INDEX OF AUTHORS

ABE, O	Shear strength and angle of repose of snow layers including graupel	305
ALFNES, E	Temporal variability in snow distribution	101
ALFNES, E	Time-variant snow distribution for use in hydrological models	180
AMANN, P	The temperature and density-dependent acoustic emission response of snow in monoaxial compression tests	291
AMMANN, W J	The temperature and density-dependent acoustic emission response of snow in monoaxial compression tests	291
AMMANN, W J	Hazard scenarios for avalanche actions on bridges	89
ANDREASSEN, LM	Temporal variability in snow distribution	101
ANDREU, L	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
ANDREU, L	Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex Project in the Pyrenees	173
ARNALDS, Þ	Avalanche hazard zoning in Iceland based on individual risk	285
BABA, E	SNOWPACK model simulations for snow in Hokkaido, Japan	123
BAKKEHØI, S	Slushflow hazard prediction and warning	45
BARBOLINI, M	Risk assessment in avalanche-prone areas	115
BARTELT, P	The temperature and density-dependent acoustic emission response of snow in monoaxial compression tests	291
BAZILE, E	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
BELLOT, H	Experimental study of dense snow avalanches: velocity profiles in steady and fully developed flows	30
BENSON, C	Scales of spatial heterogeneity for perennial and seasonal snow layers	253
BINTANJA, R	The mass balance of a dry snow surface during a snowstorm	79
BIRKELAND, KW	Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer	223
BOONE, A	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
BOUCHET, A	Experimental study of dense snow avalanches: velocity profiles in steady and fully developed flows	30
BOZHINSKIY, A N	The Monte Carlo simulation of avalanche-type processes	351
BRANDELIK, A	A new in-situ sensor for large-scale snow cover monitoring	273
BROWN, R	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
BROWN, R	Modeling snow instability with the snow-cover model SNOWPACK	331
BRZOSKA, J-B	Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions	39
BRZOSKA, J-B	From snow X-ray microtomograph raw volume data to micromechanics modeling: first results	52
BUCHER, F	The temperature and density-dependent acoustic emission response of snow in monoaxial compression tests	291
CAPPABIANCA, F	Risk assessment in avalanche-prone areas	115
COLÉOU, C	Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions	39
COLÉOU, C	From snow X-ray microtomograph raw volume data to micromechanics modeling: first results	52

Index of authors

CORRIPIO, J G	Two-dimensional numerical modelling of surface wind velocity and associated snowdrift effects over complex mountainous topography	59
DAI, Y-J	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
DURAND, Y	Two-dimensional numerical modelling of surface wind velocity and associated snowdrift effects over complex mountainous topography	59
DURAND, Y	A system for prediction of avalanche hazard in the windy climate of Iceland	319
ENGESET, RV	Temporal variability in snow distribution	101
ESSERY, R	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
ESSERY, R	Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: observations in a subarctic mountain catchment	195
ESSERY, R	Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: theoretical considerations	261
ETCHEVERS, P	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
ÉTIENNE, J	Numerical simulations of dense clouds on steep slopes: application to powder-snow ava- lanches.	379
FAUG, T	Experimental and numerical study of granular flow and fence interaction	135
FAUG, T	Dense and powder avalanches: momentum reduction generated by a dam	373
FELBER, A	Verification of nearest-neighbours interpretations in avalanche forecasting	84
FERNANDEZ, A	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
FIERZ, C	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
FIERZ, C	Heat flow from wet to dry snowpack layers and associated faceting	187
FIERZ, C	Modeling snow instability with the snow-cover model SNOWPACK	331
FLIN, F	Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions	39
FLIN, F	From snow X-ray microtomograph raw volume data to micromechanics modeling: first results	52
FOPPA, N	Operational sub-pixel snow mapping over the Alps with NOAA AVHRR data	245
FURDADA, G	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
GADIENT, F	Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area	314
GAUER, P	Possible erosion mechanisms in snow avalanches	384
GIRAUD, G	A system for prediction of avalanche hazard in the windy climate of Iceland	319
GOLUBEV, V N	Regular packing of grains as a model of snow structure	25
GRANIG, M	Wind-tunnel study of snowdrift around avalanche defence structures	325
GRUBER, U	Large-scale snow instability patterns in Western Canada: first analysis of the CAA–InfoEx database 1991–2002	15
GUSEV, Y	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
GUSTAFSSON, D	A new in-situ sensor for large-scale snow cover monitoring	273
GUSTAFSSON, D	Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area	314
GUTIÉRREZ, G	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
GUTIÉRREZ, G	Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex Project in the Pyrenees	173
GUYOMARC'H, G	Two-dimensional numerical modelling of surface wind velocity and associated snowdrift effects over complex mountainous topography	59

