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ON THE EXPLOSION OF CHAIN-THERMAL REACTIONS

R. 0. AYENI1

(Received 6 June 1980; revised 26 October 1981)

Abstract

A chain reaction of oxygen (reactant) and hydrogen (active intermediary) with nitrosyl
chloride (sensitizer) as a catalyst may be modelled mathematically as a non-isothermal
reaction. In this paper we present an asymptotic analysis of a spatially homogeneous
model of a non-isothermal branched-chain reaction. Of particular interest is the so-called
explosion time and we provide an upper bound for it as a function of the activation
energy which can vary over all positive values. We also establish a bound on the
temperature when the activation energy is finite.

1. Introduction

We consider a model of a non-isothermal branched chain reaction. In particular
we consider a vessel which is filled with a potentially reactive mixture containing
a reactant A, an active intermediary C and a sensitizer M. We assume that the
reaction satisfies

A + C->(1 +n)C + products, ( l . l)

C + M + M -» products or stable molecules, (1.2)

where n is a natural number. The reaction (1.1) is a propagation step, while
reaction (1.2) is a termination step.

Recently Kapila [5] investigated a model of a non-isothermal branched chain
reaction. Instead of our reaction (1.2) Kapila assumed that the termination step is

wall

C -» stable species.

'Department of Mathematics, University of Ife, Ile-Ife, Nigeria.
© Copyright Australian Mathematical Society 1982

194

https://doi.org/10.1017/S0334270000003672 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003672


[21 Chain-thermal reactions 195

Also recently Ayeni [1] investigated sensitized chain-thermal reactions assuming
that the termination steps are

C-+ wall,
C + C + M->M + products.

One parameter of importance in this type of reaction is RT0/E (where R is the
universal gas constant, To is the initial temperature of the system and E is the
activation energy). If RT0/E is small, then an investigator may seek to solve the
system of equations asymptotically in the limit RT0/E -* 0. Kapila and Ayeni
took this approach. They assumed that 0 =£ RT0/E < 0.05.

However, a look at a table of activation energies of the propagation and
termination stage (see Dainton [3], page 53) shows that there are situations when
the activation energy is as high as 18 kcal. and as low as 1.2 kcal. In the same
table one sees that the activation energy of the termination step ranges between 0
and 5.2 kcal. If we assume an initial temperature of 300°K, an activation energy
of 18 kcal. gives a number ~ 0.033 for RT0/E, while RT0/E ~ 0.50 when E is 1.2
kcal. While the analyses of Kapila and Ayeni mentioned above are quite valid for
reactions of the first type, a new investigation needs to be carried out for the
reactions which are close to the second type.

Thus in this analysis we do not assume as the basis that RT0/E -* 0, but we
assume:

(i) the surface is inactive catalytically,
(ii) a small concentration of the chain carriers is already present in the starting

mixture,
(iii) the propagation rate varies linearly as YCYA exp(-E/RT)/T2 (see Dainton

[3], page 57), where Yc is the mass fraction of the active centre, YA is the mass
fraction of the reactant, T is the temperature of the mixture, E is the activation
energy and R is the universal gas constant,

(iv) the termination step (1.2) does not depend on temperature. In practice, the
step (1.2) is weakly dependent on temperature, that is, the termination step varies
inversely as T1 where / is a positive number (see, for example, Kondratiev [6]).
Since in this paper we do not assume that E is necessarily large, assuming that the
reaction (1.2) does not depend on temperature means that 0 < / « 1,

(v) the system is spatially homogeneous. This appears to be reasonable, since
we are assuming an inactive surface and

(vi) the overall reaction is exothermic, with dT/dt directly proportional to
YCYM- Notice that in the hydrogen-oxygen system the constant of proportionality
is approximately unity ([5]).

The mathematical equations governing the reactive system (1.1) and (1.2) are
those of species and heat conservation (see, for example, Kapila [5], Kondratiev
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[6], Dainton [3] and Ayeni [1]), and they are defined (bearing the above assump-
tions in mind) by:

dYA/dr = -BiPYAYcv
2h2exp(-E/RT)/ (Wck

2T2), (1.3)

dYc/dr = nBlPYAYcv
2h2cxp(-E/RT)/ {WAk2T2) - B2YCY2, (1.4)

(CP/Q)dT/dr=qB2YcY
2, (1.5)

T(0) = To, YM=YAo, Yc(G)=YCo, (1.6)

where the nomenclature is

Y. mass fraction
W molecular weight
p density
Q heat release per unit mass
R universal gas constant
B pre-exponential factor
q positive number
n natural number
CP specific heat at constant pressure

T dimensional time
T temperature
v vibration frequency
h Planck's constant
k Boltzmann's constant.

The subscripts used have the following meanings:

0 initial
A reactant
M active centre
1 in propagation step (1.1)

2 in termination step (1.2).

Notice that the units of the symbols are as in [2], [3] and [4].

