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ABSTRACT

In this paper, we study the tail risk measures for several commonly used mul-
tivariate aggregate loss models where the claim frequencies are dependent
but the claim sizes are mutually independent and independent of the claim
frequencies. We first develop formulas for the moment (or size biased) trans-
forms of the multivariate aggregate losses, showing their relationship with the
moment transforms of the claim frequencies and claim sizes. Then, we apply
the formulas to compute some popular risk measures such as the tail condi-
tional expectation and tail variance of the multivariate aggregated losses and
to perform capital allocation analysis.
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1. INTRODUCTION

Insurance companies typically operate in multiple lines of business and face
different types of risks. It is important for them to evaluate the joint distribu-
tion of these different losses. Quite commonly, each type of these losses could
be described by an aggregated loss model, which usually comprises two impor-
tant components – loss frequency and loss size. Then, the joint distribution is
a function of the interplay between the frequencies and sizes of different types
of losses and the dependence among them (Wang, 1998).

In the literature, there are several types of multivariate aggregate loss
models. In one type, claim frequencies are dependent but claim sizes are
independent. See for example, Hesselager (1996), Cossette et al. (2012), Kim
et al. (2019) and references therein. In another type, the claim frequency is one-
dimensional, while each claim may cause multiple types of possibly dependent
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losses. See for example Sundt (1999). Recently, models that allow dependence
between claim frequencies and claim sizes have been developed. For example,
in generalized linear model-based insurance pricing models such as Gschlöß
l and Czado (2007) and Garrido et al. (2016), the regression of claim size
includes claim count as a covariate. Alternatively, the expected values of claim
frequency and claim size may depend on the same latent variables, as in Oh
et al. (2020).

Computing the risk measures for compound random variables, even for
univariate cases, is not trivial, because the explicit formulas for the dis-
tribution functions usually do not exist. Listed below are some of the
recent advances in the actuarial literature. Cossette et al. (2012) derived the
capital allocation formulas for multivariate compound distributions under
the Tail-Value-at-Risk measure, where the claim frequencies are dependent,
the claim sizes are of the mixture Erlang type and mutually independent,
and the claim frequency and size are independent. Kim et al. (2019) derived
a recursive algorithm to compute the risk measures of multivariate compound
mixed Poisson models, where the Poisson-type claim frequencies depend on
the same latent variables in a linear fashion. Denuit (2020) derived formu-
las for the tail conditional expectations (TCE) of some univariate compound
distributions. Denuit and Robert (2021) presented some results for the TCE
of a compound mixed Poisson model, where both the claim frequencies and
sizes depend on several latent variables. Ren (2021) derived the formulas for
the TCE and tail variance (TV) of multivariate compound models based on
Sundt (1999), where claim frequency is one-dimensional and one claim can
yield multiple dependent losses.

The main goal of this paper is to present some easy-to-use formulas for
computing the TCE and TV of some multivariate compound loss models,
where the claim frequencies are dependent while the sizes are independent.
Particularly, we study in detail the important dependence models in Hesselager
(1996) and their extensions, which are widely used in the risk theory literature.
See, for example, Cummins and Wiltbank (1983), Bermúdez (2009), Cossette
et al. (2012) and the references therein. We also discuss a case where the
claim frequencies and sizes are dependent through a common mixing variable,
following Denuit and Robert (2021).

Methodologically, we apply the moment transform (which is also named as
the size-biased transform) technique to our problems. The concept of moment
transforms has a long history and is widely used in statistics (see, e.g., Patil
and Ord 1976; Arratia and Goldstein 2010, and the references therein). Its
relevance to the study of actuarial risk measures has been exploited in the
risk theory literature. For example, Furman and Landsman (2005) applied
the moment transform technique in computing the TCE of a portfolio of
independent risks. Furman and Zitikis (2008) used it in determining TV and
many other weighted risk measures. More recently, Denuit (2020) applied this
method in analyzing the TCE of univariate compound distributions. The con-
cept of multivariate moment transform was studied in Denuit and Robert
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(2021) and applied in analyzing multivariate risks. Ren (2021) applied this
technique to study the tail risk of a multivariate compound sum introduced by
Sundt (1999), where the claim frequency is one-dimensional while each claim
is a multidimensional random vector with dependent components.

The main contributions of this paper are summarized as follows. We first
establish the relationship between the moment transform of a multivariate
compound loss with those of its claim frequencies and sizes. It is shown that
in many cases, the moment-transformed compound distribution can be repre-
sented by the convolution of a compound distribution, which is a mixture of
some compound distributions that are in the same family of the original one,
and the distribution of the moment transformed claim size. Such a representa-
tion allows us to evaluate the moment transform of a multivariate compound
distribution efficiently by using either the fast Fourier transform (FFT) or
recursive method, which are readily available in the literature (e.g., Hesselager
1996). After deriving the moment transforms of multivariate compound distri-
butions, we use them to evaluate the tail risks of multivariate aggregated losses
and perform the associated capital allocation. Our main result also shows the
effect of the distributions of claim frequencies and sizes on the tail risks of such
aggregated losses. Our results generalize those in Denuit (2020) and Kim et al.
(2019).

The remaining parts of the paper are organized as follows. Section 2 pro-
vides definitions and some preliminary results. Section 3 presents the main
result for the moment transform of a general multivariate compound model
with dependent claim frequencies and independent claim sizes. Section 4 stud-
ies the moment transform of the claim frequency in great detail. The case where
claim frequencies and sizes are dependent is also studied. Section 5 provides
numerical examples showing the risk capital allocation computation for each
of the studied models.

2. PRELIMINARIES AND DEFINITIONS

Suppose that an insurance company underwrites a portfolio ofK types of risks.
Let K= {1, · · · ,K} and for k ∈K, let Nk denote the number of type k claims.
Let N= (N1, · · · ,NK ), whose joint probability function is denoted by

pN(n)= Pr [(N1, · · · ,NK )= (n1, · · · , nK )].
For k ∈K, let

SNk =
Nk∑
i=1

Xk,i,

where Xk,i, i= 1, 2, · · · ,Nk, are i.i.d. random variables representing the size
of a type k claim. They are assumed to have cumulative distribution func-
tion FXk . Loss size variables of different types are mutually independent and
independent of N.
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Let

SN = (SN1 , · · · , SNK ) (2.1)

denote the multivariate aggregate loss and

S• =
K∑
k=1

SNk

denote the total amount of all K types of claims.
In this paper, we study the following risk measures of SN:

• The multivariate tail expectation (MTCE) of SN at some level sq, which
is defined by (see Landsman et al., 2018)

MTCESN(sq)=E[SN|SN > sq], (2.2)

where sq = (sq1 , · · · , sqK ) and the expectation operation is taken to be
element-wise.

• The multivariate tail covariance (MTCOV) of SN at some level sq, which
is defined by

MTCOVSN(sq)=E[(SN −MTCESN(sq))(SN −MTCESN(sq))
�|SN > sq].

(2.3)

MTCE and MTCOV are multivariate extensions of univariate risk mea-
sures TCE and TV. They provide important information of the expected values
and the variance––covariance dependence structure of the tail of a vector of
dependent variables. Their properties are studied in Landsman et al. (2018).

To manage their insolvency risks, insurance companies are required to
hold certain amount of capital, which is available to pay the claims arising
from the adverse development of one or several types of risks. In order to
measure and compare the different types of risks, it is important to deter-
mine how much capital should be assigned to each of them. Therefore, a
capital allocation methodology is needed (Cummins, 2000). Methods for deter-
mining capital requirement and allocation have been studied extensively in
the insurance/actuarial science literature. For more detailed discussions of
such methods, one could refer to, for example, Cummins (2000), Dhaene
et al. (2008), Furman and Landsman (2008) and references therein. Since this
paper focuses on tail risk measures such as TCE and TV, we apply the TCE-
and TV-based capital allocation methods, which are described briefly in the
following.

