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Abstract

The bi-objective Cost-time Trade-off Three Axial Sums' Transportation Problem is
shown to be equivalent to a single-objective standard Three Axial Sums' problem,
which can be solved easily by the existing efficient methods. The equivalence is
established for some specially defined solutions termed as Lexicographic optimal
solutions with minimum pipe-line.

1. Introduction

In 1961, Charnes and Cooper [3] discussed an approach to the solutions of ma-
nagerial level problems involving multiple conflicting objectives (or goals).
In 1962, Ignizio [8] was the first person to study the application of goal-
programming to an engineering design problem. While working on the Sat-
urn/Apollo antenna designing program (the U.S. moon-landing mission), which
had to satisfy a number of conflicting objectives, he extended the original goal
programming concept of Charnes and Cooper to a non-linear model. Later,
Ignizio [9, 10] developed further extensions of the goal programming approach.
In 1965, Y. Iziri [11] proposed the inclusion of the concept of "preemptive
priorities". He suggested that a priority be given to each objective or a set of
commensurable objectives in the problem. In practice, this concept is achieved
through finding the lexicographic minimum of an ordered vector. The Three
Axial Sums' Problem was first defined by E. D. Schell [13] in 1955. An effi-
cient solution method was suggested by A. Corban [4] in 1964. The problem of
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minimising the duration of transportation has been studied by many authors like
Hammer [6, 7], Garfinkel and Rao [5], Szwarc [16], Bhatia, Swaroop and Puri
[1, 2], Sharma and Swaroop [15], Seshan and Tikekar [14] and Prakash [12].
Some of these authors have also tried to unify the two problems by giving high
and low priorities to the two objectives. This is what has come to be known
as the cost-time trade-off problem. In the present paper cost-time trade-off has
been studied in a bi-objective Three-Axial Sums' Transportation Problem. It is
established that such Trade-off Three-index Problems are equivalent to a single
objective standard Three-Axial Sums' Problem. The reduction to a single ob-
jective form has been achieved by assigning suitable weights to the objectives.
The weights have been clearly defined to give high and low priorities to cost
and time respectively. The equivalence is established for some specially defined
solutions termed as lexicographic optimal solutions with minimum pipeline.

2. Theoretical development

A cost-time trade-off Three Axial Sums' problem is:

Minimize C =
I J K

T = max [tijk : xijk > 0}
subject to ^2^2x'Jk ~ a'' ' e ^

/ K

J2 J2
I K

1 J

xijk > 0,

where / , J, K are respectively the index-sets for the warehouses, markets and
the modes of transport.

a, is the availability at the /'* warehouse,
bj is the demand at the j ' h market,
ck is the capacity of the k'h mode of transport,
tiJk is the total time taken by the k'h mode in transporting from i'h ware-

house to j ' h market.
cljk is the per unit cost of transporting from i'h warehouse to j " 1 market

by the k'h mode.
xijk is the total amount transported from i'h warehouse to j ' h market by

the k'h mode.
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The method of solving P(l) is to optimise the cost minimisation transport-
ation problem in P( l ) by any of the methods suggested by Schell, [13], or
Corban [4]. Then locating all the alternate optimal solutions corresponding to
the cost, choose the one with the minimum time. The corresponding solution
that is obtained is the optimal solution of P(l) with cost as the first priority and
the time as second priority.

The triplet (X, C, T) will be used to denote the optimal solution X = {xijk}
of P(\) with cost as first priority and time as second, where C is the optimal
cost and T is the corresponding minimum time.

It will be shown that the problem P (1) with cost as first priority and time
as second can be reduced to the following single objective Three-Axial Sums'
problem.

Minimize Z = Mo E /EyE/c cijkX,jk + E L i (Ms J2t, xijk)

subject to
~7~ ~jT

P{2) :
' I K

•*-ijk _ u >

where Lu L 2 , . . . , Lq and Mo, Mx,..., Mq are defined below:
Let

maxf,,t = B\, min fji'/t = Ba.
1,J,K 'Jk HU 1,J,K J H"

The set {tijk : i e /, j e / , k e K] is sub-divided into subsets Lu L2,..., Lq

satisfying the following two conditions:

(i) Lu contains the /,^'s having the same numerical value, u = 1, 2 , . . . , q;
(ii) fi\ > ft > . . . > Pq.

Mo, Mu . . . , Mq are the priority factors associated with Yli Hj YIK cukxuk,
E i , xuk, E L 2 *'7*' • • • > E L , xuk respectively, J^L, xUk denoting the sum of all
those Xjjk's with corresponding ttjk e Ls. Mo, Mu ..., Mq are all positive and
they are so defined, that the sign of E*=oa*^* ' s t n e s a m e a s t n e non-zero ak,
with smallest subscript k in it, irrespective of the other a t 's .

DEFINITION. LEXICOGRAPHICALLY OPTIMAL SOLUTION WITH MINIMUM PIPELINE

An optimal solution (X*, C*, T*) of the cost-time Trade-off Three Axial Sums'
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Transportation problem P(l), will be called lexicographically optimal with
minimum pipeline, if for any solution (X, C*, T*), either

where T* e Ls, X* = {x*jk}, X = {xijk}, or if

L, L,

and T* is the second largest time for both the solution X and X*, so that
T* € LJ+i,then

The equivalence of the problem P(l) with cost as first priority and the time
as second with the problem P{2) is established, through the following theorem
and its converse.

