SPLICING n-CONVEX FUNCTIONS USING SPLINES

BY
G. E. CROSS

Abstract

It is proved that a regular piecewise n-convex function differs from an n-convex function only by a polynomial spline of degree $n-1$. The argument is given in terms of Peano and de la Vallée Poussin derivatives.

1. Introduction. Let $x_{0}, x_{1}, \ldots, x_{n}$ be $(n+1)$ distinct points from [a,b]. By $V_{n}(F)$ we denote the nth divided difference of F :

$$
V_{n}(F) \equiv \sum_{k=0}^{n} F\left(x_{k}\right) / w_{n}^{\prime}\left(x_{k}\right),
$$

where $\left.\left.w_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\right) x-x_{n}\right)$,
If $V_{n}(F) \geq 0$ for all choices of points $x_{0}, x_{1}, \ldots, x_{n}$ in $[a, b]$ then F is said to be n-convex on $[a, b]$. An n-convex function f on $[a, b]$ will be said to be regular if $f_{(n-1),+}(a)$ and $f_{(n-1),-}(b)$ are both finite. A regular piecewise n-convex function is a function which on each of the subintervals of a finite partition of a finite interval is regular n-convex.

Let P be a partition $t_{0}<t_{1}<\cdots<t_{n}$ of [$\left.a, b\right]$. A polynomial spline of degree $d, d=0,1,2, \ldots$ and smoothness $k(k \geq-1, k$ integral) is any function $s(t) \in$ $C^{k}[a, b]$ which reduces to a polynomial of degree d on each subinterval $\left(t_{i-1}, t_{i}\right)$ of $[a, b]$ where $C^{-1}[a, b]$ denotes the class of functions with finite discontinuities on $[a, b]$. The set of all such piecewise polynomials is denoted by $S_{d}(\pi, k)$. (See, for example, [4]).
In the present paper we prove that a regular piecewise n-convex function differs from an n-convex function only by a polynomial spline of degree $n-1$. The argument is given in terms of Peano and de la Vallée Poussin derivatives. (See, e.g. [1]).

2. Splicing \boldsymbol{n}-convex functions.

Theorem 2.1. Suppose $a=x_{0}<x_{1}<\cdots<x_{n}=b$ is a partition of the finite interval $[a, b]$. Suppose g_{i} is a regular, n-convex function defined on $\left[x_{i-1}, x_{i}\right]$, $i=1,2, \ldots, N$. Then there exists a spline function $L \in C^{-1}[a, b]$ of degree $n-1$

[^0]with nodes $x_{0}, x_{1}, \ldots, x_{n}$ such that
$$
G(x) \equiv g_{i}(x)+L(x), \quad x \in\left[x_{i-1}, x_{i}\right], \quad i=1,2, \ldots, N,
$$
is n-convex on $[a, b]$.
(In other words, a regular piecewise n-convex function differs from an n convex function only by a spline of degree $n-1$).

Proof. Clearly we need prove only the case $N=2$. Consider the function G defined by

$$
G(x)=\left\{\begin{array}{l}
g_{1}(x), \quad x \in\left[x_{0}, x_{1}\right], \\
g_{2}(x)+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
\equiv g_{2}(x)+P_{n-1}(x) \quad x \in\left[x_{1}, x_{2}\right],
\end{array}\right.
$$

where the n coefficients of $P_{n-1}(x)$ are determined by the n conditions

$$
\begin{gathered}
g_{1}^{(k)}\left(x_{1}\right)-g_{2}^{(k)}\left(x_{1}\right)=P_{n-1}^{(k)}\left(x_{1}\right), \quad k=0,1,2, \ldots, n-2, \\
g_{1(n-1),-}\left(x_{1}\right)-g_{2(n-1),+}\left(x_{1}\right)=P_{n-1}^{(n-1)}\left(x_{1}\right) .
\end{gathered}
$$

Then $G^{(k)}\left(x_{1}\right), k=0,1,2, \ldots, n-2$, and $G_{(n-1)}\left(x_{1}\right)$ exist, and $G(x)$ is $n-$ smooth at x_{1} (cf [3], §8).

