cannot in
general be chosen sufficiently small for larger 3, since the selected index sets are
only quasi-optimal up to a factor

√
3 as in (5.24). For a detailed discussion, see Ali

and Urban (2020, Sec. 4.7).

5.4. Computational complexity

In Section 5.2 we consider two strategies, based on HSVD truncation and on
soft thresholding, for maintaining quasi-optimal ranks in iterative low-rank solvers.
While these approaches can be formulated on infinite-dimensional sequence spaces,
in computationally realizable methods they need to be combined with suitable
discretizations. A basic approach for guaranteeing prescribed discretization errors
in high dimensions is given in Section 5.3, based on combined low-rank and sparse
approximations of residuals. On this basis, iterative solvers that complementHSVD
truncation with basis coarsening can be constructed, with error reduction realized
by approximate Richardson iteration as in (5.26) or by solving successively refined
Galerkin discretizations as in (5.35).

Remark 5.29. An important feature of these adaptive solvers is their universality,
in the sense that they can be carried out without any knowledge of the approxim-
ability of the exact solution u: we only need to know suitable approximability of

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000125


92 M. Bachmayr

the problem data A and f. In particular, plain convergence of the methods to u is
obtained without any assumptions on low-rank or sparse approximability of u.

Further statements on the performance of the methods then require additional
assumptions on the approximability of u. As a consequence of Theorem 5.23 and
Remark 5.28, if u has a certain low-rank and sparse approximability, this will be
reflected in the ranks and support sizes of iterates. The two crucial approximability
assumptions concern intrinsic properties of u: on the one hand, convergence of best
approximations of prescribed maximum hierarchical rank, which is determined by
the decay of singular value sequences f [4](u) for 4 ∈ E, and on the other hand,
near-sparsity of the contractions c(8)(u), 8 = 1, . . . , 3, quantified by finiteness of
AB-norms for some B > 0.
Based on such rank and support size estimates for iterates, we arrive at estimates

for the total computational costs of these adaptive solvers; in other words, we
obtain estimates for the computational complexity of deterministically solving
high-dimensional PDEs up to a guaranteed total approximation error.

Remark 5.30. The computational costs of the iteration (5.26) are generally dom-
inated by those of the computation of HSVD forms of the iterates v=, 9 . As noted
in (2.24), the number of arithmetic operations this requires for each = and 9 is
bounded by

�

(
3‖rankE(v=, 9)‖4∞ + ‖rankE(v=, 9)‖2∞

3∑
8=1

# supp8 v=, 9
)

(5.36)

with a fixed 3-independent constant � > 0. Assuming c(8)(u) ∈ AB, 8 = 1, . . . , 3,
for some B > 0, we compare the implications of this bound for the two different types
of low-rank approximability considered in Remark 5.6. For the iterates u= with
‖u − u=‖ℓ2 ≤ [= of the outer iteration (5.26b), as a consequence of Theorem 5.23,
the complexity bound (5.36) takes the following forms.

(i) Assuming inf ‖rankE(w)‖∞≤A ‖u − w‖ℓ2 ≤ �A−? with �, ? > 0, we obtain
‖rankE(u=)‖∞ . 31/(2?)[−1/?

= , and thus the HSVD of u= costs at most

�1
(
[−4/?
= + [−2/?−1/B

=

)
arithmetic operations, where �1 depends on u and polynomially on 3. De-
pending on ?, the costs may thus scale much less favourably than the sizes
$
(
[−1/B
=

)
of the discretizations in each tensor mode.

(ii) Under the stronger assumption

inf
‖rankE(w)‖∞≤A

‖u − w‖ℓ2 ≤ �4−2A
V

(5.37)

with 2, �, V > 0, the costs of the HSVD of u= can be estimated by

�2
(|log [= |4 + |log [= |2[−1/B

=

)
,
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where �2 depends again on u and polynomially on 3. In this more favourable
case, the second summand in the above bound dominates and the costs differ
from those of the lower-dimensional discretizations in each tensor mode only
by a logarithmic factor.

The ranks of the iterates v=, 9 of the inner iteration additionally depend on the rep-
resentation ranks of residual approximations and are thusmore problem-dependent.

Example 5.31. To consider the total computational costs, we return to the ex-
ample of a second-order elliptic operator � : �1

0(�3) → �−1(�3) with wavelet
Riesz basis representation Ã = D̃TD̃ on ℓ2(∨3) and residual approximation as
outlined in Remark 5.27. We assume T to be of fixed rank such that cond(Ã) is
bounded independently of 3. Moreover, we assume u, motivated by the results for
the Poisson problem from Section 4.2, to have low-rank best approximations with
exponential-type convergence (5.37). In addition, we assume f to have the same type
of low-rank approximability, and that for some B > 0, ‖c(8)(u)‖AB , ‖c(8)(f)‖AB < ∞
for 8 = 1, . . . , 3. With some further technical assumptions, a bound for the total
computational costs in this setting is obtained in Bachmayr and Dahmen (2016b).
Here, a major issue is taking into account the connection between discretization
and preconditioning ranks in the residual approximations (5.34). Altogether, (5.26)
under these conditions is guaranteed to produce for each given Y > 0 an approxim-
ation uY such that ‖u−uY ‖ℓ2 ≤ Y using a total number of floating-point operations
bounded by

�03
21 ln 3(1 + |ln Y |)22 ln 3+2/VY−1/B, (5.38)

where �0, 21, 22 > 0 are independent of 3 and Y. Recall that for the functions
D, DY ∈ �1(�3) represented by u and uY , respectively, we have ‖D − DY ‖� 1 h
‖u − uY ‖ℓ2 . Up to logarithmic factors, we thus obtain the costs $(Y−1/B) that are
optimal for the approximation of each one-dimensional component. Moreover, the
curse of dimensionality is avoided: the leading 3-dependence 321 ln 3 = 421 ln2 3

grows faster than any polynomial, but substantially slower than exponentially in 3.
This shows that for this typical class of problems, the curse of dimensionality can

be avoided while achieving (deterministic) computable a posteriori error bounds
for the approximate solutions. However, the above complexity bounds are likely not
sharp: the numerical tests in Bachmayr and Dahmen (2016b) indicate that for the
Poisson problem and certain variants, the total numerical costs exhibit low-order
polynomial scaling with respect to 3.

