ON THE HOMOLOGY OF THE n-SPECIAL REDUCED PRODUCT SPACE OF A EUCLIDEAN SPACE

BY
M. WAKAE(${ }^{1}$) AND O. HAMARA

§1. Introduction. In [2] and [3] the homology of reduced product spaces of certain type of polyhedra was studied. Let $X^{n}=X \times X \times \cdots \times X$ be the Cartesian product of n copies of a topological space X. Let $T=\left\{1, t, t^{2}, \ldots, t^{n-1}\right\}$ be the cyclic group of order n acting on X^{n} as:

$$
t\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

Let us denote a point in X^{n} by \bar{x}. The fat diagonal $F_{n}(X)$ of X^{n} is defined as: $F_{n}(X)=\left\{\bar{x} \in X^{n} \mid t^{i} \bar{x}=\bar{x}\right.$ for some $\left.i \not \equiv 0 \bmod n\right\}$. The n-special reduced product space $X_{*}^{n}=X^{n}-F_{n}(X)$.
In this paper we investigate the homology of X_{*}^{n}, where $X=R^{k}$, the k-dimensional Euclidean space.
§2. The main theorem. Let n be an integer such that $n=P_{1} P_{2} \cdots P_{m}$ where P 's are distinct prime numbers. We consider $R_{*}^{n}=R^{n}-F_{n}(R)$. Let $t: R^{n} \rightarrow R^{n}$ be considered as an orthogonal linear transformation. Because t has a cyclic vector [$1, \mathrm{p} .199$] the minimal polynomial of t is the characteristic polynomial. Hence from the primary decomposition theorem and rational decomposition theorem we may find invariant subspaces $W_{0}, W_{1}, \ldots, W_{m}, V$ such that

$$
R^{n}=W_{0} \oplus W_{1} \oplus W_{2} \oplus \cdots \oplus W_{m} \oplus V
$$

where W_{0} is one-dimensional and $t \mid W_{0}$ is the identity. W_{i} is ($P_{i}-1$)-dimensional with zero as the only fixed point with respect to $\left\{t, t^{2}, \ldots, t^{P_{i}-1}\right\}$, and $W_{0} \oplus W_{i(1)} \oplus$ $W_{i(2)} \oplus \cdots \oplus W_{i(k)}$, where $\{i(1), i(2), \ldots, i(k)\}$ is a subset of $\{1,2, \ldots, m\}$, is the set of vectors fixed under $t^{P_{i(1)} P_{i(2)} \ldots P_{i(k)}}$ and finally, V is an invariant subspace of even dimension $2 l=n-\sum_{i=1}^{m}\left(P_{i}-1\right)-1$ for which zero is the only fixed point. If P_{i} is odd, then W_{i} may be further decomposed into a direct sum of planes $H_{i, j}, j=1,2, \ldots, m(i)$, on each of which t is a rotation of order P_{i}, and if P_{i} is even, W_{i} is a line. Decompose V into a direct sum of planes $K_{h}, h=1,2, \ldots, l$, on each of which t is a rotation of order n. Then R^{n} may be mapped homeomorphically into the compact polyhedron C in R^{n} where each $H_{i, j}, K_{h}$ goes onto the interior of a $\left(P_{i}-1\right)$-gon $\tilde{H}_{i, j}$ (if P_{i} is even for some i, let $\tilde{H}_{i, 1}$ denote the closed

[^0]interval $I=[-1,1]$ so that W_{i} goes into $\left.\tilde{H}_{i, 1}\right)$ and an n-gon \widetilde{K}. Thus, R^{n} is mapped homeomorphically onto the interior of $C=I \times \prod_{i, j} \tilde{H}_{i, j} \times \widetilde{K}^{l}$. Let $\tilde{H}_{i}=\prod_{j=1}^{m(i)} \widetilde{H}_{i, j}$, so $C=I \times \prod_{i=1}^{m} \tilde{H}_{i} \times \tilde{K}^{l}$. The set of fixed points in C with respect to T is denoted by F_{c} and consists of the vectors of the form $\bar{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{m}, 0\right)$ where $x_{0} \in[-1,1], x_{i} \in \tilde{H}_{i}, i=1,2, \ldots, m$, with at least one $x_{i}=0$, and $0 \in \widetilde{K}^{l}$. Notice that R_{*}^{n} is mapped homeomorphically into $C-F_{c}$ and that
$$
H_{*}\left(R_{*}^{n} ; G\right) \cong H_{*}\left(C-F_{c} ; G\right)
$$

Let C^{*} be the cell complex formed from C by taking those faces of C which do not intersect F_{c}.

