
7
Plastic behaviour of nuclei and other

finite systems

In some circumstances the nucleus acts as a liquid and in others like an elastic
solid. In general it responds elastically to sudden forces, and it flows plastically
over longer periods of time (Bertsch (1980, 1988)). Examples of this behaviour
are giant resonances and low-lying collective surface vibrations respectively.
In the first case, as we shall see in Section 8.3, pairing plays no role, at least
in the case of nuclei lying along the valley of stability. The nuclear single-
particle states change their shape but the occupation numbers do not change. The
energy of a giant resonance in a nucleus is of the order of the energy difference
between major shells (�ω ≈ 41/A1/3 MeV,≈ 7 MeV, for medium heavy nuclei),
a quantity which is much larger than the pairing gap � ≈ 1–1.5 MeV. Giant
resonances are fast modes, the collective motion is dominated by mean-field
effects and the rigidity is provided by the mean field (Bortignon, Bracco and
Broglia (1998)). On the other hand, low-energy surface modes are associated
with particle–hole excitations which are of the order of the pairing gap. Pairing
plays a dominant role and the collective states are coherent linear combinations
of two-quasiparticle excitations. The situation is, however, different in the case
of exotic nuclei, where the last nucleons are very weakly bound. Nucleon spill
out makes these systems particularly polarizable leading to ‘pigmy resonances’,
whose properties can be influenced by pairing (Frascaria et al. (2004), see also
last paragraph of Chapter 6).

In any case, both giant resonances and surface vibrations can be treated in
the harmonic approximation, and viewed as phonon excitations (see Chapter 8).
Consequently, as in the case of the harmonic oscillator, associated with each
degree of freedom of the vibrations there is a zero-point motion. In other words,
the surface of a nucleus fluctuates in its ground state. The amplitude of these
fluctuations is particularly important for low-lying quadrupole and octupole vi-
brations and somewhat less but still consistent for low-lying vibrations with
multipolarity λ = 4 and λ = 5 (see Appendix C). In general these fluctuations
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7.1 Exotic decay 155

will be out of phase. However there is a finite although small probability that
the fluctuations act coherently, allowing the system to probe large deformations.
The presence of such deformations in the ground-state wavefunction is rather
difficult to establish, as they act as virtual states which renormalize the properties
of the ground state (see, however, Section 8.4).

7.1 Exotic decay

There are, however, exceptions to this situation, namely, in the case where the
fluctuations lead to shapes corresponding to two daughter nuclei in a touching
configuration, for which the Q-value associated with the division of the system
is positive. In what follows we shall discuss an example of such a situation (see
Fig. 7.1), namely the so-called exotic decay 223Ra→ 14C + 209Pb, a situation
where pairing plays a central role in determining the inertia of the system.

A theory for the decay envisages two stages. In the first stage the nucleus
evolves from a state with a moderate deformation to a cluster configuration like
the one shown in Fig. 7.1 of touching parent–daughter nuclei. During this pro-
cess pairs of nucleons change their states and the initial A-particle wavefunction
φ0 evolves through local minima described by wavefunctions φi , until it reaches
the touching configuration described by the wavefunction φn . In the deformation
process the twofold degenerate single-particle levels (assuming axially symmet-
ric deformation) will change their energy, those with wavefunctions along the
poles decreasing their energy, while those along the equator will increase in
energy as illustrated in the lower part of Fig. 7.2. At each crossing of an empty
downsloping energy level and an occupied upsloping level two particles will

Figure 7.1. Shape transitions for the decay 223Ra → 209Pb + 14C. The original nucleus is
shown dashed; the touching daughter nuclei as heavy solid lines. The transformation described
in the text carries the initial shape to the one shown by the light solid line (after Bertsch (1988),
Barranco et al. (1990)).
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156 Plastic behaviour of nuclei and other finite systems
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Figure 7.2. (Top) Potential energy curve for the decay 223Ra → 209Pb +14C. The outside
potential is a combination of Coulomb and nuclear heavy ion potentials. The dots show
the assumed Hartree–Fock states describing the shape change in the internal region. (Mid-
dle) Schematic representation of the occupancy of the single-particle levels. (Bottom) Local
Hartree–Fock potential energies as a function of the deformation parameter ξ . Reprinted with
permission from Barranco et al., Phys. Rev. Lett. 60:507–10 (1988a). Copyright 1988 by the
American Physical Society.
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7.1 Exotic decay 157

change levels, under the action of the residual nuclear interaction, i.e. the part of
the nuclear interaction not used in producing the mean field.