HÄGELI, P	Large-scale snow instability patterns in Western Canada: first analysis of the CAA–InfoEx database 1991–2002	15
HÄGELI, P	Hierarchy theory as a conceptual framework for scale issues in avalanche forecast modeling	209
HARALDSDÓTTIR, SH	A system for prediction of avalanche hazard in the windy climate of Iceland	319
HASHIYA, E	Linear trends of the length of snow-cover season in the Northern Hemisphere as observed by the satellites in the period 1972–2000	229
HAUSER, A	Operational sub-pixel snow mapping over the Alps with NOAA AVHRR data	245
HEIERLI, J	Verification of nearest-neighbours interpretations in avalanche forecasting	84
HESTNES, E	Slushflow hazard prediction and warning	45
HIRASHIMA, H	SNOWPACK model simulations for snow in Hokkaido, Japan	123
HOPFINGER, E J	Numerical simulations of dense clouds on steep slopes: application to powder-snow avalanches	379
HUTTER, K	Dynamics of avalanches along general mountain slopes	357
IMAI, M	Linear trends of the length of snow-cover season in the Northern Hemisphere as observed by the satellites in the period 1972–2000	229
ISHIZAKA, M	Climatic response of snow depth to recent warmer winter seasons in heavy snowfall areas in Japan	299
ISSLER, D	Possible erosion mechanisms in snow avalanches	384
IZUMI, K	Numerical study of the time development of drifting snow and its relation to the spatial development	343
JAEDICKE, C	Wind-tunnel study of snowdrift around avalanche defence structures	325
JAMIESON, B	A nearest-neighbour model for forecasting skier-triggered dry slab avalanches on persistent weak layers in the Columbia Mountains, Canada	166
JAMIESON, B	Heat flow from wet to dry snowpack layers and associated faceting	187
JAMIESON, B	Modeling snow instability with the snow-cover model SNOWPACK	331
JÓNASSON, K	Avalanche hazard zoning in Iceland based on individual risk	285
JONES, AST	Statistical avalanche-runout estimation for short slopes in Canada	363
JONES, AST	Statistical avalanche-runout estimation for short slopes in Canada	363
JORDAN, R	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
KELLER, T	Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area	314
KIRCHNER, HOK	On the fracture toughness of snow	1
KLOK, EJ	Effect of summer snowfall on glacier mass balance	97
KOBAYASHI, S	Numerical study of the time development of drifting snow and its relation to the spatial development	343
KOREN, V	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
KOSUGI, K	Development of saltation layer of drifting snow	35
KOWALCZYK, E	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
KOWALSKI, J	Verification of nearest-neighbours interpretations in avalanche forecasting	84
KRONHOLM, K	Spatial variability of micropenetration resistance in snow layers on a small slope	202
KRONHOLM, K	Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer	223
KUCHEN, F	Operational sub-pixel snow mapping over the Alps with NOAA AVHRR data	245
LANGSHOLT, E G	Time-variant snow distribution for use in hydrological models	180
LEHNING, M	SNOWPACK model simulations for snow in Hokkaido, Japan	123
LEHNING, M	Application of the numerical snowpack model $(\ensuremath{\mathbf{SNOWPACK}})$ to the wet-snow region in Japan	266
LEHNING, M	Measurements and model calculations of the solar shortwave fluxes in snow on Summit, Greenland	279
LEHNING, M	Modeling snow instability with the snow-cover model SNOWPACK	331