THEOREM. If(X* = {x*Jlc}IxJxK, C*, T*) is a lexicographically optimal solution
of P{\) with minimum pipeline, then it is also optimal for P(2).

PROOF. Obviously X* is feasible for ^(2), as the feasibility conditions of P(\)
and P(2) are same.

Now we show X* is optimal for P(2).
Let X = {xijk}ixJxK be any feasible solution of P(2) with corresponding

cost as C and time T.
Now C > C*, as X is also feasible for P( l ) .

CASE (I) C > C*.

That is,

1 J K I J K

which implies

/ _ , 2_j A_/ C>jk(xijk — x*jk> > 0- (1)

/ J K

Now
i

J K u=\ Lu

K=0
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Since a0 > 0 (using (1)),

Z - Z*> 0 (by definition of Mo, M, . . . , Mq)

=^Z > Z*

=>X*has the minimum objective function value compared to

any feasible solution of P (2).

=*>X*is optimal for P(2).

CASE (II) C = C*

This shows that X *, X are two alternate optimal solutions of P (1) with respect
to cost minimisation.

The optimality of (X*, C*, T*) suggests that T* is the minimum of all the
times corresponding to the alternate optimal solutions with respect to cost C*.

Thus T* < T.
In the case T* < T, T* e Ls and T e Lp then s > p and

Ll = L2 = ... = L,_, = 4> for X* = {x*jk},

Li = L2 = ... = Lp_i =</> for X = {xijk}.

NowZ-Z* = £ L i MkJ2Lk(xUk-x*k)(<LsC = C*) has the sign of £ t p (*,,*-
X*jk) = J2LP

 Xijk-
Hence

Z - Z*> 0

> Z*

is optimal for P (2).

Again in the case T* = T, we have x = {xljk} as a feasible solution of P(l)
with the same cost C* and same time T* as the optimal solution X*.

The definition of lexicographic optimality suggests that either (i) or (ii) holds.

(i) HL, x*jk < T,L, X-Jk> in which case, E L j U 7 * - *,%) > 0.
Now since Lx = L2 = • • • = Lj-i = 4> for X* and Lx = L2 = . . . Lj_i = <f>

forX,

Mq

u = l £.„

L,
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Hence Z — Z* has the sign of £ L (jt,y* — x*Jk) > 0, which impliesZ > Z*, and
hence X* is optimal for P(2).
(ii) J^L, xuk = J2L, x'jk- I" this case> ^ m e second largest time for X* and X
are same, say Tu then 7, e LJ+, and £ L i + 1

 x*jk < £ L , + I *I7*

L, + \ Lq

has the sign of ^Ls+X(,x,ijk — x*Jk) > 0. Therefore Z — Z* > 0. Hence X* is
optimal for P(2). Again if the second largest times of X* and X are different,
say Tx and T2 respectively, with Tx < T2, and if Tx € Lm and T2 e Ln then
m > n,

= Mn Y^(x<jk ~ x*]k) + . . . M q ^2(xljk - x*jk).

Since Lj = L2... = Lm_i = (/> for X*LX = L2... = Ln_i = 0 for X, Z — Z*
has the sign of YLLM'J* ~ xu^ =

 ^LSX'J^'
 m a t is 2 — Z* > 0 and so X* is

optimal for P (2).
So in all the cases with various subcases it has been proved that (X*, C*, T*)

is optimal for P(2).

THEOREM. (Converse): If X* = {x*Jk} is an optimal solution of P(2) with
Jli J2J J2K c>jkx*jk = C* and T* is the corresponding time, then (X*, C*, T*)
is a lexicographically optimal solution of P{\) with minimum pipeline.

PROOF. Obviously (X*, C*, T*) is feasible for />(1). Suppose X # X* is an
optimal solution for P( l ) with costs C and time T. Then C < C* implies

-
I J K 1 J K

It is claimed that C = C*; for if C < C*, then

Z - Z* = Mo
iyt - x t )

I J K u=\ Lu
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(by the definition of priority factors Mo, Mx..., Mq) has the sign of Yli J2j YIK
Cijk(.Xijk — x*,k) which is less than zero (as C < C*). But Z — Z* < 0 implies
Z < Z* which contradicts the optimality of X* for P{2). Thus any optimal
solution of P{\) must have its optimal cost as C*.

Now, if (X°, C*, T°) is any alternate optimal solution of P(l), then T° < T*.
In the case T° < T* and T° e Ls, T* € Lp then s > p and Z° - Z* =
E L the sign of

[as Lx = L2 = .. • = Lp-\ = (p for X* and L\ = L2 = . . . = Lp-i = . . . =
L,_! = <j> for X].

Hence Z° — Z* < 0, which contradicts the optimality of X*. Therefore
T° = T*. Thus any optimal solution must have optimal cost C* and time T*.
This implies X* is optimal for P(l) .

Again X* is lexicographically optimal with minimum pipeline, as any solution
(X, C*, T*) of P ( l ) must satisfy £ t j x*jk < J2LS

 x'jk, for otherwise ^ L j x*jk >
Y^L, xUk wiH contradict the optimality of X*.

Such a work finds its application in all problems of routing finished goods
from factories to retailers using different modes of transport. A factory owner
is generally satisfied when his goods are delivered at a minimum cost. The
minimisation of time of delivery is his second concern. The present model will
be most useful in all such cases.
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