We assume that the wavefunction describing the evolution from the initial
state φ0 to the final touching state φn is


 =
n∑

i=1

aiφi , (7.1)

where the φi are wavefunctions with pair correlations, like e.g. BCS wavefunc-
tions, but with a number-projection so that there is a definite number of pairs in the
upsloping levels and in the downsloping levels (see equation (4.45)). The suffix n
indicates the number of pairs transferred from the upsloping to the downsloping
levels. The wavefunctionφi describes the i th local minima in the potential energy
diagram in Fig. 7.2 (bottom). The pairing interaction connects wavefunctions φi

where the number of pairs changes from i to i ± 1. Consequently, the equation
determining the ground-state wavefunction is the lowest-energy solution of the
equation ⎡⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
· · · Ei−1 v · · · · · ·
· · · v Ei v · · ·
· · · · · · v Ei+1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
· · ·

ai−1

ai

ai+1

· · ·

⎤⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎣
· · ·

ai−1

ai

ai+1

· · ·

⎤⎥⎥⎥⎥⎦ . (7.2)

The connection between equation (7.2) and a Schrödinger equation describing
collective motion, (

− �
2

2D

d2

dξ 2
+ V (ξ )

)
ψ(ξ ) = E(ξ ), (7.3)

can be made discretizing equation (7.3) on a grid of step�ξ = 1/n in the interval
0 < ξ < 1, using

d2ψ

dξ 2
≈ ψ(ξi−1)+ ψ(ξi+1)− 2ψ(ξi )

�ξ 2
.

Assuming that the deformation variable ξ takes the value ξ = 0 for 
 = φ0

(223Ra in its configuration of minimum energy), and ξ = 1 for 
 = φn (209Pb
and 14C at touching distance), one can write

M

⎡⎢⎢⎢⎢⎣
· · ·

ψ (ξi−1)
ψ (ξi )
ψ (ξi+1)
· · ·

⎤⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎣
· · ·

ψ (ξi−1)
ψ (ξi )
ψ (ξi+1)
· · ·

⎤⎥⎥⎥⎥⎦ , (7.4)
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where M is the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
V (ξi−1)+ �2

D�ξ 2 − �2

2D�ξ 2 · · ·
− �2

2D�ξ 2 V (ξi )+ �2

D�ξ 2 − �2

2D�ξ 2

· · · − �2

2D�ξ 2 V (ξi+1)+ �2

D�ξ 2

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.5)

Comparing equations (7.2) and (7.5) one finds that the inertia of the system is

D = −�
2

2v
n2. (7.6)

To use the above equation as a calculational tool we need to know the number
of level crossings n (see also Section 7.3) and the matrix element v. Before
calculating the value of these parameters we note that the structure of this relation
is quite plausible. The inertia is larger the larger the number of particles that have
to be moved around in the motion. On the other hand, the larger the interaction,
the smaller is the inertia, because it is easier to make a pair of particles jump at
a crossing.

7.1.1 Inertia

It is fair to assume that the pairing residual interaction plays a central role in the
process in which pairs of particles moving in time-reversal states change their
state of motion. This is because pairing correlations lead to minimal friction.
The pairing force Hamiltonian is

Hp = −G P†P = −G
(

P†
u + P†

d

)
(Pu + Pd) .