For the approach using Galerkin discretizations, analogous conclusions for Ex-
ample 5.31 are obtained in Ali and Urban (2020). For the alternative rank control
by soft thresholding discussed in Section 5.2.2, the analysis of a combination with
adaptively refined discretizations is still open, but one may conjecture that this can
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lead to an improved 3-dependence in the total cost estimates compared to (5.38).
For discussions of the total computational complexity of (5.26) under different
assumptions, see also Bachmayr and Dahmen (2015, 2020).

5.5. Approximability and applications to high-dimensional elliptic problems

We now turn to applications to elliptic PDEs beyond the guiding model problems
considered so far. As we have seen, the efficiency of low-rank solvers is determined
in particular by the low-rank approximability of the corresponding exact solutions.
On the one hand, the approximability of solutions can be studied experimentally by
solverswith rank guarantees, as inTheorems 5.5 or 5.10. On the other hand, it is also
of interest to obtain analytical results that yield efficient low-rank approximations.
Such investigations can also shed some light on the mechanisms and structural
features of solutions that lead to rapidly convergent best low-rank approximations.

General low-rank approximability results for functions of classical or mixed
Sobolev regularity are obtained in Schneider and Uschmajew (2014), Griebel and
Harbrecht (2014, 2019, 2023) and Bachmayr, Nouy and Schneider (2021b), where
results for functions with compositional structure are also obtained, and in Griebel,
Harbrecht and Schneider (2022). These results based on regularity properties only
yield algebraic convergence of low-rank best approximations. Inmany applications,
however, we observe exponential-type decay of best approximation errors, which
in view of Remark 5.30 leads to substantially more favourable complexity of
solvers. Such stronger approximability is often tied to particular structural features
of solutions.

5.5.1. High-dimensional diffusion problems
The results discussed in Section 4.2, especially Theorem 4.6 from Dahmen et al.
(2016), show low-rank approximability of solutions of Poisson problems as in
Example 3.1 on �3 with potentially large 3. In this case we obtain exponential-
type decay of best approximation errors with respect to ranks, or conversely, best
approximation ranks that grow like a power of a logarithm of the achieved error.
More generally, one may be interested in problems of finding D ∈ �1

0(�3) such
that ∫

�3

"̂∇D · ∇E dG =
∫
�3

5 E dG for all E ∈ �1
0(�3)

with a diffusion coefficient "̂ ∈ R3×3 . The above-mentioned results apply only
to diagonal "̂ . The results for discretized problems in Kressner and Uschma-
jew (2016) are applicable to more general "̂ , but yield only algebraic decay of
best approximation errors with bounds that deteriorate under discretization refine-
ment. Discretization-independent bounds for the approximability of solutions with
general "̂ are still an open problem. Experimentally, for problems with certain
tridiagonal "̂ , Bachmayr and Dahmen (2016b) and Kressner et al. (2016) have
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observed low-rank approximability similar to that for diagonal "̂ . Slightly more
efficient approximations are obtained when errors are controlled only in !2(�3)
rather than in �1

0(�3); see Bachmayr and Dahmen (2016a).

5.5.2. Parameter-dependent elliptic problems
In parameter-dependent PDEs as outlined in (1.5), the problems considered are
typically posed on domains Ω ⊂ R3 with 3 ∈ {1, 2, 3}, but with solutions that are
still high-dimensional functions due to an additional dependence on a parameter
from some set . . A frequently treated model case is that of second-order elliptic
problems with diffusion coefficients 0(·, H) ∈ !∞(Ω)with a parameter H ∈ . , where
for each H, the solution D(·, H) ∈ �1

0(Ω) for fixed right-hand side 5 ∈ !2(Ω) solves∫
Ω

0(G, H)∇D(G, H) · ∇E(G) dG =
∫
Ω

5 (G) E(G) dG for all E ∈ �1
0(Ω). (5.39)

Different types of parameter dependences of 0 are considered in the literature.

Example 5.32. A frequently used class of model problems is that of coefficients
with affine parametrizations of the form

0(G, H) = 0̄(G) +
∑
9∈N

H 9\ 9(G) (5.40)

with H = (H1, H2, . . .) ∈ . = [−1, 1]N , where N may be finite or countably infinite
and 0̄ as well as \ 9 , 9 ∈ N , are fixed functions in !∞(Ω). Two examples in which
ellipticity holds uniformly in H ∈ . are as follows:

(A) #N < ∞, 0̄ = 1 and \ 9 = 2 9 jΩ 9 , where Ω 9 ⊂ Ω are disjoint subdomains and
2 9 are constants with |2 9 | < 1;

(B) N ' N and ‖\ 9 ‖!∞ . 9−A with some A > 0 such that 0̄ −∑
9∈N |\ 9 | ≥ 00 > 0

in Ω for some 00 ∈ R.
Particularly in a stochastic context, where the entries of H correspond to scalar

random variables, it is natural to consider weak formulations in the parametric
domain as well. For simplicity, we consider the uniform distribution on . : let `1
be the uniform measure on [−1, 1], so that ` =

⊗
8∈N `1 is the uniform measure

on . = [−1, 1]N . We then seek D ∈ V = �1
0(Ω) ⊗ !2(. ) such that for all E ∈ V ,∫

.

∫
Ω

0(G, H)∇D(G, H) · ∇E(G, H) dG d`(H) =
∫
.