According to the TCE-based capital allocation rule, the capital required for
the type k risk is given by

TCESNk |S•(sq)=E[SNk |S• > sq], k ∈K. (2.4)
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It is straightforward that

K∑
k=1

TCESNk |S•(sq)=E[S•|S• > sq]=TCES•(sq),

where TCES•(sq) is a commonly used criterion for determining the total capital
requirement.

Likewise, according to the TV-based capital allocation rule, the capital
required for the type k ∈K risk is given by

TVSNk |S•(sq)=Cov[(SNk , S•)|S• > sq], (2.5)

which satisfies
K∑
k=1

TVSNk |S•(sq)=Var[S•|S• > sq]=TVS•(sq),

where TVS•(sq) is another commonly used criterion for determining total cap-
ital requirement. It is worth pointing out that TVSNk |S•(sq) can be computed
through the quantities

Cov[(SNk1
, SNk2

)|S• > sq], k1, k2 ∈K, (2.6)

for which we will provide formulas in this paper.
Sometimes, the total capital is set exogenously by regulators or internal

managers and may not necessarily be the TCE/TV of the sum S•. The TCE/TV
allocation rule can still be applied if tail risk is of the main concern. For exam-
ple, with TCE allocation rule, the proportion of the total capital allocated to
the type k risk can be determined by

E[SNk |S• > sq]
E[S•|S• > sq]

.

This ratio is computed in Section 5 for the specific models studied in this paper.
In the following sections, we develop methods to compute the MTCE and

MTCOV of SN, and the associated quantities for capital allocation. We do
this by utilizing the moment transform of the random vector SN. For this pur-
pose, we next introduce some definitions and preliminary results for moment
transforms (see also Patil and Ord, 1976).

Definition 2.1. Let X be a non-negative random variable with distribution func-
tion FX and moment E[Xα]<∞ for some positive integer α. A random variable
X̃ [α] is said to be a copy of the αth moment transform of X if its cumulative
distribution function (c.d.f.) is given by

FX̃ [α] (x)= E[XαI(X ≤ x)]
E[Xα]

(2.7)
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=
∫ x
0 tαdFX (t)

E[Xα]
, x> 0

The first moment transform of X is simply denoted as X̃ .

Definition 2.2. Let X= (X1, · · · ,XK ) be a random vector with distribution func-
tion FX and moments E[Xα

k ]<∞ and E[Xα1
k1
Xα2
k2
]<∞ for some k, k1, k2 ∈

{1, · · · ,K} and positive integers α, α1 and α2.
The kth component αth moment transform of X is any random vector X̂[k[α]]

with c.d.f.

F
X̂[k[α]] (x) = 1

E[Xα
k ]

∫ x1

0
· · ·

∫ xK

0
yαkdFX(y1, · · · , yK )

= E[Xα
k I(X≤ x)]
E[Xα

k ]
, (2.8)

where x= (x1, · · · , xK ). The kth component first moment transform of X is
denoted as X̂[k].
The (k1, k2)th component (α1, α2)th moment transform of X is any random

vector X̂[k
[α1]
1 ,k

[α2]
2 ] with c.d.f.

F
X̂[k

[α1]
1 ,k

[α2]
2 ]

(x) = 1

E[Xα1
k1
Xα2
k2
]

∫ x1

0
· · ·

∫ xK

0
yα1k1y

α2
k2
dFX(y1, · · · , yK )

= E[Xα1
k1
Xα2
k2
I(X≤ x)]

E[Xα1
k1
Xα2
k2
]

. (2.9)

The (k1, k2)th component, (1,1)th moment transform of X is denoted as X̂[k1,k2].

Remark 2.1. We have used the symbol X̃ to denote the moment transform of
a univariate variable X and X̂ for the moment transform of a multivariate vari-

able X. In the sequel, we denote X̂[k[α]] = (X̂ [k[α]]
1 , · · · , X̂ [k[α]]

K ). In particular, X̂ [k]
i

denotes the ith element of X̂[k], which is the kth component first moment transform
of the random vector X. It is not to be confused with X̃i

[α]
, which stands for the

αth moment transform of a univariate random variable Xi. The same convention
applies to other components or moment transforms.

For discrete distributions, we work with factorial moment transform (Patil
and Ord, 1976). To this end, for some integers I and α, we define

I (α) =
{
I(I − 1) · · · (I − α + 1), if α ≤ I ,

0, other cases.

Definition 2.3. Let N be a discrete random variable having probability mass func-
tion pN(n) for n≥ 0. A random variable Ñ [(α)] is said to be a copy of the αth
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factorial moment transform of N if its probability mass function is given by

pÑ [(α)] (n)= E[N(α)I(N = n)]

E[N(α)]
= n(α)pN(n)

E[N(α)]
, n≥ 0. (2.10)

In the sequel, we denote the first factorial moment transform of N by Ñ.

Definition 2.4. Let N= (N1, · · · ,NK ) be a vector of discrete random variables
having probability mass function pN(n). A random vector N̂[k[(α)]] is said to be a
copy of the kth component αth factorial moment transform of N if its probability
mass function is given by

p
N̂[k[(α)]] (n)=

E[N(α)
k I(N= n)]

E[N(α)
k ]

= n(α)k pN(n)

E[N(α)
k ]

, n≥ 0. (2.11)

The kth component first moment transform of N is denoted as N̂[k].

A random vector N̂[k
[(α1)]
1 ,k

[(α2)]
2 ] is said to be a copy of the (k1, k2)th component

(α1, α2)th order factorial moment transform of N if its probability mass function
is given by

p
N̂[k

[(α1)]
1 ,k

[(α2)]
2 ]

(n)= E[N(α1)
k1

N(α2)
k2

I(N= n)]

E[N(α1)
k1

N(α2)
k2

]
= n(α1)k1

n(α2)k2
pN(n)

E[N(α1)
k1

N(α2)
k2

]
, n≥ 0. (2.12)

The reason why we work with the factorial moment transforms for the dis-
crete distributions is that they have simple representations in many cases. See,
for example, Table 2 of Patil and Ord (1976).

The relationship between risk measures such as TCE and TV and the
moment transform of random variables has been studied extensively in the
literature. In particular, the relationship

E[Xα|X > x]=E[Xα]
Pr (X̃ [α] > x)
Pr (X > x)

(2.13)

has been introduced and utilized in, for example, Furman and Landsman
(2005), Furman and Zitikis (2008), Denuit (2020), and the references therein.

In the multivariate case, the MTCE and MTCOV of a random vector X=
(X1, · · · ,XK ) are related to its multivariate moment transform. We state the
results in the following.

Lemma 2.1. Let K= {1, 2, · · · ,K}, X= (X1, · · · ,XK ) and X• =∑K
i=1 Xi, we

have

(i) For k ∈K and α ≥ 1,

E[Xα
k |X> x]=E[Xα

k ]
Pr
(
X̂[k[α]] > x

)
Pr (X> x)

. (2.14)
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(ii) For k1, k2 ∈K and α1, α2 ≥ 1,

E[Xα1
k1
Xα2
k2

|X> x]=E[Xα1
k1
Xα2
k2
]
Pr
(
X̂[k

[α1]
1 ,k

[α2]
2 ] > x

)
Pr (X> x)

. (2.15)

(iii) For k1, k2 ∈K and α1, α2 ≥ 1,

E[Xα1
k1
Xα2
k2

|X• > x]=E[Xα1
k1
Xα2
k2
]
Pr
(
X̂

[k
[α1]
1 ,k

[α2]
2 ]

• > x
)

Pr (X• > x)
, (2.16)

where

X̂
[k

[α1]
1 ,k

[α2]
2 ]

• =
K∑
k=1

X̂
[k

[α1]
1 ,k

[α2]
2 ]

k

and X̂
[k

[α1]
1 ,k

[α2]
2 ]

k is the kth element of X̂[k
[α1]
1 ,k

[α2]
2 ].