2. Method of solution

Let.

a = B2Y
2/tx

^ = YCoQ/(T0CP)

a = RT0/E
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tl=nBlPYAocxp(-E/RTo)/WA

t = T/, = dimensionless time

0 = (T- T0)(E/RT<?) = dimensionless temperature

8 = YAnWcQK2T0/ {\VACPv2h2)

e = exp(-l/a)

b/e = qB2Y
2/(t.a)

y = YAnWcQk2TJ (WACPv2h2) = scaled reactant

z = YCQ/ (TOCP) = scaled active centre.

Notice that we have neglected the diffusion terms in equations (1.3)—(1.5)
following the suggestion of Dainton ([3], page 103). Then the dimensionless
versions of (1.3)-( 1.6) are:

dy/dt = - (zy/S)(\/ (1 + adfexp{0/ (1 + a$))), (2.1)

• dz/dt = (zy/8)(l/ (1 + a6)fexp(d/ (1 + ad)) - az, (2.2)

dd/dt = bz/e, (2.3)

0(0) = 0, z(0) = e\ , y(0) = S. (2.4)

It is worth noting that the exact integral is (ae/b)0 + y + z = 8 + eX.
We now seek to solve (2.1)-(2.4) asymptotically in the limit e -» 0. The

appropriate expansions for 0, z and y which are suggested by the equations
(2.1)-(2.3) and the initial conditions (2.4) are:

0 = 0o + £0, + h.o.t., (2.5)

z = ez0 + h.o.t., (2.6)

y = 8 + eyi+h.o.t., (2.7)

where h.o.t. reads "higher order terms in e". In our analysis we are interested
only in the first terms. This means that we want to investigate the behaviour of 00

and z0. Putting the expansions (2.5)-(2.7) into the equations (2.4) we find that:

dzo/dt = 2oexp(0o/ (1 +«*<>))- azo, (2-8)
dBJdt = bz0, (2.9)

0O(O) = 0, zo(O) = A, d60/dt = b\att = 0. (2.10)

By differentiating equation (2.9) with respect to t, substituting for dzo/dt and
then integrating the resulting expression, one finds that

dOJdt = exp( « 0 / (1 + a8Q)) -a6Q-\+ \b, (2.11)

0O(O) = 0. (2.12)
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One notes further that (2.11) implies

z0 = (exp(BJ (1 + a60)) -a80-\+ b\)/b, (2.13)

zo(O) = X. (2.14)

The basic questions in this analysis are:
(1) what is the effect of a (= RT0/E) on 60 and z0?
(2) how does 80 affect z0? Physically this means that we want to compare

isothermal reaction and non-isothermal reaction, and
(3) what is the effect of the sensitizer and the temperature and the active

centre?
We will answer the above questions in the next section.

3. Behaviour of solution

In Figures 1 and 2 we display the graphs of z0 versus 60 for various values of a,
a, b and X. It is easy to check that z0 is a convex function of 0O if a > 0.5 and that
it is a concave function of d0 if a -» 0 provided b > 0. If a 3s 0.5, z0 vanishes at a
finite value d0^ of 80. Equation (2.11) then shows that 00 -> 60^ as / -» oo. It is
worth pointing out that 00 can tend to a finite value as t tends to infinity as shown
in Figure 2(iii) even when a -» 0, but in this case the value depends not only on b
being greater than zero but also on a and X. Also we note from Figure l(i) that z0

can still be a convex function of $0 if 0 < a < 0.5 but this behaviour depends on X
and a as well.

Figure 1. Plots of z0 against 80 when a ¥= 0. (i) b = 1, A = I, a = 0.81, a = 0.46, (ii) b = 1, X = 1,
a = 2, a = 0.1.

https://doi.org/10.1017/S0334270000003672 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003672


16] Chain-thermal reactions 199

Figure 2. Plots of z0 against 60 when a = 0. (i) b = 0.5, a = 0.5, X = 1, (ii) b = 2, a = 2, X = 1, (iii)
* = l , a = e, X = 1.

Let us now examine the effects of a on z0 and 60 individually. First we note
from equation (2.8) that if 60 = 0 (isothermal reaction), then

zo = Aexp((l -a)t)

so that the behaviour of z0 depends mainly on a. When 60 is not a constant we
may use upper and lower solutions to bound the growth of z0 and 60. Consider
the differential equation

du/dt=f{u) (f>0),

«(0) = "o-

By lower and upper solutions we mean a pair of smooth functions v(t) and w(t)
such that for every finite J > 0 , w(t) > v(t) on (0,T] and v(t) satisfies the
inequalities

«fo/<ft </(©), o (0 )<« 0 . (3-1)

while w(/) satisfies the reverse inequalities in (3.1). If v(t) and vf(f) exist, then

We note that if a-«0, the maximum value of exp(0o/(l + ad0)) is exp(l/a).
Thus in this case, \ and Xexp(exp(l/a)/) are lower and upper solutions for zQ.
That is,

\ =s z0 < Xexp((exp I /a — a)t).