∫
Ω

5 (G) E(G, H) dG d`(H). (5.41)

Here the space V is a tensor product; in the case #N < ∞, we have in particular
V = �1

0(Ω) ⊗ !2(. ) = �1
0(Ω) ⊗

⊗
8∈N

!2(−1, 1).

A natural choice of basis for !2(. ) is that of tensor product orthonormal polyno-
mials as in Example 3.3, which can be combined with any discretization or Riesz
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basis for �1
0(Ω). Since the spatial coordinate is usually treated as a single tensor

mode here, in solving (5.41) one can work with tensor product Riesz bases of V .
This means that the issues of low-rank preconditioning discussed in Section 4.4 do
not arise here.
The low-rank approximability of solutions depends strongly on the particular

problem, especially on the structure of the parametrization of 0. Bachmayr and
Cohen (2017) have obtained bounds on best low-rank approximation errors for case
(A) of Example 5.32. They show favourable exponential decay of errors and, for
problems with certain structural features, a substantial improvement over direct
product polynomial approximations in the parametric variable of the solution. This
is confirmed by numerical tests in Bachmayr et al. (2018).

The situation is different, however, in problems with infinitely many parameters,
as in case (B) of Example 5.32. The anisotropy in the parametric variables, due
to the algebraic decay of ‖\ 9 ‖!∞ , can be exploited by sparse product polynomial
approximations that converge independently of any parametric dimensionality para-
meter; see Cohen, DeVore and Schwab (2010, 2011) and Bachmayr, Cohen, Dũng
and Schwab (2017). Low-rank approximability of such problems is considered in
Bachmayr et al. (2018). As these results show, the singular values of the particular
matricization with spatial degrees of freedom in its rows and parametric ones in
its columns can generally be expected to decay only algebraically. In such cases,
concerning the asymptotic total computational complexity of solvers, we can gen-
erally not expect low-rank approximations to offer an advantage over direct sparse
approximations.

Low-rank approximation methods based on stochastic Galerkin formulations
(5.41) with fixed discretizations are considered, for instance, in Khoromskij and
Schwab (2011), Kressner and Tobler (2011a), Tobler (2012), Matthies and Zander
(2012) and Lee and Elman (2017). Methods with adaptive refinement of spatial
and parametric discretizations are considered in Eigel et al. (2017) based on ad-
aptive finite elements for the spatial degrees of freedom, and in Bachmayr et al.
(2018) using wavelets in space. The more involved case of lognormal coefficient
parametrizations is considered in Eigel et al. (2020).

Remark 5.33. As an alternative to variational formulations (5.41), approxima-
tions of parameter-dependent solutions can also be constructed from point evalu-
ations with respect to H, that is, from solutions of (5.39) for certain well-chosen
parameter values. In the low-rank context, this can be done by the TT-crossmethod
for tensor trains (Oseledets and Tyrtyshnikov 2010) or its counterpart for hierarch-
ical tensors (Ballani, Grasedyck and Kluge 2013). Such approaches are used for
parametric problems, for instance in Ballani and Grasedyck (2015) and Dolgov and
Scheichl (2019). A different approach based on interpolation of parametric point
evaluations is taken in Khoromskij and Oseledets (2010). Compared to (5.41),
such methods offer additional flexibility, especially in problems with 0 depending
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nonlinearly on H, but we do not have the mechanisms for error control as offered
by (5.41).

Remark 5.34. The application of low-rank methods to parameter-dependent prob-
lems is strongly connected to certain methods for model order reduction, in par-
ticular to proper orthogonal decomposition (Kahlbacher and Volkwein 2007) and
to reduced basis methods (Prud’homme and Patera 2004, Rozza, Huynh and Pat-
era 2008, Hesthaven, Rozza and Stamm 2016); for a recent overview, see Benner,
Cohen, Ohlberger and Willcox (2017). In reduced basis methods, case (A) in
Example 5.32 is a typical model problem. With # well-chosen parameter val-
ues H1, . . . , H# ∈ . , we compute the so-called solution snapshots E: = D(·, H:),
: = 1, . . . , # , and obtain efficient approximate solutions for arbitrary parameters
H ∈ . by solving the Galerkin projections of (5.39) onto span{E: }:=1,...,# . This
leads to approximations of the form

D(G, H) ≈
#∑
:=1

E:(G) q:(H),

where the functions q: , : = 1, . . . , # , are defined implicitly byGalerkin projection.

5.5.3. Tensorized approximations for boundary value problems
We briefly comment on second-order elliptic boundary value problems on domains
Ω ⊂ R3 with 3 ∈ {1, 2, 3}. The efficient approximation of solutions of such prob-
lems can require specialized methods, such as ℎ?-finite elements for problems with
gradient singularities caused by non-smooth problem data or domains, or homogen-
ization approaches for problems with high-frequency oscillations. The technique
of multilevel tensorized approximations, as discussed in Sections 3.4 and 4.5, can
be used to obtain generic approximations for such problems by providing efficient
parametrizations of simple low-order methods (such as piecewise multilinear finite
elements) on extremely fine grids. For diffusion problems parametrized in tensor-
ized low-rank form as outlined in Section 4.5, this is considered by Kazeev (2015),
Kazeev and Schwab (2018) and Marcati, Rakhuba and Schwab (2022a). Similarly
to convergence results for ℎ?-FEM, they establish exponential-type convergence of
approximate solutions with respect to the total number of representation paramet-
ers. Comparably efficient approximations are obtained for multiscale problems in
Kazeev, Oseledets, Rakhuba and Schwab (2017, 2022) and for convection–diffusion
problems on intervals in Marcati, Rakhuba and Ulander (2022b). The technique is
extended to isogeometric analysis in Markeeva, Tsybulin and Oseledets (2021).
Combined with preconditioning as described in Section 4.5, low-rank paramet-