Proof. Statements (i) and (ii) are the direct results of Definition 2.2 of
moment transforms. Statement (iii) is similar to Proposition 3.1 of Denuit and
Robert (2021), to which we refer the readers for more details. �

With Lemma 2.1, we are ready to study the tail risk measures of the
compound sum vector SN through its moment transforms.

3. EVALUATION OF THE TAIL RISK MEASURES OF MULTIVARIATE
COMPOUND VARIABLES VIA MOMENT TRANSFORMS

In this section, we derive the explicit formulas for moment transforms of the
compound sum vector SN. These formulas not only unveil the relationships
between the moment transforms of SN and those ofN and Xk (for some k ∈K)
but also provide a method to compute the MTCE and MTCOV of SN and to
perform capital allocations (Equations (2.2)–(2.6)).

We first assume thatN is a non-random vector, that isN= n= (n1, · · · , nK ).
For k ∈K, let

Sk,nk =
nk∑
i=1

Xk,i

and

Sn = (S1,n1 , S2,n2 , · · · , SK ,nK ).

Then by the results in Furman and Landsman (2005) or Lemmas 2.1 and
2.2 of Ren (2021), for a positive integer α such that E[Xα

k ]<∞, we have for
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i ∈ (1, · · · , nk) that

E[Xα
k,iI(Sk,nk ≤ sk)] = E[Xα

k,i]Pr

⎛⎜⎜⎜⎜⎝X̃k,i[α] +
nk∑
j=1

j �=i

Xk,j ≤ sk

⎞⎟⎟⎟⎟⎠, (3.1)

where all the variables in the parenthesis are mutually independent. Because
Xk,i’s are assumed to be i.i.d., we have

E[Sk,nkI(Sk,nk ≤ sk)] = nkE[Xk,1]Pr

⎛⎝X̃k,1 +
nk∑
j=2

Xk,j ≤ sk

⎞⎠, (3.2)

and

E[S2
k,nk

I(Sk,nk ≤ sk)] = nk(nk − 1)(E[Xk,1])
2

Pr (Sk,nk −Xk,1 −Xk,2 + X̃k,1 + X̃k,2 ≤ sk)

+nkE[X2
k,1] Pr (Sk,nk −Xk,1 + X̃k,1

[2] ≤ sk), (3.3)

where all the variables in the parenthesis are mutually independent.
Since {Sk,nk}k=1,··· ,K are mutually independent, we have

E[Sk,nkI(Sn ≤ s)] = E[Sk,nkI(Sk,nk ≤ sk)]
∏

ξ∈K−{k}
Pr [Sξ ,nξ ≤ sξ ]

= nkE[Xk,1]Pr

⎛⎝X̃k,1 +
nk∑
j=2

Xk,j ≤ sk

⎞⎠ ∏
ξ∈K−{k}

Pr [Sξ ,nξ ≤ sξ ]

(3.4)

and

E[S2
k,nk

I(Sn ≤ s)] = E[S2
k,nk

I(Sk,nk ≤ sk)]
∏

ξ∈K−{k}
Pr [Sξ ,nξ ≤ sξ ], (3.5)

where the first term on the right side is given in (3.3).
Further, for ki, kj ∈K,

E[Ski,nki Skj ,nkj I(Sn ≤ s)]

= E[Ski,nki I(Ski,nki ≤ ski )]E[Skj ,nkj I(Skj ,nkj ≤ skj )]
∏

ξ∈K−{ki,kj}
Pr [Sξ ,nξ ≤ sξ ]
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= nkinkjE[Xki,1]E[Xkj ,1]
∏

ξ∈{ki,kj}
Pr

⎛⎝X̃ξ ,1 +
nξ∑
j=2

Xξ ,j ≤ sξ

⎞⎠ ∏
ξ∈K−{ki,kj}

Pr [Sξ ,nξ ≤ sξ ],

(3.6)

where all the variables in the parenthesis are mutually independent.
Now we are ready to present the results for the moment transforms of the

compound sum vector SN.

Theorem 3.1. For k ∈K, let 1[k] denote a K dimensional vector with kth element
being one and all others are zero. Let

L[k] = N̂[k] − 1[k],

whose ith element is denoted by L[k]
i and

SL[k] =
⎛⎜⎝L[k]

i∑
j=1

Xi,j, i ∈K

⎞⎟⎠ ,

then

ŜN
[k] d= SL[k] + X̃k,1 × 1[k]. (3.7)

Further, let

L[k[2]] = N̂[k[(2)]] − 2× 1[k], (3.8)

then

Pr (ŜN
[k[2]] ≤ s) = E[N(2)

k ](E[Xk])2

E[S2
Nk

]
Pr
(
S
L[k[2]] + (X̃k,1 + X̃k,2)× 1[k] ≤ s

)

+E[Nk](E[X2
k ])

E[S2
Nk

]
Pr
(
SL[k] + X̃k,1

[2] × 1[k] ≤ s
)
, (3.9)

where X̃k,1 and X̃k,2 are two independent copies of the first moment transform

of Xk and X̃k,1
[2]
is a copy of the second moment transform of Xk. All random

variables in the above are mutually independent.
In addition, for k1 �= k2 ∈K let

L[k1,k2] = N̂[k1,k2] − 1[k1] − 1[k2], (3.10)

then

ŜN
[k1,k2] d= SL[k1,k2] + X̃k1,1 × 1[k1] + X̃k2,1 × 1[k2]. (3.11)
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Proof. The proof of the above three statements is similar. We next prove
statement (3.9).

Firstly, by the law of total probability,

E[S2
Nk

I(SN ≤ s)]=
∑

n∈(Z+)K
pN(n)E[S2

k,nk
I(SN ≤ s)],

which after applying (3.5) becomes

E[S2
Nk

I(SN ≤ s)]

=
∑

n∈(Z+)K
pN(n)

⎛⎝nk(nk − 1)(E[Xk,1])
2 Pr

⎛⎝X̃k,1 + X̃k,2 +
nk∑
j=3

Xk,j

≤ sk,
nm∑
j=1

Xm,j ≤ sm,m ∈K− {k}
⎞⎠

+nkE[X2
k,1] Pr

⎛⎝X̃k,1[2] + nk∑
j=2

Xk,j ≤ sk,
nm∑
j=1

Xm,j ≤ sm,m ∈K− {k}
⎞⎠⎞⎠

= E[N(2)
k ](E[Xk,1])

2 Pr

⎛⎜⎜⎝X̃k,1 + X̃k,2 +
N̂ [k[(2)]]
k −2∑
j=1

Xk,j

≤ sk,
N̂ [k[(2)]]
m∑
j=1

Xm,j ≤ sm,m ∈K− {k}
⎞⎟⎠

+E[Nk]E[X
2
k,1] Pr

⎛⎜⎝X̃k,1[2] + N̂ [k]
k −1∑
j=1

Xk,j ≤ sk,
N̂ [k]
m∑

j=1

Xm,j ≤ sm,m ∈K− {k}
⎞⎟⎠ .