Lemma 1. C^{*} is a deformation retract of $C-F_{c}$.
Proof. Assume that $\tilde{H}_{i, j}$, and \widetilde{K} are given obvious simplicial structure with 0 as a vertex in each except I. The vertices of I are $v_{11}=(-1,0, \ldots, 0)$ and $v_{1,2}=$ $(1,0, \ldots, 0)$ and index the vertices of C in F_{c} as follows: Firstly, we divide the set of the vertices of C in F_{c} into m categories. In the following sentences Cat stands for category. $\operatorname{Cat}(1)=\left\{v_{11}, v_{12}\right\}$. The vertices of $\operatorname{Cat}(k), k=2,3, \ldots, m$, are those vertices \bar{x} in F_{c} (i.e., $\bar{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{m}, 0\right)$, where $x_{0}=-1$ or $1, x_{i} \in \tilde{H}_{i}$ for $i>0,0 \in \widetilde{K}^{l}$) which have exactly k components x_{i} nonzero in the decomposition $I \times \tilde{H}_{1} \times \tilde{H}_{2} \times \cdots \times \tilde{H}_{m} \times \widetilde{K}^{l}$. Order the vertices in F_{c} such that the vertices of $\operatorname{Cat}(k)$ preceed those of $\operatorname{Cat}(k+1)$. Let $\left\{\bar{v}_{k 1}<\cdots<\bar{v}_{k s(k)}\right\}$ be the vertices of $\operatorname{Cat}(k)$. Define for each $\bar{x} \in C-F_{c}$ the cell $C(\bar{x})$ containing \bar{x} which is minimal with respect to this property of containing \bar{x}, that is, if D is a cell containing \bar{x}, then $C(\bar{x})$ is a face of D. Let $P_{k, q}:\left(C-F_{c}\right) \rightarrow\left(C-F_{c}\right)$ be defined as follows:
(i) if $\bar{v}_{k q} \notin C(\bar{x})$, then $P_{k, q}(\bar{x})=\bar{x}$
(ii) if $\bar{v}_{k q} \in C(\bar{x})$, then $P_{k, q}(x)$ is the foot of the projection of \bar{x} along the radius ray $\left|\bar{x}, \bar{v}_{k q}\right|$ into the face of $C(\bar{x})$ not containing $\bar{v}_{k_{q}}$.

Let $r_{k}=P_{k, s(k)} \circ \cdots \circ P_{k, 1}$ and $r=r_{m} \circ \cdots \circ r_{1}$. By the construction of $P_{k, q}$, $C\left(r_{k} \circ r_{k-1} \circ \cdots \circ r_{1}(\bar{x})\right)$ does not contain the vertices of $\operatorname{Cat}(j)$ for $j \leq k$. Hence r takes $C-F_{c}$ into C^{*}. Notice that if $C\left(P_{k+1, j} \circ \cdots \circ P_{k+1,1} \circ r_{k} \circ \cdots \circ r_{1}(\bar{x})\right)$ contains vertices of $\operatorname{Cat}(k+1)$, they are all such that their nonzero components lie in precisely the same \tilde{H}_{i} 's because, if not, the above cell would contain at least one vertices of $\operatorname{Cat}(q)$ where $q \leq k$, which is a contradiction. Hence we may define a homotopy