rizations of approximations on very fine grids (corresponding to grid spacings
near machine precision) can be used, so that adaptive refinement of discretizations
typically becomes unnecessary in this context. Approximate solutions can be ob-
tained by the methods discussed in Section 5.1 with preconditioning or by the more
problem-specific alternating direction implicit method of Rakhuba (2021).
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6. Eigenvalue problems
Solvers based on low-rank approximations for eigenvalue problems are especially
important in quantum physics applications, where they are applied both in the
classical formulation in terms of particle coordinates, as in (3.25), and in the
occupation number formulation discussed in Section 3.3. In the latter case, low-
rank structures in wavefunction approximations are closely connected to measures
of entanglement in quantum systems (Orús 2014). A physical motivation for the
application of low-rank methods in this context is that in view of so-called area
laws (Eisert, Cramer and Plenio 2010), the most relevant states can be expected to
be those of relatively low ranks in tensor representations.
Many of the considerations of the preceding sections for elliptic partial differen-

tial equations apply equally to associated eigenvalue problems. The corresponding
convergence theory, however, is not as well developed in the latter case, especially
concerning error estimation and adaptive refinement of discretizations.

6.1. Applications in quantum physics

A high-dimensional eigenvalue problem that is of central importance in quantum
chemistry is the electronic Schrödinger equation. The corresponding Hamiltonian
operator is of the general form (3.25). Writing G1, . . . , G# ∈ R3 for the spatial
coordinates of the # electrons in the system under consideration, for a molecule
composed of  atomic nuclei with positions ': ∈ R3 and charges /: > 0 for
: = 1, . . . ,  , this Hamiltonian reads

� = −1
2

#∑
8=1
ΔG8 −

#∑
8=1

 ∑
:=1

/:
‖G8 − ': ‖2 +

1
2

#∑
8, 9=1
8≠ 9

1
‖G8 − G 9 ‖2 .

For an in-depth treatment of the analysis of electronic Schrödinger eigenvalue
problems, we refer to Yserentant (2010). Here, the eigenfunctions (called wave-
functions) of interest are typically those corresponding to the lowest eigenvalues,
that is, to the lowest energies. By standard techniques, approximation errors in
eigenvalues can be estimated in terms of �1-errors in the corresponding eigen-
function approximations.
As noted in Section 3.3, fermionicwavefunctions need to be antisymmetric under

exchange of electron coordinates. Although the direct application of the hierarchical
tensor format is problematic due to this requirement, direct approximations of
wavefunctions by antisymmetrized canonical tensor representations are considered
in Beylkin, Mohlenkamp and Pérez (2008) and Mohlenkamp (2010). However,
with this approach we face the difficulties outlined in Section 1.4.
There exist a variety of approximations of the electronic Schrödinger equation by

simplified models. The Hartree–Fock (HF) equations are derived by forming the
Rayleigh quotient of � over a single #-electron Slater determinant and minimizing
over the corresponding # orbitals q1, . . . , q# , which are functions of a single
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electron coordinate. Constraining the orbitals q1, . . . , q# to be orthonormal, the
necessary optimality conditions lead to the HF equations

�(q1, . . . , q# )q8 = `8q8 , 8 = 1, . . . , #, (6.1)

with the Fock operator �(q1, . . . , q# ), which is an integrodifferential operator
acting on functions on R3.
While standard methods for (6.1) are based on approximations by a small num-

ber of atom-centred Gaussian functions (Helgaker et al. 2000, Chap. 8), numerical
methods that can reach higher accuracies are frequently of interest. In this case
grid-based methods for the HF equations (and related problems in density func-
tional theory) that approximate the orbitals as low-rank third-order tensors are
proposed in Khoromskij, Khoromskaia, Chinnamsetty and Flad (2009), Khorom-
skij, Khoromskaia and Flad (2011) and Rakhuba and Oseledets (2016). In Bischoff
and Valeev (2011), approximations in low-rank tensor format of an integral equa-
tion formulation of (6.1) are combined with locally refined discontinuous wavelets
expansions for one-dimensional components; these wavelets, however, are not suf-
ficiently regular for a rigorous error control of computed energies. In Bachmayr
(2012a), adaptively refined higher-order Daubechies wavelet expansions of one-
and two-electron wavefunctions are approximated in Tucker format.
These approaches rely on explicit low-rank approximations of potential terms,

which can be obtained from exponential sum approximations as considered in
Section 4.1. In particular, applying approximations of C ↦→ C−1/2 for C > 0 provided
by Theorems 4.2 or Corollary 4.5 leads to approximations of Coulomb potentials
by Gaussians,

1√
G2

1 + G2
2 + G2

3

≈
A∑
:=1

l:

3∏
8=1

4−U: G
2
8 .

Such approximations are considered, for instance, in Chinnamsetty et al. (2007),
Zeiser (2010), Bachmayr (2012a,b) and Scholz and Yserentant (2017). Related
issues include the efficient evaluation of two-electron potentials (Khoromskaia,
Khoromskij and Schneider 2013) and tensor-based summation of potentials on lat-
tices (Khoromskaia and Khoromskij 2016). For an overview, see also Khoromskaia
and Khoromskij (2015, 2018).
A variety of refined models for the electronic Schrödinger equations take HF

approximations as their starting points. Instances of such so-called post-Hartree–
Fock methods are the Møller–Plesset perturbation theory and the coupled cluster
method. The use of low-rank tensor approximations in the context of such methods
is investigated in Benedikt, Auer, Espig and Hackbusch (2011), Benedikt, Böhm
and Auer (2013b) and Benedikt et al. (2013a).

The concepts of matrix product states (tensor trains) and tree tensor networks
(hierarchical tensors), as well as the DMRG algorithm outlined in Section 5.1, have
their origins in the study of spin systems. These are quantum systems of particles
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on lattices with locally interacting spins, where #-particle systems typically lead
to wavefunctions on {0, 1}# ; concerning such applications, see Schollwöck (2011)
and Orús (2014).
StartingwithWhite andMartin (1999), suchmethods have also been successfully

applied to the occupation number representation of the electronic Schrödinger ei-
genvalue problem as discussed in Section 3.3. For an overview, we refer toWouters
and Van Neck (2014). Such approaches based on tree tensor networks, which can
be regarded as multi-configurational self-consistent field methods, are of particu-
lar interest in cases where the Hartree–Fock equations yield poor approximations.
They can also serve as the basis of modified post-HF methods such as the tailored
coupled cluster method (Faulstich et al. 2019).