Since $G(x)$ is n-convex on the subintervals $\left[x_{0}, x_{1}\right]$ and $\left[x_{1}, x_{2}\right]$ we have that $G(x)$ possesses derivatives $G_{r}(x), 0 \leq r \leq n-2$ on $\left[x_{0}, x_{2}\right]$ and a derivative $G_{(n-1)}(x)$ except at a countable number of points on [a, b] ([1], Theorem 7). It follows ([3], §8) that $G(x)$ is n-smooth except on a countable set in [$a, b]$. This verifies that $G(x)$ satisfies condition A_{n}^{*} (cf [2]) on [a,b]. Also it is clear that $\bar{D}^{n} G(x) \geq 0$ in $(a, b)-\left\{x_{1}\right\}$. Since we have shown that $G(x)$ is n-smooth at $x=x_{1}$, it follows that $G(x)$ is n-convex in [$\left.a, b\right]$. ([2], Theorem 2.2).

We give now an extension of the result of Theorem 2.1.
Let $\left\{a_{k}\right\}_{k=1}^{\infty},\left\{b_{k}\right\}_{k=1}^{\infty}$ be two monotonic sequences in the interval $[a, b]$ such that

$$
\cdots<a_{k}<a_{k-1}<\cdots<a_{1}<b_{1}<b_{2}<\cdots<b_{k} \cdots
$$

where $a_{k} \rightarrow a$ and $b_{k} \rightarrow b$. Let f be defined by

$$
f(x)= \begin{cases}g_{0}(x), & x \in\left[a_{1}, b_{1}\right), \\ g_{i}(x), & x \in\left[a_{i+1}, a_{i}\right), \\ h_{i}(x), & x \in\left[b_{i}, b_{i+1}\right), \\ i=1,2, \ldots \\ \end{cases}
$$

where $g_{0}(x)$ is regular n-convex on $\left[a_{1}, b_{1}\right], g_{i}(x)$ and $h_{i}(x)$ are regular n-convex on $\left[a_{i+1}, a_{i}\right.$] and $\left[b_{i}, b_{i+1}\right], i=1,2, \ldots$, respectively. Then there exists a function $L_{k}(x) \in C^{-1}\left[a_{k}, b_{k}\right]$ which is a polynomial spline of degree n
such that the function $f(x)+L_{k}(x)$ is n-convex on [a_{k}, b_{k}]. If f_{k} is defined by

$$
f_{k}(x)= \begin{cases}f(x)+L_{k}(x), & x \in\left[a_{k}, b_{k}\right], \\ p_{k}(x), & x \in\left[a, a_{k}\right], \\ q_{k}(x), & x \in\left[b_{k}, b\right],\end{cases}
$$

where $p_{k}(x)$ and $q_{k}(x)$ are polynomials of degree $(n-1)$ the coefficients of which are determined so that

$$
p_{k}^{(j)}\left(a_{k}-\right)=f_{k(j)+}\left(a_{k}\right), \quad g_{k}^{(j)}\left(b_{k}+\right)=f_{k(j)-}\left(b_{k}\right), \quad 0 \leq j \leq n-1,
$$

then $f_{k}(x)$ (and hence $\lim _{k \rightarrow \infty} f_{k}(x)$) is n-convex on [$\left.a, b\right]$.

References

1. P. S. Bullen, A Criterion For n-Convexity, Pacific J. Math. vol. 36 (1971) pp. 81-98.
2. G. E. Cross, The P^{n}-integral, Canad. Math. Bull. vol. 18 (1975) pp. 493-497.
3. R. D. James, Generalized $n^{\text {th }}$ primitives, Trans. Amer. Math. Soc. vol. 76 (1954) pp. 149-176.
4. P. M. Prenter, Splines and Variational Methods, John Wiley, 1975.

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario N2L3G1

[^0]: Received by the editors May 25, 1978 and, in revised form, October 19, 1978.
 AMS (MOS) subject to classification (1970) Primary 26A51, Secondary 41A15. Key Words and Phrases: n-convex function, Splines.