$$
h_{k, Q}:\left(C-F_{c}\right) \times I \rightarrow\left(C-F_{c}\right)
$$

by
$h_{k, q}(\bar{x}, t)=(1-t)\left(P_{k, q-1} \circ \cdots \circ P_{k, 1} \circ r_{k-1} \circ \cdots \circ r_{1}(\bar{x})\right.$
where $k, q \geq 2$. $\quad+t\left(P_{k, q} \circ \cdots \circ P_{k, 1}{ }^{\circ} r_{k-1} \circ \cdots \circ r_{1}\right)(\bar{x})$

$$
\begin{aligned}
& h_{1,1}(\bar{x}, t)=(1-t) \bar{x}+t P_{1,1}(\bar{x}) \\
& h_{1,2}(\bar{x}, t)=(1-t) P_{1,1}(\bar{x})+t\left(P_{1,2} \circ P_{1,1}\right)(\bar{x}) \\
& h_{k, 1}(\bar{x}, t)=(1-t)\left(r_{k-1} \circ \cdots \circ r_{1}\right)(\bar{x})+t\left(P_{k, q} \circ r_{k-1} \circ \cdots \circ r_{1}\right)(\bar{x})
\end{aligned}
$$

where $k \geq 2$.

Then we define a homotopy $h:\left(C-F_{c}\right) \times I \rightarrow\left(C-F_{c}\right)$ by

$$
h=h_{m, s(m)} * \cdots * h_{m, 1} * \cdots * h_{2, s(2)} * \cdots * h_{2,1} * h_{1,2} * h_{1,1}
$$

where $*$ refers to the path product. It is clear that h is the desired homotopy from the identity to r. This completes the proof of the Lemma.

Let us denote \widetilde{K}^{l} by $\widetilde{K}_{1} \times \cdots \times \widetilde{K}_{l}$ where each $K_{j}=K$. Since $\operatorname{dim} C^{*}=n-1$ and

$$
\begin{aligned}
C^{*}= & \left(\bigcup_{i=1}^{l} I \times \tilde{H}_{1} \times \cdots \times \tilde{H}_{m} \times \tilde{K}_{1} \times \cdots \times \dot{\tilde{K}}_{i} \times \cdots \times \tilde{K}_{l}\right) \\
& \cup\left(I \times \dot{\tilde{H}}_{1} \times \cdots \times \dot{\tilde{H}}_{m} \times \tilde{K}^{l}\right)
\end{aligned}
$$

where dot stands for the boundary, we have $C^{*}=I \times C^{* *}$, where $C^{* *}$ is a subcomplex of $\tilde{H}_{1} \times \cdots \times \tilde{H}_{m} \times \tilde{K}^{l}$ of dimension $n-2$. Hence

$$
H_{i}\left(C^{*}\right)=H_{0}(I) \otimes H_{i}\left(C^{* *}\right)=H_{i}\left(C^{* *}\right)
$$

Let

$$
A=\tilde{H}_{1} \times \cdots \times \tilde{H}_{m} \times \dot{\tilde{K}}^{l} \quad \text { and } \quad B=\dot{\tilde{H}}_{1} \times \cdots \times \dot{\tilde{H}}_{m} \times \tilde{K}^{l}
$$

Then

$$
C^{* *}=A \cup B \quad \text { and } \quad A \cap B=\dot{\tilde{H}}_{1} \times \cdots \times \dot{\tilde{H}}_{m} \times \dot{\tilde{K}}^{l}
$$

It is clear that $H_{i}(A \cap B ; G)=0$ for $i \geq \sum_{i=1}^{m}\left(P_{i}-2\right)+2 l$ and $H_{i}(A \cap B) \neq 0$ for $i=\sum_{i=1}^{m}\left(P_{i}-2\right)+2 l-1$. Also we have

$$
H_{i}(A) \cong H_{i}\left(\dot{\tilde{K}}^{l}\right) \quad \text { and } \quad H_{i}(B) \cong H_{i}\left(\dot{\tilde{H}}_{1} \times \cdots \times \dot{\tilde{H}}_{m}\right)
$$