Concerning the low-rank approximability of operators in this context, see Re-
mark 3.13. The low-rank approximability of electronic wavefunctions in occu-
pation number representation is investigated in Graswald and Friesecke (2021),
Friesecke and Graswald (2022) and Friesecke, Graswald and Legeza (2022). Here,
the optimization of the underlying orbitals plays an important role in improving the
efficiency of low-rank approximations; see for instance Krumnow et al. (2016).

6.2. Solving eigenvalue problems in low-rank formats

One strategy for constructing eigensolvers operating on low-rank representations is
the adaptation of standard methods by additional rank truncations. Power methods
and preconditioned inverse iteration (PINVIT) for discretizations of differential op-
erators are considered by Hackbusch, Khoromskij, Sauter and Tyrtyshnikov (2012).
Kressner and Tobler (2011b) proposed an LOBPCG eigensolver modified by addi-
tional rank truncations and tested it numerically. Cancès et al. (2014) considered
the application of the greedy approach outlined in Section 5.1.4. Rakhuba and
Oseledets (2018) proposed a Jacobi–Davidson method adapted to low-rank mat-
rix manifolds. Rakhuba, Novikov and Oseledets (2019) developed a Riemannian
version of LOBPCG for higher-order tensors. Concerning the combination of
low-rank approximations with adaptivity, Bachmayr (2012a) have shown that a
low-rank eigensolver based on PINVIT with adaptive wavelet discretization has
guaranteed local convergence in �1-norm.
A second construction principle for eigensolvers is given by methods based on

alternating optimization. A prominent example is the DMRG algorithm introduced
in White (1992, 2005) and formulated in terms of matrix product states in Vidal
(2003). These methods are investigated from a numerical perspective in Holtz
et al. (2012a). The adaptation of such methods to the simultaneous approxima-
tion of several eigenspaces by attaching eigenfunction indices as additional tensor
modes is considered in Kressner, Steinlechner andUschmajew (2014a) andDolgov,
Khoromskij, Oseledets and Savostyanov (2014). Krumnow, Pfeffer andUschmajew
(2021) propose direct energy minimization instead of SVD for the rank truncation
in DMRG substeps.
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7. Time-dependent problems
In Section 1.2 we discussed two examples of time-dependent problems of poten-
tially high spatial dimensionality: the parabolic problem (1.1) and the instationary
Schrödinger equation (1.2). To obtain approximate solutions in low-rank tensor
formats, one strategy is to apply standard time-stepping procedures. For implicit
methods, as required for parabolic problems, the problems on the spatial domain
that need to be solved in each time step can be treated by low-rank solvers for elliptic
problems, as in Section 5. Such approaches are pursued, for instance, in Dolgov,
Khoromskij and Oseledets (2012) and Cho, Venturi and Karniadakis (2016).
However, it is a delicate matter to adjust low-rank approximation tolerances in

each time step to achieve a desired total error over the given time interval, and no
informative bounds on the arising ranks are available. Moreover, in certain prob-
lems we are also interested in preserving conservation properties of the continuous
problem, which is generally difficult to reconcile with rank truncations in every
time step. These limitations are addressed by alternative methods for low-rank
approximation of time-dependent problems, on which we focus in this section.

7.1. Dynamical low-rank approximation

In dynamical low-rank approximations, evolution problems are approximated on
manifolds of fixed-rank matrices or tensors, which leads to a reduction to lower-
dimensional evolution problems for the individual components of low-rank repres-
entations.
Formatrices of fixed rank, this concept is introduced inKoch andLubich (2007a).

Assume that we are given a differential equation for a time-dependent matrix
Y(C) ∈ R<×=,

¤Y(C) = �(Y(C)), Y(0) = Y0,

where � : R<×= → R<×= is a Lipschitz continuous function. Discretizations of
instationary PDEs on two-dimensional spatial domains lead naturally to matrix
differential equations of this structure.
LetM be the submanifold of matrices of fixed rank A ∈ N (see also Sections 2.10

and 5.1.3). We now approximate Y(C) by X(C) ∈M defined by the Dirac–Frenkel
variational principle (Dirac 1930, Frenkel 1934):

〈 ¤X(C) − �(X(C)),�〉 = 0 for all � ∈ TX(C)M.

Since ¤X(C) ∈ TX(C)M, we thus solve the modified problem
¤X(C) = ΠX(C)�(X(C)), X(0) = X0, (7.1)

where X0 is the best rank-A approximation of Y0 and where againΠX(C) denotes the
orthogonal projection onto TX(C)M.
With the representation (2.9) in the form X(C) = U(C)S(C)V(C)>, where U,V are

required to have orthonormal columns for all times and S ∈ RA×A is invertible, as
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shown in Koch and Lubich (2007a), (7.1) can be rewritten componentwise as
¤S = U>�(X)V, (7.2a)
¤U = (I − UU>)�(X)VS−1, (7.2b)
¤V = (I − VV>)�(X)US−>. (7.2c)