Dividing both sides of the above by E[S2
Nk

] and making use the definitions of

L[k] and L[k[2]] leads to (3.9).
Similarly, applying the law of total probability to Equations (3.4) and (3.6)

respectively yields
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E[SNkI(SN ≤ s)] = E[Nk]E[Xk] Pr

⎛⎜⎝X̃k,1 +
N̂ [k]
k −1∑
j=1

Xk,j

≤ sk,
N̂ [k]
m∑

j=1

Xm,j ≤ sm,m ∈K− {k}
⎞⎟⎠ ,

(3.12)

and

E[SNk1
SNk2

I(SN ≤ s)]=E[Nk1Nk2 ]E[Xk1 ]E[Xk2 ]×

Pr

⎛⎜⎜⎝X̃k1,1 +
N̂

[k1,k2]
k1

−1∑
j=1

Xk1,j ≤ sk1 , X̃k2,1 +
N̂

[k1,k2]
k2

−1∑
j=1

Xk2,j

≤ sk2 ,
N̂

[k1,k2]
m∑
j=1

Xm,j ≤ sm ,m ∈K− {k1, k2}
⎞⎟⎠ ,

(3.13)

which leads to statements (3.7) and (3.11), respectively. �
Remark 3.1. Theorem 3.1 generalizes Proposition 1 in Denuit (2020) and
Theorem 2 of Ren (2021), which gave formulas for the moment transforms
of univariate compound distributions. In particular, with K = 1 and denoting
SN =∑N

i=1 Xi, Equation (3.9) becomes

Pr (ŜN
[2] ≤ s) = E[N(2)](E[X ])2

E[S2
N ]

Pr (SÑ [2]−2 + X̃1 + X̃2 ≤ s)

+ E[N](E[X2])

E[S2
N ]

Pr (SÑ−1 + X̃1
[2] ≤ s), (3.14)

which is the result in Theorem 2 of Ren (2021).
Theorem 3.1 is different from Theorem 3 of Ren (2021), which is valid for

cases with one dimensional claim frequency and multidimensional claim sizes.

Remark 3.2. Theorem 3.1 relates the moment transform of SN with those of N

and X. For example, Equation (3.9) shows that the distribution of ŜN
[k[2]]

is a
mixture of

W1 = : S
L[k[2]] + (X̃k,1 + X̃k,2)× 1[k]
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and

W2 = : SL[k] + X̃k,1
[2] × 1[k].

Loosely speaking, to obtain W1, we first obtain N̂[k[(2)]], which is the second fac-
torial moment transform of N. Then, we replace two type k claims from S

N̂[k[(2)]]

with their independent moment transformed versions X̃k,1 and X̃k,2. To obtain
W2, we replace a type k claim from SN̂[k] with its independent second moment

transformed version, X̃k,1
[2]
.

Remark 3.3. Theorem 3.1 provides an approach to calculate the distributions of

the moment transformed SN. For example, to compute the distribution of ŜN
[k[2]]

,
we do the following.

(i) Determine the distribution functions of L[k] and L[k[2]]. This is studied in
great detail in Section 4 of this paper, where we show that for several
commonly used models N studied in Hesselager (1996) and Kim et al.
(2019), the distribution of the L’s are in fact mixture of some distributions
in the same family as N and can be conveniently computed.

(ii) Determine the distribution functions of S
L[k[2]] and SL[k] . This can be done

by either (a) applying the recursive methods introduced in Hesselager
(1996) and Kim et al. (2019) or (b) applying the FFT method if the
characteristic functions ofN (therefore L’s) and X are known. For details
of the FFT method, see for example, Wang (1998) and Embrechts and
Frei (2009).

(iii) Determine the distribution functions of W1 and W2. Since the elements
in W1 and W2 are independent, this can be done by applying direct
(multivariate) convolution or FFT.

(iv) Mixing the distribution functions of W1 and W2 using the weights in
Equation (3.9).

With Theorem 3.1, theMTCE andMTCOV of SN, defined in (2.2) and (2.3)
respectively, can be computed by applying items (i) and (ii) of Lemma 2.1. We
summarize the results as follows.

E[SNk |SN > sq]=E[SNk ]
Pr (ŜN

[k]
> sq)

Pr (SN > sq)
, k ∈K (3.15)

E[S2
Nk

|SN > sq]=E[S2
Nk

]
Pr (ŜN

[k[2]]
> sq)

Pr (SN > sq)
, k ∈K (3.16)

and

E[SNk1
SNk2

|SN > sq]=E[SNk1
SNk2

]
Pr (ŜN

[k1,k2]
> sq)

Pr (SN > sq)
, k1, k2 ∈K. (3.17)
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To determine the quantities defined in (2.4) and (2.6) related to the capital
allocation problem, we make use of item (iii) of Lemma 2.1. This yields

E[SNk |S• > s]=E[SNk ]
Pr [̂S[k]• > s]
Pr [S• > s]

, (3.18)

where Ŝ[k]• =∑K
j=1 Ŝ

[k]
Nj
, and Ŝ[k]

Nj
is the jth element of ŜN

[k]
, whose (joint) distri-

bution can be computed using (3.7). Then, the probability Pr [̂S[k]• > s] can be
calculated. For example, in the bivariate case, if the FFT method is used for
ŜN

[k]
, then the distribution of Ŝ[k]• can be obtained by the inverse fast Fourier

transform of the diagonal terms of the array of the FFT of ŜN
[k]
.

In addition, for k1, k2 ∈K

E[SNk1
SNk2

|(S• > s)]=E[SNk1
SNk2

]
Pr [̂S[k1,k2]• > s]
Pr [S• > s]

, (3.19)

where

Ŝ[k1,k2]• =
K∑
j=1

Ŝ[k1,k2]
Nj

.

These quantities can be computed by applying Equations (3.9) and (3.11).
From Equations (3.15) to (3.19), it is seen that we essentially change the

problem of computing tail moments to the problem of computing the tail prob-
abilities of the moment transformed distributions. All the required quantities
for computing the risk measures and performing the capital allocations can be
determined if the moment transformed distributions of SN can be computed.

By Theorem 3.1, it is seen that the distribution functions of the moment
transforms of SN rely on the distribution functions of L[k], L[k1,k2] and L[k[2]].
Therefore, in the next section, we derive formulas for determining them
when N follows some commonly used multivariate discrete distributions, as
introduced in Hesselager (1996) and Kim et al. (2019).

4. MULTIVARIATE FACTORIAL MOMENT TRANSFORM OF SOME
COMMONLY USED DISCRETE DISTRIBUTIONS

As discussed in Section 4.2 of Denuit and Robert (2021), common mixture is
a very flexible and useful method for constructing dependence models. It plays
a fundamental role in the following derivations. Therefore, we first present a
general result on moment transform of a random vector with common mixing
variables.

Let X= (X1, · · · ,XK ). An external environment, described by a random

variable �, affects each element of X such that X d=X(�) and Xi
d=Xi(�). Let
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X(λ) be the random vector with the conditional distribution of X given �= λ,
and then, we have the following result for the moment transform of X.

Proposition 4.1. The distribution function of the (k1, k2)th component (α1, α2)th
order moment transform of X=X(�) is given by

F
X̂[k

[α1]
1 ,k

[α2]
2 ]

(x) =
∫
F
X̂(λ)

[k
[α1]
1 ,k

[α2]
2 ]

(x) dF�∗(λ), (4.1)

where

dF�∗(λ)= E[Xk1(λ)
α1Xk2(λ)

α2 ]
E[Xk1(�)

α1Xk2(�)
α2 ]

dF�(λ).

Proof.