The transition matrix element between two successive states is

v = 〈φi+1

∣∣Hp

∣∣φi 〉 = −G〈φi+1

∣∣∣P†
d Pu

∣∣∣φi 〉,
because a pair moves from an upsloping (u) level to a downsloping (d) level. It
was shown in Chapter 3 that such transfer matrix elements can be estimated by
mean values in BCS wavefunctions so that

v ≈ −G〈BCS
∣∣∣P†

d

∣∣∣ BCS〉〈BCS |Pu|BCS〉 (7.7)

≈ −G

4
〈BCS |P|BCS〉2 = −1

4

�2

G
,

where we have assumed that

〈BCS
∣∣∣P†

d

∣∣∣ BCS〉 = 1
2〈BCS

∣∣P†∣∣ BCS〉 = �

2G
.
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We can state the result given in equation (7.7) in another way: a pairing force
acting among all the downsloping and upsloping levels will give a matrix element
which is the product of three factors: (i) the pairing force constant G, (ii) the
probability (equal to 1/4) that the initial states are occupied and the final is empty
and (iii) the pairing enhancement factor (�/G)2. When both neutron and proton
contributions are taken into account, equation (7.7) is modified to

v = −
(
�2
ν +�2

π

4G

)
. (7.8)

This same result has been derived in another way by Barranco et al. (1990).
Employing the standard values G = 25/A MeV, and�ν = �π = 12/

√
A MeV,

one obtains

v = −2.9 MeV. (7.9)

To calculate D we need now to know n, i.e. the number of pairs of particles
which have to be moved around in 223Ra, to emit a 14C. Because the centre of
mass of the total system has to remain at rest, fourteen particles have to be moved
in one direction and fourteen in the opposite. Consequently, a fair estimate of n
is the reduced mass number of the process, i.e. n ≈ 13. Finally,

D = −�
2n2

2v
= 29.1 �

2 MeV−1. (7.10)

We now proceed to estimate the potential energy V .

7.1.2 Potential energy

Assuming that the energies of the different local minima lie on a parabola (see
Fig. 7.2 (bottom)), one can write

V (ξ ) = 1
2Cξ 2. (7.11)

An expression for the potential at ξ = 1 can be read off from the sketch in the
upper part of Fig. 7.2

V (ξ = 1)+ Q = U c
a A(R0)+U N

a A(R0), (7.12)

where R0 is the distance at which the two densities barely touch, i.e. R0 =
Ra + RA + a, Ri being the radius of 14C (i = a) and of 209Pb (i = A). The
diffusivity of the ion-ion potential U N

a A is denoted by a, while U c
a A is the Coulomb

potential acting between the ions. Finally, the quantity Q = 31.9 MeV is the Q-
value of the decay process.

The decay rate is very sensitive to the parameters of the potential barrier
outside the touching radius. Here we follow Barranco et al. (1988a, 1990), and
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160 Plastic behaviour of nuclei and other finite systems

use the Christensen–Winther potential (Broglia and Winther (1991))

U N
a A = S0 R̄a A exp

(
−r − R

a

)
, (7.13)

which gives a good description of heavy ion elastic scattering and fusion reac-
tions. The radius parameters R and R̄a A in (7.13) are defined by

R̄a A = Ra RA

Ra + RA
, R = Ra + RA. (7.14)

where Ra and RA of the two nuclei are parametrized according to

Ri = (1.233A1/3
i − 0.98A−1/3

i ) fm, (7.15)

and the values S0 = − 50 MeV fm−1, a = 0.63 fm are used. Substituting the
numerical values into equation (7.13) one obtains

U N
a A(r ) = −94 exp

(
−r − 9.7

0.63

)
MeV, (7.16)

and

V (ξ = 1) = U c
a A(10.5)+U N

a A(10.5)− 31.6 MeV = 9.2 MeV (7.17)

leading to

C = 18.4 MeV. (7.18)

7.1.3 Formation probability

The wavefunction describing the ground state of the harmonic oscillator is

ψ(ξ ) =
(
α√
π

)1/2

e−
1
2α

2ξ 2
, (7.19)

where

α2 = Dω

�
=

√
DC

�2
=

√
C

2|v|n ≈ 23.2. (7.20)