Provided that � has suitable structure, the original problem is thus reduced to
differential equations for lower-dimensional components. An analogous scheme
for Tucker tensors is considered in Koch and Lubich (2010). Similarly to (7.2),
we obtain separate but coupled evolution equations for the core tensor and for the
orthonormal mode frames. The method can also be formulated on function spaces,
with a natural generalization to Hilbert spaces. A formulation on Banach spaces is
given in Falcó et al. (2019).
In the context of quantum dynamics described by instationary Schrödinger equa-

tions (1.2), the method for Tucker tensors was introduced as the multi-configura-
tion time-dependent Hartree (MCTDH) method byMeyer, Manthe and Cederbaum
(1990); for an overview of such models and related methods, we refer to Lubich
(2008) and Meyer, Gatti and Worth (2009). Applied to (1.2), approximations are
obtained by solving

imCD = −ΔD + ΠD+D
with appropriate low-rank approximations of initial data, where ΠD denotes the
projection onto the tangent space at D of the manifold of fixed-rank tensors. Note
that the Laplacian Δ maps elements of the manifold to the tangent space, and thus
no projection is required on this term.1
MCTDH is applied to models for the evolution for distinguishable particles such

as atomic nuclei, wherewe do not have the symmetry or antisymmetry requirements
mentioned in Section 3.3. However, similar approaches can be considered for
electron dynamics, where the antisymmetry requirement applies, which leads to
the multi-configuration time-dependent Hartree–Fock method; see Bardos, Catto,
Mauser and Trabelsi (2009, 2010) and Koch and Lubich (2011).
Applying the above approach to hierarchical tensor approximations leads to

the multilayer MCTDH method (Wang and Thoss 2003). In a general context,
dynamical low-rank approximations for tensor trains and hierarchical tensors are
analysed in Lubich, Rohwedder, Schneider and Vandereycken (2013), Uschmajew
and Vandereycken (2013) and Arnold and Jahnke (2014). The application to the
time evolution of matrix product states in spin systems is investigated in Haegeman,
Osborne and Verstraete (2013). Projection methods for time integration of such
formulations for matrices and tensor trains are analysed in Kieri and Vandereycken
(2019).

1 This corresponds to the observation that for operators of the form (1.6), the solution (1.7) is exactly
reproduced by dynamical low-rank approximation.
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For solutions D of time-dependent PDEs with an additional dependence on a
parameter H (which may be a random variable), approximations of the low-rank
form

D(C, G, H) ≈ D̄(C, G) +
A∑
:=1

E:(C, G)F:(C, H), (7.3)

where {E:(C, ·)}:=1,...,A are !2-orthonormal on the spatial domain for each C, can
be obtained by a variation of (7.2) termed dynamically orthogonal approximation
that is introduced in Sapsis and Lermusiaux (2009). This approach is analysed in
Musharbash, Nobile and Zhou (2015) with a particular focus on the treatment of
parabolic PDEs with random parameters, and also concerning its close relation to
dynamical low-rank approximation (7.2). A general analysis is given in Feppon
and Lermusiaux (2018, 2019), including a characterization of dynamical low-
rank approximation as a limit of alternating time steps and low-rank truncations.
Further applications to Navier–Stokes problems and wave equations are considered
in Musharbash and Nobile (2018) and Musharbash, Nobile and Vidličková (2020).

Remark 7.1. In the case of finite-dimensional matrices as in (7.2), local-in-time
existence of dynamical low-rank approximations follows by the Picard–Lindelöf
theorem. In the case of infinite-dimensional function spaces, the situation is
more delicate. Existence, uniqueness and regularity of the MCTDH equations
for sufficiently regular initial data are shown in Koch and Lubich (2007b). For
approximations of parabolic problems depending on a random parameter H as in
(7.3), well-posedness in the mild and strong sense is shown in Kazashi and Nobile
(2021). In the case of parabolic problems in two dimensions, existence and unique-
ness for a weak formulation of dynamical low-rank approximation are demonstrated
in Bachmayr, Eisenmann, Kieri and Uschmajew (2021a), and robustness results
for corresponding spatially discretized problems are obtained in Conte (2020).

Remark 7.2. LetM be a manifold of rank-one tensors in a Hilbert space �, and
consider

¤D(C) = 5 , D(0) = D0 ∈M,

with fixed 5 ∈ M. Then, whenever 5 is orthogonal to TD0M, the dynamical
low-rank approximation equals D0 for all C. The best rank-one approximation of the
exact solution D(C) = D0 + C 5 , however, will be C 5 when C is sufficiently large.

Local quasi-optimality properties of MCTDH approximations, compared to best
approximations of the same rank, are established in Lubich (2005), and an error
analysis of MCTDH is conducted in Conte and Lubich (2010). The assumptions
required in the analysis in particular ensure that the above issue is avoided, but
these conditions are typically not verifiable in practice.
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7.2. Splitting and Basis Update & Galerkin integrators

The system of differential equations (7.2) can be difficult to solve numerically,
especially in the presence of small singular values of S. An integrator for dynamical
low-rank approximation with particularly favourable properties can be obtained by
a splitting approach. Writing the projector onto the tangent space at X = USV> as

ΠXZ = ZVV> − UU>ZVV> + UU>Z

and decomposing the right-hand side in (7.1) accordingly, one can apply standard
Lie–Trotter or Strang splitting to arrive at the projector-splitting integrator that is
proposed and analysed in Lubich and Oseledets (2014). This integrator is shown
to enjoy particularly favourable exactness properties with improved robustness
concerning small singular values of S.

Integrators based on the same principles are introduced for MCTDH in Lubich
(2015) and for general dynamical low-rank approximations of tensor trains in
Lubich, Oseledets and Vandereycken (2015). Haegeman et al. (2016) established
a connection to the DMRG scheme for matrix product states. The robustness
properties of the splitting integrators with respect to small singular values are
investigated further in Kieri, Lubich and Walach (2016) and Ostermann, Piazzola
and Walach (2019). Einkemmer and Lubich (2018, 2019) constructed projector-
splitting integrators forVlasov–Poisson equations. For randomparabolic equations,
a scheme of this type is analysed inKazashi, Nobile andVidličková (2021). Variants
including strategies for the adaptation of approximation ranks are proposed in Yang
and White (2020), Dektor, Rodgers and Venturi (2021) and Dunnett and Chin
(2021).
Integrators for fixed-rank matrices and Tucker tensors with similar structure

and robustness properties, but not derived from a splitting of the projector, are
introduced and analysed in Ceruti and Lubich (2020, 2022). In this approach,
termed Basis Update & Galerkin, in the matrix case considered above a time step is
applied to the bases given by U and V, and S is evolved by a Galerkin method using
these bases. An integrator that includes rank adaptivity is developed in Ceruti,
Kusch and Lubich (2022) and extended to tree tensor networks in Ceruti et al.
(2023); it joins the basis vectors from current and previous time steps in each step
for S followed by SVD-based rank truncation.