Index of authors

LEHNING, M	Estimating snow conditions in Finland in the late 21st century using the SNOWPACK model with regional climate scenario data as input	238
LEJEUNE, Y	Validation of the energy budget of an alpine snowpack simulated by several snow models $(SnowMIP\ project)$	150
LESAFFRE, B	Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions	39
LESAFFRE, B	From snow X-ray microtomograph raw volume data to micromechanics modeling: first results	52
LI, J	Modeling the density variation in the shallow firn layer	309
MAENO, N	The splash function for snow from wind-tunnel measurements	71
MAENO, N	Mechanical vibration responses of snow samples near the melting temperature	130
MARGRETH, S	Hazard scenarios for avalanche actions on bridges	89
MAHAJAN, P	A constitutive law for snow taking into account the compressibility	145
MANNERS, E	Large-scale snow instability patterns in Western Canada: first analysis of the CAA–InfoEx database 1991–2002	15
MARTÍNEZ, P	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
MARTÍNEZ, P	Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex Project in the Pyrenees	173
MARTIN, E	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
MATSUOKA, K	Observation of internal structures of snowcovers with a ground-penetrating radar	21
MCCLUNG, DM	Large-scale snow instability patterns in Western Canada: first analysis of the CAA–InfoEx database 1991–2002	15
MCCLUNG, DM	Hierarchy theory as a conceptual framework for scale issues in avalanche forecast modeling	209
MCCLUNG, DM	Verified combination of numerical weather- and avalanche-prediction models at Kootenay Pass, British Columbia, Canada	215
MCELWAINE, J N	Calculation of two-dimensional avalanche velocities from optoelectronic sensors	139
MCELWAINE, J N	The splash function for snow from wind-tunnel measurements	71
MÉRINDOL, L	Two-dimensional numerical modelling of surface wind velocity and associated snowdrift effects over complex mountainous topography	59
MÉRINDOL, L	A system for prediction of avalanche hazard in the windy climate of Iceland	319
MEIROLD-MAUTNER, I	Measurements and model calculations of the solar shortwave fluxes in snow on Summit, Greenland	279
MICHOT, G	On the fracture toughness of snow	1
MISHRA, A	A constitutive law for snow taking into account the compressibility	145
MOLINA, R	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
MUNTÁN, E	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
MUNTÁN, E	Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex Project in the Pyrenees	173
NAAIM, M	Experimental study of dense snow avalanches: velocity profiles in steady and fully developed flows	30
NAAIM, M	Experimental and numerical study of granular flow and fence interaction	135
NAAIM, M	Dense and powder avalanches: momentum reduction generated by a dam	373
NAAIM-BOUVET, F	Experimental and numerical study of granular flow and fence interaction	135
NAAIM-BOUVET, F	Wind-tunnel study of snowdrift around avalanche defence structures	325
NAAIM-BOUVET, F	Dense and powder avalanches: momentum reduction generated by a dam	373
NARUSE, R	Observation of internal structures of snowcovers with a ground-penetrating radar	21
NASONOVA, NO	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150

NEMOTO, M	Numerical study of the time development of drifting snow and its relation to the spatial development	343
NISHIMURA, K	SNOWPACK model simulations for snow in Hokkaido, Japan	123
NISHIMURA, K	Numerical study of the time development of drifting snow and its relation to the spatial development	343
OERLEMANS, J	Effect of summer snowfall on glacier mass balance	97
OESCH, D	Operational sub-pixel snow mapping over the Alps with NOAA AVHRR data	245
ÓLAFSSON, H	A system for prediction of avalanche hazard in the windy climate of Iceland	319
OLLER, P	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
OLLER, P	Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex Project in the Pyrenees	173
OUSSET, F	Experimental study of dense snow avalanches: velocity profiles in steady and fully developed flows	30
PIELMEIER, C	Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer	223
PIELMEIER, C	Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area	314
PIERITZ, RA	Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions	39
PIERITZ, RA	From snow X-ray microtomograph raw volume data to micromechanics modeling: first results	52
POMEROY, J	Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: observations in a subarctic mountain catchment	195
POMEROY, J	Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: theoretical considerations	261
PUDASAINI, S P	Dynamics of avalanches along general mountain slopes	357
PURVES, R S	Verification of nearest-neighbours interpretations in avalanche forecasting	84
PYLES, R D	Validation of the energy budget of an alpine snowpack simulated by several snow models $({\bf SnowMIP}\ project)$	150
RÄISÄNEN, J	Estimating snow conditions in Finland in the late 21st century using the SNOWPACK model with regional climate scenario data as input	238
RASMUS, S	Estimating snow conditions in Finland in the late 21st century using the SNOWPACK model with regional climate scenario data as input	238
RIKIISHI, K	Seasonal cycle of the snow coverage in the former Soviet Union and its relation with atmospheric circulation	106
RIKIISHI, K	Linear trends of the length of snow-cover season in the Northern Hemisphere as observed by the satellites in the period 1972–2000	229
RIXEN, C	Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area	314
ROEGER, C	Verified combination of numerical weather- and avalanche-prediction models at Kootenay Pass, British Columbia, Canada	215
SAKAKIBARA, J	Seasonal cycle of the snow coverage in the former Soviet Union and its relation with atmospheric circulation	106
SAMPL, P	Avalanche simulation with SAMOS	393
SARAMITO, P	Numerical simulations of dense clouds on steep slopes: application to powder-snow avalanches	379
SATO, A	Development of saltation layer of drifting snow	35
SATO, A	Application of the numerical snowpack model $(\ensuremath{\mathbf{SNOWPACK}})$ to the wet-snow region in Japan	266
SATO, T	Development of saltation layer of drifting snow	35
SAVI, F	Risk assessment in avalanche-prone areas	115
SCAPOZZA, C	The temperature and density-dependent acoustic emission response of snow in monoaxial compression tests	291