Thus by the Mayer-Vietoris sequence

$$
\cdots \rightarrow H_{i}(A \cap B) \rightarrow H_{i}(A) \oplus H_{i}(B) \rightarrow H_{i}(A \cup B) \rightarrow H_{i-1}(A \cap B) \rightarrow \cdots
$$

we have

$$
H_{i}(A \cap B) \cong H_{i+1}(A \cup B)
$$

for $i>\max \left(2 l-1, \sum_{i=1}^{m}\left(P_{i}-2\right)\right)+1=2 l$.
Hence

$$
\begin{aligned}
& H_{i}\left(C^{*}\right) \cong H_{i}\left(C^{* *}\right)=0 \text { for } i \geq \sum_{i=1}^{m}\left(P_{i}-2\right)+2 l+1 \\
& H_{i}\left(C^{*}\right) \cong H_{i}\left(C^{* *}\right) \neq 0 \quad \text { for } \quad i=\sum_{i=1}^{m}\left(P_{i}-2\right)+2 l
\end{aligned}
$$

Using $2 l=n-\sum_{i=1}^{m}\left(P_{i}-1\right)-1$, Lemma 1 and the fact $H_{*}\left(R_{*}^{n} ; G\right) \cong H_{*}\left(C-F_{c} ; G\right)$, we have the following theorem:

Theorem 1.

$$
\begin{array}{ll}
H_{i}\left(R_{*}^{n} ; G\right)=0 \quad \text { for } \quad i \geq n-m \\
H_{i}\left(R_{*}^{n} ; G\right) \neq 0 \quad \text { for } \quad i=n-m-1 .
\end{array}
$$

§3. Some remarks. Let $X=R^{k}$ and let T act on X^{n} as in $\S 1$ where

$$
n=P_{1} P_{2} \cdots P_{m}
$$

as in $\S 2$. Then by a similar argument as that in $\S 2$, we may prove the following theorem.

Theorem 2.

$$
\begin{aligned}
& H_{i}\left(X_{*}^{n} ; G\right)=0 \quad \text { for } \quad i \geq k n-k+1-m . \\
& H_{i}\left(X_{*}^{n} ; G\right) \neq 0 \quad \text { for } \quad i=k n-k-m .
\end{aligned}
$$

Let

$$
n=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \cdots P_{m}^{\alpha_{m}}, \quad n^{\prime \prime}=P_{1} P_{2} \cdots P_{m}, \quad \text { and } \quad n^{\prime}=n / n^{\prime \prime} .
$$

Let $T=\left\{1, t, \ldots, t^{n-1}\right\}$ and $T^{\prime}=\left\{1, t^{n^{\prime}}, t^{2 n^{\prime}}, \ldots, t^{\left(n^{\prime \prime}-1\right) n^{\prime}}\right\}$. If T acts on X^{n} as in $\S 1$, then T^{\prime} acts on $Y^{n^{\prime \prime}}$ where $Y=X^{n^{\prime}}$.

Lemma 2. Let α be the smallest positive integer in $\{1,2, \ldots, n-1\}$ such that $t^{\alpha}(\bar{x})=\bar{x}$ for some $\bar{x} \in X^{n}$, then α divides n.

Proof. Suppose α does not divide n. Then there exists positive integers a and b with $\alpha>b$ such that $n=a \alpha+b$. Then $\bar{x}=t^{n}(\bar{x})=t^{b}(\bar{x})$. This is a contradiction to the assumption that α is the smallest positive integer such that $t^{\alpha}(\bar{x})=\bar{x}$.

Lemma 3. $F_{n}(X)=F_{n^{\prime \prime}}\left(X^{n^{\prime}}\right)$ as subspaces of X^{n}.

Proof. That $F_{n}(X) \supseteq F_{n^{\prime \prime}}\left(X^{n^{\prime}}\right)$ is trivial since $T^{\prime} \subset T$.
Let $\bar{x} \in F_{n}(X)$. Then there exists α in $\{1,2, \ldots, n-1\}$ such that $t^{\alpha}(\bar{x})=\bar{x}$. We may assume that α is the smallest integer satisfying the above condition. Then by Lemma 2, $\alpha=P_{1}^{b_{1}}, \ldots, p_{m}^{b_{m}}$ where $b_{i} \leq \alpha_{i}$ for $i=1, \ldots, m$. If $b_{i} \leq \alpha_{i}-1$ for $i=$ $1,2, \ldots, m$, then α divides n^{\prime}. Thus $t^{n^{\prime}}(\bar{x})=\bar{x}$. Hence $\bar{x} \in F_{n^{\prime \prime}}\left(X^{n^{\prime}}\right)$. In the other case, by rearranging the order of P_{1}, \ldots, P_{m} if necessary, we may assume that