7.3. Space–time methods

Solving time-dependent problems in formulations on the full space–time domain
leads to approximation problems with an additional dimension, compared to the
spatial approximations required in time-stepping schemes. Such methods are con-
sidered in the literature, in particular for parabolic problems. A classical model
problem is the heat equation on the 3-dimensional unit cube with homogeneous
Dirichlet boundary conditions,

mCD − ΔD = 5 in (0, )) × �3 , D |C=0 = D0, D |(0,) )×m�3 = 0, (7.4)
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as a special case of (1.1).
An algebraic construction of space–time solvers is obtained in Dolgov et al.

(2012), where the entire coupled system resulting from a standard time-stepping
discretization is solved jointly for all time steps in a multilevel tensorized repres-
entation. Although approximability results of solutions are obtained for certain
cases, robustness with respect to discretization refinement and spatial dimension-
ality remain unclear in this approach. A related method based on certain series
expansions is considered in Gavrilyuk and Khoromskij (2019). Further heuristic
space–time schemes based on Chebyshev interpolation are considered in Sun and
Kumar (2014) and Chertkov and Oseledets (2021).
To control discretization errors, methods derived from well-posed space–time

weak formulations are of particular interest. Based on corresponding residuals
measured in appropriate norms, discretization errors can be estimated jointly in
space and time for such formulations. For second-order parabolic problems such as
(7.4), a classical weak formulation using the spaceW = !2(0, ) ;+)∩�1(0, ) ;+ ′)
with + = �1

0(�3) reads as follows: find D ∈ W such that∫ >

0
〈mCD, E〉+ ′×+ +

∫
�3

∇D · ∇E dG dC +
∫
�3

D |C=0 F dG

=

∫ >

0
〈 5 , E〉+ ′×+ dC +

∫
�3

D0F dG (7.5)

for all E ∈ !2(0, ) ;+) and F ∈ !2(�3). The left-hand side of (7.5) can be shown to
define an isomorphism fromW to !2(0, ) ;+ ′)×!2(�3); see Schwab and Stevenson
(2009).

Remark 7.3. Schwab and Stevenson (2009) have constructed an adaptive wavelet
method based on a Riesz basis representation of (7.5). Applying such a Riesz
basis representation in the context of low-rank approximations leads to additional
difficulties. To see these, assume that ka , a ∈ ∨, are as in Remark 3.10, and that
in addition, l` ∈ �1(0, )) are such that {l`}`∈∨̂ and {‖l`‖−1

� 1l`}`∈∨̂ are Riesz
bases of !2(0, )) and �1(0, 1), respectively. Then a Riesz basis for the test space
!2(0, ) ;+) ' !2(0, )) ⊗ + is given by {l` ⊗ Ψa}(`,a)∈∨̂×∨3 with Ψa , a ∈ ∨3 , as
in Remark 3.10. This can be handled as described in Section 4.4. For the space
W , however, Riesz bases are given by {3`,a l` ⊗ ka1 ⊗ · · · ⊗ ka3 }(`,a)∈∨̂×∨3 , with
the requirement

3`,a1,...,a3 h

( 3∑
8=1

22 |a8 | + 22 |` |
( 3∑
8=1

22 |a8 |
)−1)−1/2

, ` ∈ ∨̂, a ∈ ∨3 (7.6)

(compare (3.24)). Low-rank approximations of the expressions on the right in (7.6)
that are suitable for diagonal preconditioning in low-rank formats are substantially
more difficult to construct than in the case of �1-norms considered in Section 4.4.
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Andreev and Tobler (2015) have solved a fixed discretization of (7.5) by multi-
linear finite elements in space and time in least-squares form with low-rank approx-
imations in hierarchical format, where time and each spatial variable are treated
as separate tensor modes. The formulation is based on the stable Petrov–Galerkin
discretization by Andreev (2013), which relies on a careful adjustment of trial and
test spaces. The appropriate norms are realized by a BPX preconditioner, which –
as in the case of Riesz bases – reduces preconditioning to diagonal scaling. How-
ever, this also requires scaling by the values in (7.6), which is realized heuristically
in Andreev and Tobler (2015).
A space–time method based on a slightly different least-squares formulation is

considered in Boiveau, Ehrlacher, Ern and Nouy (2019). In this case the analysis is
based on a semidiscretization in the spatial variables. The low-rank approximation
uses tensors of order two, separating time from the spatial variables; in this form,
this method is thus not aimed at high-dimensional problems. The approximations
are constructed by a greedy method as outlined in Section 5.1.4.
A different approach combining sparse wavelet approximations in time with

adaptive low-rank approximations in space is used in Bachmayr and Faldum (2023).
To this end, (7.5) is represented in a Riesz basis representation as in Remark 7.6
in terms of spline wavelets, using {Ψ̃`,a}(`,a)∈∨̂×∨3 with Ψ̃`,a = 3`,a l` ⊗ ka1 ⊗
· · · ⊗ ka3 , and 3`,a satisfying (7.6), as a Riesz basis ofW . The solution D of (7.5)
then has the expansion

D =
∑
`∈∨̂

∑
a∈∨3

u[`, a1, . . . , a3] Ψ̃`,a .