In this same situation (a •** 0)

0 ^ tfo(/) < ((exp(l/a) + Xb -
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It is significant to note that when upper and lower solutions are known we can
use them to estimate upper and lower bounds for the explosion time. It is this
approach that we intend to use in what follows to estimate the upper bound for
the explosion time when a -> 0. When a -» 0, equation (2.8) becomes

dzjdt = zoexp( bf\(x) dx j - az0

zo(O) = A.

A lower solution (which becomes a lower bound once an upper solution is found)
when 0 < a < 1 is

. (3.3)

It is trivial to prove that u(t) -* 00 as / -»"7r(2Xb)']/2. We claim that u{t) is
indeed a lower bound for z0, but we see no point in finding an upper solution in
this analysis (which actually exists) since the method of approach is clearly
written in [9]. What we have now is that

*„(/)> Xsec2((XV2)1/20 (3.4)
and (3.4) implies that

eo(t)>(2Xb)i/2tm{(Xb/2y/2t). • (3.5)

Explosion therefore occurs prior to time ir(2Xb)~x/2.
Let us compare this bound with the so-called quadratic time of explosion. If we

assume the quadratic expression for exp(0), that is,

exp(0) = 1 + (e-2)6 + 62,

then

( ( ) ( ) ( ) } e - 2 - a
^ 3 6 )_ 2 _ a)/ {2h))tan{ht)

= h {.+ ( e 2 Q ) V ( 4 M } s e c W

b{\-((e-2-a)/(2h))tan(ht)}2

where h2 = Xb - ((e - a - 2)/2)2. If we take X = 1, a = 0.22, b = 4, then
7r(2A/>)~1/2,~ 1.11. The quadratic time of explosion is 0.73. This confirms that
Xsec2(£Xb/2)]/2t) is a lower solution. It is worth pointing out that the quadratic
expression for exp(#) is an approximation. Its merits and demerits have been
discussed by Gray et al. in [4]. A typical time history of 0Q(z0) is shown in Figure
3. The singularity in the solution characterizes explosion and the time 0.73 which
signals the onset of explosion is known as the induction period (see, for example,
[5])-
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Figure 3. Plots of z0 and 60 against t for b = 4, a = 0.22, A = 1, a = 0.
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4. Plots of fe against 0O when ^flo/A = 0, X = 1, a = e - 1. (i) a = 0, (ii) a = 0.1, (iii)
a = 0.46.

To conclude this analysis we examine the relationship between the scaled
sensitizer b and the steady state temperature 0o. Figure 4 shows the graph of b as
a function of steady temperature 60. First we notice that if b is zero, then zero is a
possible steady temperature. For a > 0.5, it is easy to check that b is a concave
function of 80. Physically this means that there exists a steady temperature if b is
large enough, whereas for 0 =£ a < 0.5 the existence of steady temperature de-
pends on X and a.
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4. Conclusion

We have found that chain explosion could still occur even when the reaction is
isothermal. In fact the active centre z0 is exp(3f/4) if X = 1 and a — \. That is,
z0 -» oo as t -* oo. When the reaction is chain thermal (non-isothermal) chain
explosion occurs prior to t — 1.11 if \ = \,a = 0.22, b = 4 and a -» 0. Whereas if
the activation energy is finite (a *• 0) the temperature 60 satisfies the inequality

0 < 0o(t) < ((exp(l/a) + \b- l ) /a) ( l - exp(rt))-

Thus thermal explosion cannot occur if a •» 0.
We have also found that the active z0 may increase or decrease as the

temperature 8Q increases, its behaviour depends on the parameter
2aexp(l/a)a- ' /2 .

Acknowledgements

We thank our referees for their useful suggestions. We are also indebted to
Professor I. H. Sloan whose advice has been helpful in putting the paper in a
publishable condition.

References

[1] R. O. Ayeni, "Criteria for branched-chain explosion", Nigerian J. of Natural Sciences (to
appear).

[2] T. Boddington, P. Gray and G. C. Wake, "Criteria for thermal explosions with and without
reactant consumption", Proc. Roy. Soc. London Ser. A 357 (1977), 403-422.

[3] F. S. Dainton, Chain reactions: an introduction (Wiley, New York, 1966).
[4] P. Gray and M. J. Harper, "Thermal explosions: part 1—induction periods and temperature

changes before spontaneous ignition", Trans. Faraday Soc. 55 (1959), 581-590.
[5] A. K. Kapila, "Homogeneous branched-chain explosion: initiation to completion", J. Engrg.

Math. 12 (1978), 221-235.
[6] V. N. Kondratiev, The theory of kinetics (Elsevier, New York, 1969), pages 81-188.
[7] G. S. S. Ludford, "Combustion: basic equations and peculiar asymptotics", J. Mecanique 16

(1977), 531-551.
[8] M. F. R. Mulcahy, Gas kinetics (Nelson, London, 1973).
[9] C. V. Pao, " Non existence of global solutions and bifurcation analysis for a boundary value

problem of parabolic type", Proc. Amer. Math. Soc. 65 (1977), 245-251.
[10] D. H. Satinger, "A nonlinear parabolic system in the theory of combustion", Quart. Appl.

Math. 33(1975), 47-61.

https://doi.org/10.1017/S0334270000003672 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003672