Consequently, the formation probability is

P = |ψ(ξ = 1)|2 = α√
π

e−α
2 = 2.4× 10−10. (7.21)

That is, the ground state of 223Ra acquires shapes resembling the touching con-
figuration of 209Pb and 14C with the probability (7.21).
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7.1.4 Decay constant

Once the 14C is formed, the decay process can be described in terms of the
standard Gamow theory, i.e. in terms of a knocking rate f and a tunnelling
factor T , the associated decay constant being

λ = P f T . (7.22)

Before proceeding to the calculation of f and T , we want to make a short
remark on the standard theory of alpha decay, where one assumes P = 1. The
reason why this approach to alpha decay is able to provide an overall account
of the experimental findings is because in this case the preformation factor is of
the order of 1 (P ≈ 10−1), and the tunnelling probability T (or γ in the standard
language) is a very sensitive function of the input parameters. Any uncertainty in
P can be compensated by a small change in the radius and height of the Coulomb
barrier.

7.1.5 Knocking rate

To estimate f one makes the standard assumption of motion of a particle of
inertia D in the ground state of a harmonic well. Then

ω =
√

C

D
= 1.2× 1021s−1 (7.23)

and

f = ω

2π
≈ 2× 1020s−1. (7.24)

7.1.6 Tunnelling probability

We have to calculate the probability for tunnelling the Coulomb barrier starting
from the touching distance R0 ≈ 10.3 fm. A convenient analytic formula is
obtained neglecting the nuclear potential (Tonozuka and Arima (1979)):

T = k R0

F2
0 (k R0)+ G2

0(k R0)
, (7.25)

in terms of the regular and irregular Coulomb functions. In equation (7.25) k is
given by

k =
√

2Ma A

(EB − Q)
�2. (7.26)
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162 Plastic behaviour of nuclei and other finite systems

The height of the Coulomb barrier is given by (Broglia and Winther (1991))

EB = Za Z Ae2

rB
(1− 0.63

rB
) ≈ 58 MeV, (7.27)

where the associated radius is given by

rB = 1.07(A1/3
a + A1/3

A )+ 2.72 fm ≈ 11.6 fm. (7.28)

One finally obtains from equation (7.25)

T ≈ 10−26. (7.29)

7.1.7 Comparison to experiment

Making use of the relation (7.22) and of the quantities (7.21), (7.24) and (7.29),
one obtains the theoretical value

λth ≈ 10−16 s−1, (7.30)

to be compared with the experimental value (Rose and Jones (1984)) of

λexp = 4.3× 10−16 s−1. (7.31)

One has to keep in mind that no calculation can predict a decay constant with an
accuracy better than 1–2 orders of magnitude.

The theory presented here is based on the idea that the parent nucleus evolves
from an initial state with a moderate deformation to a cluster configuration by a
series of level crossings. The calculated preformation factor is P ≈ 10−10. Other
theories suppose that the cluster structure exists in the parent nucleus so that the
preformation factor P = 1. Theories with widely different preformation factors
are able to fit the data because of the extreme sensitivity of the penetration factor
to the barrier parameters. For example Buck and Merchant (1989) use a potential
with a barrier height of 63.9 MeV and radius 10.2 fm for the cluster decay of 223Ra
instead of the Christensen and Winther values EB = 58 MeV and rB = 11.6 fm.
An increase of the barrier height of 6 MeV decreases the penetration factor by a
factor of 1010 and compensates for the increase in the penetration factor. They
have also been able to fit many other exotic decays. Buck et al. (2000) have
a method for predicting the cluster structure of a nucleus by relating it to the
decay Q-value. One argument in favour of the approach in the present chapter is
that the Christensen-Winther potentials fit heavy ion elastic scattering data. This
aspect has not been studied for the potentials used by Buck and his collaborators.
Another argument is that the superfluid tunnelling model discussed in the present
chapter can also be applied to other processes.
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Table 7.1. The four decay modes of 234U (after Broglia et al. (1993)).