F
X̂[k

[α1]
1 ,k

[α2]
2 ]

(x) = E[Xk1(�)
α1Xk2(�)

α2I(X≤ x)]
E[Xk1(�)

α1Xk2(�)
α2 ]

=
∫
E[Xk1(λ)

α1Xα2
k2
(λ)I(X(λ)≤ x)] dF�(λ)

E[Xk1(�)
α1 ]E[Xk2(�)

α2 ]

=
∫
E[Xk1(λ)

α1Xk2(λ)
α2 ]E[I(X̂(λ)

[k
[α1]
1 ,k

[α2]
2 ] ≤ x)] dF�(λ)

E[Xk1(�)
α1 ]E[Xk2(�)

α2 ]

=
∫

E[I(X̂(λ)
[k

[α1]
1 ,k

[α2]
2 ] ≤ x)] dF�∗(λ)

=
∫
F
X̂(λ)

[k
[α1]
1 ,k

[α2]
2 ]

(x) dF�∗(λ).

�
This proposition is used in several settings in the sequel, where the moment

transforms of several commonly used multivariate models for claim frequency
are studied.

4.1. Multinomial – (a,b,0) mixture.

This is model A of Hesselager (1996). Let M be a counting random variable
whose probability mass function pM is in the (a,b,0) class with parameters a
and b. That is,

pM(k)=
(
a+ b

k

)
pM(k− 1), k= 1, 2, 3, · · · . (4.2)

Assume that conditional onM =m, N= (N1, · · · ,NK ) follows a multinomial
(MN) distribution with parameters (m, q1, · · · , qK ). That is
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Pr (N= n|M =m)= m!
n1!n2! · · · , nK !q

n1
1 · · · qnKK , when n1 + n2 + · · · + nK =m

for non-negative n1, · · · , nK . It is understood that N= 0 when m= 0.
As illustrated in Hesselager (1996), this model has a natural application

in claim reserving where M is the total number of claims incurred in a fixed
period and n1 ∼ nK are the number of claims in different stages of settlement
(reported, not-reported, paid, and so on).

In the following, we refer to the unconditional distribution of N as
the HMN distribution and write N∼HMN(M, q1, · · · , qK ). To obtain the
moment transforms of N, we observe that M can be regarded as a com-

mon mixing variable for (N1, · · · ,NK ). Thus, we write N d=N(M) and
let N(m)= (N1(m), · · · ,NK (m)) denote the random vector with distribution
MN(m, q1, · · · , qK ).

By simple substitution, it is easy to verify that

• for k ∈K and m≥ 1,

L[k](m)= N̂(m)
[k] − 1[k] ∼MN(m− 1, q1, · · · , qK ), (4.3)

• for k1 �= k2 ∈K and m≥ 2

L[k1,k2](m)= N̂(m)
[k1,k2] − 1[k1] − 1[k2] ∼MN(m− 2, q1, · · · , qK ), (4.4)

• for k ∈K and m≥ 2,

L[k[2]](m)=
(
N̂(m)

[k[(2)]] − 2× 1[k]
)

∼MN(m− 2, q1, · · · , qK ) (4.5)

Combining Proposition 4.1 and the above three points yields the following
results.

Theorem 4.1. Let N∼HMN(M, q1, · · · , qk), then
L[k] = N̂[k] − 1[k] ∼HMN(M̃ − 1, q1, · · · , qK ), (4.6)

L[k[2]] = N̂[k[(2)]] − 2× 1[k] ∼HMN(M̃ [(2)] − 2, q1, · · · , qK ), (4.7)

L[k1,k2] = N̂[k1,k2] − 1[k1] − 1[k2] ∼HMN(M̃ [(2)] − 2, q1, · · · , qK ). (4.8)

Proof. By Proposition 4.1,

pN̂[k] (n)=
∑
m

p
N̂(m)

[k] (n)pM∗
k
(m),
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where

pM∗
k
(m) = E[Nk(m)]

E[Nk(M)]
pM(m)

= mqk
E[M]qk

pM(m)

= pM̃ (m).

Therefore,

pL[k] (n)=
∑
m

pL[k](m)(n)pM∗
k
(m),

which by (4.3) indicates (4.6).
Similarly,

L[k1,k2] ∼HMN(M∗
k1,k2

− 2, q1, · · · , qK ),
where

pM∗
k1,k2

(m) = E[Nk1 (m)Nk2 (m)]
E[Nk1(M)Nk2 (M)]

pM(m)

= m(m− 1)qk1qk2
E[M(M − 1)]qk1qk2

pM(m)

= pM̃ [(2)] (m),

which leads to (4.7). In addition,

L[k[2]] ∼HMN(M∗
k[2] − 2, q1, · · · , qK )

where

pM∗
k[2]

(m) = E[Nk(m)(Nk(m)− 1)]
E[Nk(M)(Nk(M)− 1)]

pM(m)

= m(m− 1)q2k
E[M(M − 1)]q2k

pM(m)

= pM̃ [(2)] (m),

which leads to (4.8). �
It was shown in Ren (2021) that ifM is in (a,b,0) class with parameter (a,b),

then M̃ − 1 is in the (a,b,0) class with parameter (a, a+ b), and M̃ [(2)] − 2 is
in the (a,b,0) class with parameter (a, 2a+ b). Therefore, the distributions of
L[k], L[k[2]], L[k1,k2], and the original N are all in the same HMN family of
Binomial-(a,b,0) mixture distributions. Thus, all the nice properties discussed
in Hesselager (1996) are preserved. A particular important fact is that the
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corresponding compound distributions of SL[k] , SL[k[2]] , SL[k1,k2] can be evalu-
ated recursively by using Theorem 2.2 of Hesselager (1996). Alternatively, the
characteristic functions of SL[k] , SL[k[2]] , SL[k1,k2] can be found easily, and their
distribution functions can be computed using the FFT method. Consequently,

Theorem 3.1 can be applied to compute the distributions of ŜN
[k]
, ŜN

[k[2]]
and

ŜN
[k1,k2].

4.2. Additive common shock

For k ∈ {0} ∪K, let {Mk} be independent non-negative discrete random vari-
ables with distribution functions in the (a,b,0) class with parameters {(ak, bk)}.
For k ∈K, let Nk =M0 +Mk. We consider the vector N= (N1, · · · ,NK ).

The moment transforms of N could be derived by treating M0 as a com-
mon mixing random variable. However, we next take a seemingly more direct
approach.

Theorem 4.2. The kth component first moment transform of N is given by

Pr
(
N̂[k] = n

)
= E[M0]

E[Nk]
Pr [M̃0 +Mξ = nξ for all ξ ∈K]

+E[Mk]
E[Nk]

Pr [M0 + M̃k = nk,M0 +Mξ

= nξ for all ξ ∈K− {k}]. (4.9)

The kth component second factorial moment transform of N is given by

Pr
(
N̂[k[2]] = n

)
= E[M(2)

0 ]

E[N [(2)]
k ]

Pr [M̃0
[(2)] +Mξ = nξ for all ξ ∈K]

+E[M [(2)]
k ]

E[N [(2)]
k ]

Pr [M0 + M̃k
[(2)] = nk,M0

+Mξ = nξ for all ξ ∈K− {k}]

+2
E[M0]E[Mk]

E[N [(2)]
k ]

Pr [M̃0

+M̃k = nk, M̃0 +Mξ = nξ for all ξ ∈K− {k}] (4.10)

For k1 �= k2 ∈K, the (k1, k2)th component first-order moment transform of N is
given by
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Pr
(
N̂[k1,k2] = n

)
= E[M(2)

0 ]

E[Nk1Nk2 ]
Pr [M̃0

[(2)] +Mξ = nξ for all ξ ∈K]

+ E[M0]
E[Nk1Nk2 ]

Pr [M̃0 +Mξ = nξ for all ξ ∈K]

+E[M0Mk1 ]
E[Nk1Nk2 ]

Pr [M̃0 + M̃k1 = nk1 ,

M̃0 +Mξ = nξ for all ξ ∈K− {k1}]

+E[M0Mk2 ]
E[Nk1Nk2 ]

Pr [M̃0 + M̃k2 = nk2 ,

M̃0 +Mξ = nξ for all ξ ∈K− {k2}]

+E[Mk1Mk2 ]
E[Nk1Nk2 ]

Pr [M0 + M̃k1 = nk1 M0 + M̃k2 = nk2 ,

M0 +Mξ = nξ for all ξ ∈K− {k1, k2}]
(4.11)

Proof. The proof of three statements is similar. We only prove (4.11) in the
following.