With a fixed dimension tree T and a suitable index set Λ̂ ⊂ ∨̂ defining a temporal
discretization, we now aim to find separately for each ` ∈ Λ̂ hierarchical tensor
approximations ũ` of the 3th-order tensors

u` = (u[`, a1, . . . , a3])a1,...,a3 ∈∨.

These approximations are chosen with supp ũ` ⊆ Λ` =
>3
8=1 Λ

(8)
` ⊂ ∨3 , where

the finite index sets Λ` also need to be determined.
As shown in Bachmayr and Faldum (2023), the basic techniques described in

Section 5.3 can be modified for computing such families (ũ`)`∈Λ̂ of hierarchical
tensor approximations with adaptively selected discretizations. This approach
requires efficient low-rank approximations of (7.6) only separately for each ` ∈
∨̂, which can be achieved by exponential sum approximations similar to those
considered in Section 4.1.1. The resulting method yields guaranteed convergence
to D with computable error bounds in theW-norm, as well as bounds on the arising
ranks, discretization sizes and total computational costs analogous to those for the
elliptic case discussed in Section 5.4. The method is demonstrated to be applicable
to large spatial dimensions 3 in practice.

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000125


Low-rank tensor methods for partial differential equations 107

Acknowledgements
The author thanksWolfgang Dahmen, Henrik Eisenmann, Manfred Faldum, Vladi-
mir Kazeev, Sebastian Krämer, Christian Lubich, Reinhold Schneider and André
Uschmajew for reading earlier versions of this article and for important hints and
suggestions for improvements.
The author acknowledges funding by Deutsche Forschungsgemeinschaft (Ger-

man Research Foundation), project number 442047500, through the Collaborative
Research Center ‘Sparsity and Singular Structures’ (SFB 1481).

References
P.-A. Absil and I. V. Oseledets (2015), Low-rank retractions: A survey and new results,

Comput. Optim. Appl. 62, 5–29.
P.-A. Absil, R. Mahony and R. Sepulchre (2008), Optimization Algorithms on Matrix

Manifolds, Princeton University Press.
M. Ali and A. Nouy (2020a), Singular value decomposition in Sobolev spaces, Part I,

Z. Anal. Anwend. 39, 349–369.
M. Ali and A. Nouy (2020b), Singular value decomposition in Sobolev spaces, Part II,

Z. Anal. Anwend. 39, 371–394.
M. Ali and A. Nouy (2021), Approximation theory of tree tensor networks: Tensorized

multivariate functions. Available at arXiv:2101.11932.
M. Ali and A. Nouy (2023), Approximation theory of tree tensor networks: Tensorized

univariate functions, Constr. Approx. Available at doi:10.1007/s00365-023-09620-w.
M. Ali and K. Urban (2020), HT-AWGM: A hierarchical Tucker-adaptive wavelet Galerkin

method for high-dimensional elliptic problems, Adv. Comput. Math. 46, 59.
A. Ammar, F. Chinesta and A. Falcó (2010), On the convergence of a greedy rank-one

update algorithm for a class of linear systems, Arch. Comput. Methods Engrg 17, 473–
486.

R. Andreev (2013), Stability of sparse space–time finite element discretizations of linear
parabolic evolution equations, IMA J. Numer. Anal. 33, 242–260.

R. Andreev and C. Tobler (2015), Multilevel preconditioning and low-rank tensor iteration
for space–time simultaneous discretizations of parabolic PDEs, Numer. Linear Algebra
Appl. 22, 317–337.

A. Arnold and T. Jahnke (2014), On the approximation of high-dimensional differential
equations in the hierarchical Tucker format, BIT Numer. Math. 54, 305–341.

M.Bachmayr (2012a), Adaptive low-rankwaveletmethods and applications to two-electron
Schrödinger equations. PhD thesis, RWTH Aachen.

M. Bachmayr (2012b), Hyperbolic wavelet discretization of the two-electron Schrödinger
equation in an explicitly correlated formulation, ESAIM Math. Model. Numer. Anal. 46,
1337–1362.

M. Bachmayr and A. Cohen (2017), Kolmogorov widths and low-rank approximations of
parametric elliptic PDEs, Math. Comp. 86, 701–724.

M. Bachmayr and W. Dahmen (2015), Adaptive near-optimal rank tensor approximation
for high-dimensional operator equations, Found. Comput. Math. 15, 839–898.

M. Bachmayr and W. Dahmen (2016a), Adaptive low-rank methods for problems on
Sobolev spaces with error control in L2, ESAIM Math. Model. Numer. Anal. 50, 1107–
1136.

https://doi.org/10.1017/S0962492922000125 Published online by Cambridge University Press

https://arxiv.org/abs/2101.11932
https://doi.org/10.1007/s00365-023-09620-w
https://doi.org/10.1017/S0962492922000125


108 M. Bachmayr

M. Bachmayr andW. Dahmen (2016b), Adaptive low-rank methods: Problems on Sobolev
spaces, SIAM J. Numer. Anal. 54, 744–796.

M. Bachmayr and W. Dahmen (2020), Adaptive low-rank approximations for operator
equations: Accuracy control and computational complexity, in 75 Years of Mathematics
of Computation (S. C. Brenner et al., eds), Vol. 754 of Contemporary Mathematics,
American Mathematical Society, pp. 1–44.

M. Bachmayr and M. Faldum (2023), A space-time adaptive low-rank method for high-
dimensional parabolic partial differential equations. Available at arXiv:2302.01658.

M. Bachmayr and V. Kazeev (2020), Stability of low-rank tensor representations and
structuredmultilevel preconditioning for elliptic PDEs,Found. Comput.Math. 20, 1175–
1236.

M. Bachmayr and R. Schneider (2017), Iterative methods based on soft thresholding of
hierarchical tensors, Found. Comput. Math. 17, 1037–1083.

M. Bachmayr, A. Cohen and W. Dahmen (2018), Parametric PDEs: Sparse or low-rank
approximations?, IMA J. Numer. Anal. 38, 1661–1708.
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