Decay λexp(s−1) λth(s−1) n

4He 9.× 10−14 2.× 10−14 4
24Ne 6.3× 10−26 1.× 10−28 19
28Mg 2.× 10−26 2.× 10−28 23
spont. fission (8.6± 1.8)× 10−24 5.× 10−24 52

7.2 A variety of applications

The superfluid tunnelling model has been applied to a variety of prob-
lems involving the evolution of the nuclear system between two minima. In
particular:

(1) To the calculation of alpha and exotic decay as well as fission, where the
model provides an overall account of the data over twenty orders of magnitude
(Barranco et al. (1990)); in particular a quantitative picture of the four decay
modes of 234U (see Table 7.1) (Barranco et al. (1989)), as well as the correction
of the chart of nuclides regarding the lifetime quoted for the spontaneous fission
of 232U. The model predicts in fact an exotic decay branch 232U → 208Pb +
24Ne which is close to the experimental value (Bonetti et al. (1990)), and to the
1990 ‘fission’ value. The prediction of the model (λSF = 5× 10−24 s−1) of the
spontaneous fission decay rate was found to be in agreement with experiment
(Bonetti et al. (2000)).

(2) To the decay of superdeformed bands (Herskind et al. (1988)). Although the
superdeformed minimum lies, as a rule, above the normal deformed minimum
for spins less than 50 �, its population is not affected down to spin of about
24 �, where the sudden transition out of the superdeformed band observed in
experiment can be related to the onset of pairing caused by the disalignment of
the lowest pair of high- j particles (see Section 6.5).

(3) To the restoration of parity conservation in octupole deformed nuclei
(Barranco et al. (1988b,c)). The potential energy surface of a superfluid nucleus
with an even multipole deformation has, as a rule, a single absolute minimum
as a function of the deformation. For odd multipole deformations, there will
be two minima with mirror image wavefunctions. This is a basic requirement
of quantum mechanics as the physical states must be eigenstates of the parity
operator. In an octupole deformed nucleus, this is achieved by a tunnelling of the
system between the minima. This tunnelling is connected with the interaction
between odd- and even-parity rotational bands. In the particular case of 222Ra
it is experimentally found that the excitation of the first negative parity state
is at �E = 242 keV above the positive 0+ ground state. The model predicts a
value of�E lying between 150 and 500 keV, depending on the potential energy
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164 Plastic behaviour of nuclei and other finite systems

surface used. In fact, in this case, because the number of steps is small, the result
is rather sensitive to the details of the calculation.

(4) To the calculation of the lifetime of high K -isomer states in rotating nuclei
(Bengtsson et al. (1989)), such as 182Os. There is overwhelming experimental
evidence which testifies to the fact that cold, deformed nuclei display axially
symmetric quadrupole deformations. Therefore the projection of the angular
momentum on the body-fixed symmetry axis is a conserved quantity, and its value
K is a good quantum number (Bohr and Mottelson (1975)). In keeping with this
fact, excited states with high K-values are often isomeric, decaying only by virtue
of small admixtures of lower-K components. A consequence of the K-selection
rule is that the decay from the high K-states takes place preferentially stepwise,
and degrees of K-forbiddeness vary from 5 to 100 for each step �K = 1. The
decay of an isometric state with I π = 25+ has been observed in 182Os, directly
populating the state of the yrast band (K = 0), with a hindrance factor of 10−8.
One single transition thus changes K dramatically, and with an isomeric lifetime
that is relatively short.

Interpreting the isomer as a rotation around the symmetry axis, i.e. where all
the angular momentum is contributed by the particles (see Fig. 6.1 (right)),
one has to deal with a tunnelling in the gamma degree of freedom (Bohr
and Mottelson (1975)). Estimates making use of the superfluid tunnelling
model lead to a hindrance factor of the order of 10−6–10−9, where the uncer-
tainty is connected with poor knowledge of the potential around the K -isomer
minimum.