Pr
(
N̂[k1,k2] = n

)
= E[Nk1Nk2I(N= n)]

E[Nk1Nk2 ]

= E[(M(2)
0 +M0 +M0Mk1 +M0Mk2 +Mk1Mk2)I(N= n)]

E[Nk1Nk2 ]

Now, becauseM0,M1, · · · ,MK are mutually independent, we have for the
first multiplication in the above

E[M(2)
0 I(N= n)]=E[M(2)

0 ] Pr
(
M̃0

[(2)] +Mξ = nξ for all ξ ∈K
)
,

which results in the first line of (4.11). Other terms can be obtained
similarly. �

Remark 4.1. Some insights can be gleaned from the results.
Firstly, (4.9) indicates that the distribution of N̂[k] is a mixture of
those of NA = (

M̃0 +M1, · · · , M̃0 +Mk, · · · , M̃0 +MK
)

and NB =(
M0 +M1, · · · ,M0 + M̃k, · · · ,M0 +MK

)
.

The Poisson case is especially interesting. Suppose thatMξ ∼ Poisson (λξ ) for

ξ ∈ {0} ∪K. Then, M̃ξ
d=Mξ + 1 for all ξ . As a result, the distribution of N̂[k] is

a mixture of those of NA =N+ 1, where 1 is a K dimensional vector of ones, and
NB =N+ 1[k], with weights λ0

(λ0+λk) and
λk

(λ0+λk) respectively. It is obvious that
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N̂[k] is larger thanN in the sense of multivariate first-order stochastic dominance.
For a general result about the stochastic order of a multivariate random variable
and its moment transform, please refer to Property 2.1 of Denuit and Robert
(2021). In addition, note that more weights are given to (N+ 1) when E[M0] is
large.

Having obtained the distributions of N̂[k], N̂[k1,k2] and N̂[k[2]], the distri-
butions of L[k], L[k1,k2], and L[k[2]] can be computed. For example, for the
Poisson case in Remark 4.1, L[k] = N̂[k] − 1[k] is a mixture of N+ 1− 1[k] and
N. Therefore, the corresponding compound distributions required in Theorem
3.1 can be evaluated using either the FFT method or the recursive formulas in
Theorem 3.2 of Hesselager (1996).

4.3. Common Poisson mixture

We consider the mixture model studied in Kim et al. (2019), which is more
general than Model B of Hesselager (1996).

Let � be a random variable defined on (0,∞). Conditional on �= λ, the
claim frequencies {Nk}k∈K are independent Poisson random variables, where
the type k frequency has mean akλ+ bk for some non-negative constants ak
and bk. Without loss of generality, we assume that E[�]= 1.

We have the following result.

Theorem 4.3.

Pr
(
L[k] = n

)
=
∫ ∏

k∈K
Pr (Nk(λ)= nk) dF�∗

k
(λ),

where

F�∗
k
(λ)= akF�̃(λ)+ bkF�(λ)

ak + bk
. (4.12)

Pr
(
L[k1,k2] = n

)
=
∫ ∏

k∈K
Pr (Nk(λ)= nk) dF�∗

k1k2
(λ),

where

F�∗
k1k2

(λ)= ak1ak2E[�
2]F�̃[2] (λ)+ (ak1bk2 + ak2bk1)F�̃[1] (λ)+ bk1bk2F�(λ)

ak1ak2E[�
2]+ ak1bk2 + ak2bk1 + bk1bk2

.

(4.13)

Pr
(
L[k[2]] = n

)
=
∫ ∏

k∈K
Pr (Nk(λ)= nk) dF�∗

k[2]
(λ), (4.14)

where

F�∗
k[2]

(λ)= a2kE[�
2]F�̃[2] (λ)+ 2akbkF�̃[1] (λ)+ b2kF�(λ)

a2kE[�
2]+ 2akbk + b2k

(4.15)
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Proof. The proof of the three statements is similar. We only present the
proof of (4.14) in the following.

First, due to Proposition 4.1, we have

Pr
(
N̂[k[(2)]] = n

)
=
∫

Pr
(
N̂(λ)

[k[(2)]] = n
)
dF�∗

k[2]
(λ),

where

dF�∗
k[2]

(λ) = E[Nk(λ)(2)]

E[Nk(�)(2)]
dF�(λ)

= (akλ+ bk)2

E[(ak�+ bk)2]
dF�(λ)

= a2kλ
2 dF�(λ)+ 2akbkλ dF�(λ)+ b2k dF�(λ)

a2kE[�
2]+ 2akbkE[�]+ b2k

= a2kE[�
2]dF�̃[2] (λ)+ 2akbkdF�̃(λ)+ b2kdF�(λ)

a2kE[�
2]+ 2akbk + b2k

,

which is (4.15). Notice that we have used E[�]= 1.
Next, since

L[k[2]] = N̂[k[(2)]] − 2× 1[k],

we have

Pr
(
L[k[2]] = n

)
=
∫

Pr
(
L[k[2]](λ)= n

)
dF�∗

k[2]
(λ). (4.16)

However, because Nk(λ), k ∈K are independent Poisson random variables,

L[k](λ)= N̂(λ)
[k] − 1[k] d=N(λ),

L[k[2]](λ)= N̂(λ)
[k[(2)]] − 2× 1[k] d=N(λ) (4.17)

and

L[k1,k2](λ)= N̂(λ)
[k1,k2] − 1[k1] − 1[k2] d=N(λ).

Combining (4.16) and (4.17) leads to the desired result. �
Remark 4.2. It is seen from Theorem 4.3 that the distributions of L[k], L[k[2]] and
L[k1,k2] are similar to that of N, with mixing parameters given by �∗

[k], �
∗
k[2],

and
�∗

[k1,k2],
respectively. In addition, the distributions of �∗

[k], �
∗
k[2]

and �∗
[k1,k2]

are

the mixtures of those of �̃[1], �̃[2], and �. Therefore, they can be evaluated if
the distributions of �̃[1] and �̃[2] can be determined. In fact, this is true for many
choices of the distribution of � (Patil and Ord, 1976). For example, if � has a
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gamma (α, β) distribution with p.d.f

f�(λ)= βα

�(α)
λα−1e−βλ

then �̃[1] and �̃[2] follow gamma distributions with parameters (α + 1, β) and
(α + 2, β), respectively. In such a case, the distributions of L’s are the finite
mixtures of some Poisson-gamma mixtures. Consequently, the distribution of
the compound sum SL can be computed using the recursive methods derived in
Hesselager (1996) or the FFT method.

4.4. Dependent claim frequency and size

As briefly discussed in Section 4.3 of Denuit and Robert (2021), the general
mixing method we used in this section can be applied to calculate the risk mea-
sures of the aggregate loss when the claim frequency and size are dependent
through some common mixing variables. To illustrate the method, we use the
setup of Section 4.3 of this paper, but now assume that the distributions of
claim sizes also depend on the background parameter �.