Index of authors

SCHLAEGER, S	A new in-situ sensor for large-scale snow cover monitoring	273
SCHLOSSER, A	Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project)	150
SCHNEEBELI, M	Spatial variability of micropenetration resistance in snow layers on a small slope	202
SCHNEEBELI, M	Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer	223
SCHNEEBELI, M	A new in-situ sensor for large-scale snow cover monitoring	273
SCHNEEBELI, M	Numerical simulation of elastic stress in the microstructure of snow	339
SCHWEIZER, J	On the fracture toughness of snow	1
SCHWEIZER, J	Spatial variability of micropenetration resistance in snow layers on a small slope	202
SHMAKIN, A B	Validation of the energy budget of an alpine snowpack simulated by several snow models $(SnowMIP\ project)$	150
SIGURÐSSON, S	Avalanche hazard zoning in Iceland based on individual risk	285
SKAUGEN, T	Temporal variability in snow distribution	101
SKAUGEN, T	Time-variant snow distribution for use in hydrological models	180
SMIRNOVA, T G	Validation of the energy budget of an alpine snowpack simulated by several snow models $(SnowMIP\ project)$	150
SOKRATOV, SA	Regular packing of grains as a model of snow structure	25
STÄHLI, M	A new in-situ sensor for large-scale snow cover monitoring	273
STÄHLI, M	Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area	314
STACHEDER, M	A new in-situ sensor for large-scale snow cover monitoring	273
STRASSER, U	Validation of the energy budget of an alpine snowpack simulated by several snow models $(SnowMIP\ project)$	150
STULL, R	Verified combination of numerical weather- and avalanche-prediction models at Kootenay Pass, British Columbia, Canada	215
STURM, M	Scales of spatial heterogeneity for perennial and seasonal snow layers	253
SUGIURA, K	The splash function for snow from wind-tunnel measurements	71
TAKEI, I	Mechanical vibration responses of snow samples near the melting temperature	130
ТОТН, В	Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: observations in a subarctic mountain catchment	195
UDNÆS, H-C	Temporal variability in snow distribution	101
UDNÆS, H-C	Time-variant snow distribution for use in hydrological models	180
VERSEGHY, D	Validation of the energy budget of an alpine snowpack simulated by several snow models $(SnowMIP project)$	150
VILAPLANA, J M	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Nuria, eastern Pyrenees, Spain	159
WAND, Y	Dynamics of avalanches along general mountain slopes	357
WUNDERLE, S	Operational sub-pixel snow mapping over the Alps with NOAA AVHRR data	245
YAMAGUCHI, S	Application of the numerical snowpack model $(\ensuremath{\textbf{SNOWPACK}})$ to the wet-snow region in Japan	266
YAMAMOTO, T	Observation of internal structures of snowcovers with a ground-penetrating radar	21
YAMAZAKI, T	Validation of the energy budget of an alpine snowpack simulated by several snow models $(SnowMIP\ project)$	150
YANG, Z-L	Validation of the energy budget of an alpine snowpack simulated by several snow models $(SnowMIP\ project)$	150
ZAISER, M	Slab avalanche release viewed as interface fracture in a random medium	9
ZEIDLER, A	A nearest-neighbour model for forecasting skier-triggered dry slab avalanches on persistent weak layers in the Columbia Mountains, Canada	166
ZWALLY, HJ	Modeling the density variation in the shallow firn layer	309
ZWINGER, T	Avalanche simulation with SAMOS	393