(5) To the calculation of the deformation and of the energy of coexistence states
(four-particle–four-hole excitations) in 16O and 40Ca (Bertsch (1980)). The evo-
lution of the system from one local minimum to the next implies a change in the
deformation such that the energy associated with the lowest 2p–2h excitation be-
comes zero. That is, a deformation leading to a crossing between the lowest empty
and the lowest occupied single-particle state. In the case where the deformation
has quadrupole multipolarity, and is axially symmetric, the relation between the
number of level crossings n2 and the deformation β2 in a nucleus of mass number
A is given by β2 = 2(12π/5)1/2n2/A (see equation (7.35)). Because each level
is twofold degenerate, to produce a 4p–4h excitation one needs a deformation
corresponding to n2 = 2. This implies β2 = 0.7 for 16O and β2 = 0.3 for 40Ca,
compared with the values of 0.84 and 0.27 deduced from the experimental evi-
dence. A rough estimate of the energy can be obtained by calculating the change
in surface tension associated with these deformations. Making use of the liquid
drop model (see equation (7.32)), this change is �E = 1/2C2β

2
2 ≈ 2β2

2 R2
0 S,

where R0 = 1.2A1/3 fm is the nuclear radius, S = 0.95 MeV fm−2 is the surface
tension and the Coulomb correction to C2 has been neglected. From this relation
and the above deformation parameters one obtains 8 and 3 MeV respectively,
compared with the experimental values of 6.1 and 3.4 MeV.
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7.3 Low-lying surface vibrations

In most cases the lowest excited states of even–even nuclei have a quadrupole
or octupole character (Bohr and Mottelson (1969, 1975)). Although these states
carry a small fraction (5–10%) of the energy weighted sum rule (see Section
8.3.2), the associated transition probabilities are much larger than that of single-
particle states. Furthermore, they are excited with large cross-section by projec-
tiles which are absorbed at the nuclear surface. They are known as collective
surface vibrations, and are intimately connected with the plastic behaviour of
the atomic nucleus.

Consequently, we shall use, in the calculation of the frequencies of these
modes, the same scheme used to discuss exotic decay in Section 7.1 (Broglia
et al. (1994)). The two parameters entering the model are the restoring force
CL and the inertia DL of the mode. Because we are dealing with the plastic
behaviour of the system one can use the liquid drop model to calculate CL . In
fact, in a vibrational motion where the surface fluctuates with a frequency of the
order of 1021 s−1, the detailed motion of the nucleons associated with frequencies
almost two orders of magnitude larger must be quite irrelevant. Consequently, the
surface tension S (≈ 0.95 MeV fm−2) is sufficient to characterize the deformation
energy of the system, and the restoring force parameter can be written as (Bohr
and Mottelson (1969, 1975)),

CL = S(L − 1)(L + 2)R0
2 − 3

2π

L − 1

2L + 1

e2 Z2

Rc
. (7.32)

The two radii in the expression are the nuclear and the Coulomb radii, R0 =
1.2A1/3 fm and Rc = 1.25A1/3 fm, respectively, A being the mass number. The
quantity Z indicates the proton number of the system. In what follows we shall
use the approximate relation Z ≈ A/2.4 (see Section 3.5). In this way one obtains

CL

A2/3
=

⎧⎪⎨⎪⎩
5.4(1− 0.003A) MeV (L = 2),

13.5(1− 0.002A) MeV (L = 3),

38(1− 0.0005A) MeV (L = 5).