Theorem 4.4. Let� be a random variable defined on (0,∞). Conditional on�=
λ, let the claim frequencies Nk for k ∈K be independent Poisson random variables
with mean akλ+ bk; let the corresponding claim sizes have distribution function
FXk|λ with mean ckλ+ dk. Then,

(i)

Pr
(
Ŝ[k]
N ≤ s

)
=
∫

Pr
(
SN1 (λ)≤ s1, · · · , SNk (λ)

+X̃k(λ)≤ sk, · · · , SNK (λ)≤ sK
)
dF�d,k∗ (λ)

(4.18)

where

dF�d,k∗ (λ)

= E
[
SNk (λ)

]
E
[
SNk (�)

]dF�(λ)
= (akλ+ bk)(ckλ+ dk)

E [(ak�+ bk)(ck�+ dk)]
dF�(λ)

= akckE[�2] dF�̃[2] (λ)+ (akdk + bkck)E[�] dF�̃[1] (λ)+ bkdk dF�(λ)

akckE[�2]+ (akdk + bkck)E[�]+ bkdk
.

(4.19)
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(ii)

Pr
(
ŜN

[k[2]] ≤ s
)

=
∫

Pr
(
SN1(λ)≤ s1, · · · , S̃Nk (λ)

[2]

≤ sk, · · · , SNK (λ)≤ sK
)
dF�∗

d,k[2]
(λ)

(4.20)

where

dF�∗
d,k[2]

(λ) =
E
[
S2
Nk

(λ)
]

E
[
S2
Nk

(�)
] dF�(λ) (4.21)

and

Pr (S̃Nk (λ)
[2] ≤ s) = E[N(2)

k (λ)](E[Xk(λ)])2

E[SNk (λ)
2]

Pr
(
SNk (λ)

+X̃k,1(λ)+ X̃k,2(λ)≤ s
)

+ E[Nk(λ)](E[Xk(λ)2])
E[SNk (λ)

2]
Pr (SNk (λ)+ X̃k,1(λ)

[2] ≤ s),

(4.22)
(iii)

Pr
(
ŜN

[k1,k2] ≤ s
)

=
∫

Pr
(
SN1 (λ)≤ s1, · · · , S̃Nk1

(λ)≤ sk1 , · · · , S̃Nk2
(λ)

≤ sk2 , · · · , SNK (λ)≤ sK
)
dF�∗

d,(k1,k2)
(λ)

(4.23)

with

dF�∗
d,(k1,k2)

(λ) =
E
[
SNk1

(λ)SNk2
(λ)
]

E
[
SNk1

(�)SNk2
(�)

] dF�(λ). (4.24)

Proof. Since all variables in SN are independent conditional on �, we have

ŜN(λ)
[k

[α1]
1 ,k

[α2]
2 ] d=

(
SN1(λ) · · · , S̃Nk1

(λ)
[k

[α1]
1 ]

, · · · , S̃Nk2
(λ)

[k
[α2]
2 ]

, · · · , SNK (λ)

)
.

Then, the three statements can be proved by applying Proposition 4.1.

Equation (4.22) for S̃Nk (λ)
[2]

is due to (3.14). �
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Remark 4.3. When both the distributions of claim frequency and size depend
on λ, the distribution of SNk cannot be computed using the recursive methods.
However, its characteristic function can still be calculated. Thus, the FFTmethod
is still applicable.

5. NUMERICAL EXAMPLES

In this section, we provide numerical examples carrying out the capital allo-
cation computation for each of the three models introduced in the previous
section. In all the examples, we suppose that an insurer underwrites auto insur-
ance policies that cover two types of claims: bodily injury (BI) and property
damage (PD). Let the numbers of the two types of claims incurred in a time
period be N= (N1,N2) and their sizes be X1 and X2, respectively.

The distributions of claim frequencies and sizes and their parameters are
selected hypothetically. However, they reflect the fact that the BI claims have
relatively low frequencies and high severities. Our main goal is to illustrate the
application of the formulas derived in this paper to compute the risk measures
and capital allocations for multivariate aggregate loss models. Our results illus-
trate how low (or high) frequencies and high (or low) severities contribute to
the tail risks.

To compare these two types of risks, in all the examples we report the
following ratios.

• The proportions of risk capital allocated to the two types of risks
according to the TCE criterion

E[SNk |S• > sq]
E[S•|S• > sq]

k= 1, 2. (5.1)

• The proportions of risk capital allocated to the two types of risks
according to the TV criterion

Cov
[
(Sk , S•)|S• > sq

]
Var

[
S•|S• > sq

] k= 1, 2. (5.2)

The computations are carried out using the following procedure.

Computation Procedure 5.1

(i) Determine the distributions of L[k] and L[k[2]] for k= 1, 2, and L[1,2] using
Theorems 4.1, 4.2, or 4.3.

(ii) Determine the distributions of SL[k] and SL[k[2]] for k= 1, 2, and SL[1,2] . For
the three models we discussed, this can be implemented by using the FFT
or the recursive method proposed in Hesselager (1996). We choose to use
the FFT method because of the simplicity of computer programming.
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FIGURE 1. The steps for computing
E[SNk |(S•>sq)]
E[S•|(S•>sq)] .

(iii) Determine the distributions of ŜN
[k]
, ŜN

[k[2]]
for k= 1, 2 and ŜN

[1,2]
. This

is implemented by using Theorem 3.1. The required convolutions are
computed using the FFT method.

(iv) Determine the MTCE and MTCOV of SN using Equations (3.15), (3.16),
and (3.17).

(v) Determine the TCE- and TV-based capital allocations by using Equations
(3.18) and (3.19).

A flowchart for computing
E[SNk |S•>sq]
E[S•|S•>sq] is shown in Figure 1. The steps for

computing
Cov

[
(Sk ,S•)|S•>sq

]
Var[S•|S•>sq] are similar and thus omitted.

Since in all the three models studied, the claim frequencies are dependent
but the claim sizes are independent, we have

E[S2
k]=E[Nk]E[X

2
k ]+E[N(2)

k ](E[Xk])
2, k= 1, 2

and

E[S1S2]=E[N1N2]E[X1]E[X2].

These quantities will be used in the calculations.

5.1. An example of the HMN model

Assume that N follows the HMN (M, q1, q2) distribution with M ∼NB(r, β)
whose probability mass function is given by (the parameterization in Klugman
et al., 2019 is adopted)

pM(n)=
(
r+n−1

n

) ( β

1+ β

)n ( 1
1+ β

)r
, n≥ 0.
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It is easy to check that

E[Nk]=E[M]qk, k= 1, 2,

E[N(2)
k ]=E[M(2)]q2k, k= 1, 2,

E[N1N2]=E[M(2)]q1q2,

and

Cov[N1,N2]= (Var(M)−E[M])q1q2.

One interesting fact that the above equation reveals is that for the HMN
model, the sign of the covariance of N1 and N2 depends on the relative sizes
of the variance and mean ofM. Clearly, ifM follows a negative binomial dis-
tribution, then N1 and N2 are positively correlated; if M follows a Poisson
distribution, then they are not correlated; ifM is a binomial random variable,
then they are negatively correlated.

Following Hesselager (1996), the joint PGF of N is

PN(z1, z2)= (1− β(q1z1 + q2z2 − 1))−r (5.3)

and the characteristic function of SN is

ψSN(t1, t2)=
(
1− β(q1ψX1 (t1)+ q2ψX2(t2)− 1)

)−r , (5.4)

where ψX1 and ψX2 are the characteristic functions of X1 and X2, respectively.
With the above formulas, we may follow Computation Procedure 5.1 to

evaluate the risks and perform the capital allocations for the aggregate losses
(S1, S2). Some results for this model related to steps (i) and (ii) are given in the
following. Steps (iii) to (v) are generic and can be followed for all the models.

Step (i): By Theorem 4.1,

L[k] ∼ (M1, q1, q2), k= 1, 2

and

L[1[2]] d=L[2[2]] d=L[1,2] ∼ (M2, q1, q2).