$$
\begin{array}{ll}
b_{j}=\alpha_{j} & j=1, \ldots, l \\
b_{j} \leq \alpha_{j}-1 & j=l+1, \ldots, m
\end{array}
$$

where l is strictly less than m since $\alpha \leq n-1$. Thus

$$
\alpha=P_{1}^{\alpha_{1}} \cdots P_{l}^{\alpha_{l}} P_{l+1}^{b_{l+1}} \cdots P_{m}^{b_{m}}
$$

Therefore $t^{P_{1} \ldots P_{i} n^{\prime}}(\bar{x})=\bar{x}$. Since l is strictly less than m,

$$
t^{P_{1} \ldots P_{l} n^{\prime}} \neq 1 \quad \text { and } \quad t^{P_{1} \ldots P_{l}^{n^{\prime}}} \in T^{\prime}
$$

Hence $x \in F_{n^{n}}\left(X^{n^{\prime}}\right)$.

Theorem 3. If $n=P_{1}^{\alpha_{1}} \cdots P_{m}^{\alpha_{m}}$, then

$$
\begin{array}{lll}
H_{i}\left(R_{*}^{n} ; G\right)=0 & \text { for } \quad i \geq n-n^{\prime}+1-m \\
H_{i}\left(R_{*}^{n} ; G\right) \neq 0 & \text { for } \quad & i=n-n^{\prime}-m .
\end{array}
$$

Proof. Let $Y=N^{n^{\prime}}$. Then by Lemma 2, $R_{*}^{n}=Y_{*}^{n^{\prime \prime}}$. Hence by Theorem 2

$$
H_{i}\left(R_{*}^{n} ; G\right)=H_{i}\left(Y_{*}^{n^{\prime \prime}} ; G\right)=0 \quad \text { for } \quad i \geqq n^{\prime} n^{\prime \prime}-n^{\prime}+1-m=n-n^{\prime}+1-m
$$

and

$$
H_{i}\left(R_{*}^{n} ; G\right)=H_{i}\left(Y_{*}^{n^{\prime \prime}} ; G\right) \neq 0 \text { for } i=n^{\prime} n^{\prime \prime}-n^{\prime}-m=n-n^{\prime}-m
$$

Corollary 1. If $X=R^{k}, n=P_{1}^{\alpha_{1}} \cdots P_{m}^{\alpha_{m}}, n^{\prime \prime}=P_{1} \cdots P_{m}$, and $n^{\prime}=n / n^{\prime \prime}$ then

$$
H_{i}\left(X_{*}^{n} ; G\right)=0 \quad \text { for } \quad i \geq n k-n^{\prime} k-m+1
$$

and

$$
H_{i}\left(X_{*}^{n} ; G\right) \neq 0 \quad \text { for } \quad i=n k-n^{\prime} k-m
$$

Bibliography

1. K. Koffman and R. Kunze, Linear algebra, Prentice-Hall, Englewood Cliffs, New Jersey, 1961.
2. C. W. Patty, A note on the homology of deleted product spaces, Proc. Amer. Math. Soc. 14 (1963), p. 800.
3. M. Wakae, Some results on multiplicity of solutions in frame mappings, Math. Z. 98 (1967), 407-421.

Soka University,

 Tokyo, JapanUniversity of Arizona, Tucson, Arizona

[^0]: Received by the editors September 2, 1970 and, in revised form, March 2, 1971.
 $\left.{ }^{(}\right)$Added in proof. Using the results in this paper, one of the authors has obtained the homology of R_{n}^{*} completely in [M. Wakae, On the homology of the n-special reduced product space of a Euclidean space, II, Kaigaku Kinen Ronbunshu, Soka Univ. (1971), 642-645].