SinceM ∼NB(r, β), we have

M1 = M̃ − 1∼NB(r+ 1, β)

and

M2 = M̃ [(2)] − 2∼NB(r+ 2, β).

Thus, for this model, all L’s follow HMN distributions.

Step (ii): Because of the above, the characteristic functions of SL[k] , SL[k[2]] for
k= 1, 2 and SL[1,2] can be derived in a similar way as that for SN. Specifically,

ψSL[k]
(t1, t2)=

(
1− β(q1ψX1(t1)+ q2ψX2 (t2)− 1)

)−(r+1)
(5.5)
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FIGURE 2. Capital allocations for the HMN model.

and

ψS
L[k

[2]]
(t1, t2)=ψSL[1,2]

(t1, t2)=
(
1− β(q1ψX1 (t1)+ q2ψX2(t2)− 1)

)−(r+2) .

(5.6)

Therefore, their distributions can also be computed using the FFT method.
The capital allocation computations are performed by assuming that M ∼

NB(r= 10, β = 1), q1 = 0.1, q2 = 0.9, X1 ∼ Poisson(5) and X2 ∼ Poisson(1).
Note that we assumed Poisson distributions with hypothetical parameters for
the claim sizes for simplicity. If more realistic continuous distributions are
assumed, they need to be discretized in order to use the FFT or recursive
methods.

The proportions of capital allocated according to TCE with selected values
of sq are plotted in the upper left panel of Figure 2. It shows that the proportion
of risk capital allocated to BI (PD) claims increases (decreases) with sq. More
capital is allocated to PD claims when sq is small, whereas more risk capital
is allocated to BI claims when sq is large. To put the numbers in the plot into
context, S• has mean 14 and standard deviation 8.2.

The proportions of capital allocated according to TV are shown in the upper
right panel of Figure 2. We observe that the proportion allocated to BI claims
is a decreasing function for small values of sq (roughly speaking, when sq is
less than the mean value of S•, 14); it is increasing for large values of sq. The
opposite pattern is observed for PD claims.
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Figure 2 also shows the capital allocation results obtained by using a Monte
Carlo simulation with sample size 107. Clearly, the results obtained by the two
methods agree. In addition, our elementary simulation results become unsta-
ble for large sq. To obtain more stable simulation results, one needs to either
increase the sample size or apply certain variance reduction methods.

Note that the amounts of capital allocated to BI and PD risks both increase
with sq, as shown in the lower panels of Figure 2.

5.2. An example of the common shock model

Let N1 =M0 +M1, N2 =M0 +M2, where M0, M1, and M2 are indepen-
dent Poison random variables with parameter λ0, λ1, λ2 respectively. Then,
we have

E[Nk]= λ0 + λk, k= 1, 2,

E[N(2)
k ]= (λ0 + λk)

2, k= 1, 2,

and

E[N1N2]= (λ0 + λ1)(λ0 + λ2)+ λ0.

The characteristic function of SN is

ψSN(t1, t2)= exp
(
λ0(ψX1 (t1)ψX2 (t2)− 1)+ λ1(ψX1 (t1)− 1)+ λ2(ψX2 (t2)− 1)

)
.

(5.7)

Some results for this model related to steps (i) and (ii) of Computation
Procedure 5.1 are given in the following.

Step (i): By Equation (4.9), we have that L[1] is a mixture of N+ (0, 1) and
N with weights λ0/(λ0 + λ1) and λ1/(λ0 + λ1), respectively. L[2] is a mixture
of N+ (1, 0) and N with weights λ0/(λ0 + λ2) and λ2/(λ0 + λ2), respectively.
Similarly, the distributions of L[k[2]], k= 1, 2 and L[1,2] are some mixtures of
N, N+ (0, 1), N+ (1, 0), N+ (0, 2), N+ (2, 0), and N+ (1, 1). Therefore, their
distributions can be computed.

Step (ii): Since the distributions of L’s are the mixtures of the aggregate
Poisson random variables and some constants. The characteristic function of
the corresponding compound distribution can be obtained straightforwardly.

With these steps, all the quantities needed for the capital allocations can
be computed. The computation is carried out with λ0 = 0.5, λ1 = 0.5, λ2 = 5,
X1 ∼ Poisson(5) and X2 ∼ Poisson(1). Figure 3 illustrates the results.
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FIGURE 3. Capital allocations for the common shock model.

5.3. An example of the Poisson Mixture model

Let � follow a Gamma distribution with parameters (α, α), and thus, its mean
is 1. Conditional on�= λ, for k ∈ {1, 2},Nk’s are independent Poisson random
variables with mean akλ+ bk.

It is easy to check that for k= 1, 2

E[Nk]= ak + bk,

E[N(2)
k ]= (ak + bk)

2 + a2k
α
,

and

E[N1N2]= (a1 + b1)(a2 + b2)+ a1a2
α

.

The characteristic function of SN is

ψSN(t1, t2)= exp (b1(ψX1 (t1)− 1)+ b2(ψX2 (t2)− 1))

+
(

α

α − a1(ψX1 (t1)− 1)− a2(ψX2 (t2)− 1)

)α
(5.8)

Some results for this model related to steps (i) and (ii) of Computation
Procedure 5.1 are given in the following.

Step (i): By Theorem 4.3, the distributions of L[1], L[2], L[1[2]], L[2[2]], and L[1,2]

are all mixtures of Poisson-gamma mixtures.

Step (ii): Because of the above, the characteristic function of SL can be
determined and the distribution function can be calculated using FFT.

The capital allocation computations are carried out with a1 = 0.2, a2 = 0.4,
b1 = 1, b2 = 2, α = 2, X1 ∼ Poisson(5) and X2 ∼ Poisson(1). Figure 4 illustrates
the results.
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FIGURE 4. Capital allocations for the Poisson mixture model.

5.4. Findings of the numerical examples and other computational issues

In all of the three numerical examples we studied, the parameters are set such
that BI claims are less frequent but more severe. The results show that, accord-
ing to TCE allocation rule, the proportion of risk allocated to BI (PD) claims
increases (decreases) with respect to the threshold level sq. According to TV
allocation principle, the proportion allocated to BI claims first decreases and
then increases. The opposite pattern is observed for PD claims. For all the
cases, the proportions allocated to the two types of risk seem to converge to
some constant as sq goes to infinity.

We only provide examples that consider two types of risks. Computations
are implemented using the software R (R Core Team, 2016). However, the for-
mulas derived in Sections 3 and 4 are valid for compound variables of any finite
dimension K. Nevertheless, the distribution of SN and its moment transform
still need to be evaluated by multivariate recursive or FFT method, which may
lead to numerical problems whenK is very large. Exploring the behavior of the
computational aspects of our model for the high-dimensional problem may be
a good topic for future research.

It is worth pointing out that our Equations (3.15)–(3.19) in fact lead to a
novel approach to simulate the tail moments and perform the capital alloca-
tions. Particularly, instead of simulating the tail moments directly, one can
simulate the ratio between the tail probabilities of the moment transformed
distributions.

6. CONCLUSIONS

This paper presents the formulas for computing the multivariate TCE and TV
for some types of multivariate compound distributions where the claim fre-
quencies are dependent and the claim sizes are independent. We focus on the
three important types of dependence models introduced in Hesselager (1996)
and their extensions. The formulas are derived based on the moment transform
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of multivariate compound distributions, as discussed in Denuit and Robert
(2021) and the references therein.

As shown in Section 4.4, the methodology can be extended to the cases
where the claim frequencies and claim sizes are dependent through a common
shock. For future research, one could investigate whether such methodology
can be applied to compute the risk measures of compound variables with more
complicated dependence structures.
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