(7.33)

For the inertia we use

DL

�2
= − 1

2v

( dn

dβL

)2
, (7.34)

where v = −2.9 MeV and dn/dβL is the density of level crossings per unit
deformation. In Section 7.1, where the phenomenon of exotic decay has been
discussed, we have used a simplified version dn/dβL which, in that case is
determined by the reduced mass number of the exotic decay products. In the
present case we do not have any direct experimental input to calculate dn/dβL ,
and have to work it out theoretically.
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The quantity dn/dβL can be estimated quite accurately by realizing that the
Fermi distribution in momentum space is spherical for each local minimum
(Bertsch (1980, 1988)). Between crossings, the Fermi surface gets distorted. In
fact, it elongates in correspondence to a spatial reduction of the nuclear radius
and it retracts when the nuclear radius becomes larger. Each time the volume
outside the original Fermi sphere contains two nucleons, it is possible to fill the
depopulated momentum zones below the Fermi energy and restore spherical
symmetry. This means that the system has moved from a local minimum to the
nearest one, and that a pair of nucleons have changed orbital. Making use of such
a model one obtains for L � 5 the approximate expression (Bertsch (1988))

dn

dβL
≈ 1

4

√
2L + 1

3π
A. (7.35)

We are now in a position to calculate the inertia of the modes

DL

�2
≈ (2L + 1)10−3 A2 MeV . (7.36)

The basic frequencies associated with the low-lying collective vibrations L =
2, 3, 4 and 5 are thus

�ωL =
√

�2CL

DL
≈

√
(L − 1)(L + 2)

(2L + 1)
(1− 0.001A)

35

A2/3
MeV . (7.37)

In Figs. 7.3 and 7.4 we show the function given in equation (7.37) for L = 2 and
L = 3 in comparison with the experimental findings. Although large fluctuations
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Figure 7.3. Average energy of the lowest 2+ state in nuclei as a function of the mass number.
The data are taken from Bohr and Mottelson (1969), Table 2.17 p. 196. The dashed line is
to guide the eye. The continuous curve was calculated making use of equation (7.37) setting
L = 2.
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Figure 7.4. The same as in Fig. 7.3, but for L = 3. The data are taken from Bohr and Mottelson
(1975) Fig. 6.40 p. 560.

about the theoretical value are observed, because shell effects greatly affect
pairing correlations in nuclei (see also Chapter 10, Figs. 10.6–10.8), the re-
sult given in equation (7.37) provides an overall account of the experimental
findings.

The amplitude of the zero-point motion associated with these modes is given
by

βL√
2L + 1

=
√

�ωL

2CL
= 3.6A−2/3[

(L − 1)(L + 2)(2L + 1)
]1/4 . (7.38)

From the above equation and from equation (7.35) one can estimate that the
number of crossings associated with the vibrational modes of energy given in
equation (7.37) is

n ≈
( (2L + 1)3

(L − 1)(L + 2)

) 1
4
0.3A1/3 ≈ 0.5A1/3. (7.39)

Making use of A1/3 ≈ 5 for medium-heavy nuclei, one obtains n≈ 3, an estimate
which provides a quantitative justification for the use of a large amplitude de-
scription for low-lying surface vibrations of atomic nuclei. A detailed account of
the low-lying collective surface vibrations taking into account shell effects is pro-
vided by the quasiparticle random phase approximation (QRPA) (see equation
(8.47)).
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168 Plastic behaviour of nuclei and other finite systems

7.4 Fission in metal clusters

Metal clusters have been investigated systematically during the past years. They
are aggregates of metallic atoms, displaying clear shell structure. In particu-
lar, microclusters of sodium atoms can be viewed as a system of delocalized
electrons, moving in single-particle orbits. An approximation for the description
of the clusters is provided by the jellium model where the positive charge of
the ions is assumed to be uniformly distributed over the cluster volume. The
motion of the electrons can be described by a single-particle potential, arising
from the interplay between the attractive jellium background, the Hartree–Fock
potential and the correlation energy calculated in the local density approximation
(LDA). In particular the shell closures, which in the case of Na clusters start with
the magic numbers 8, 20 and 40, are well reproduced (see de Heer and Knight
(1988), Broglia et al. (2004)).

Based on this picture one can explore analogies between metal clusters and
nuclei. One example is the fission of a metal cluster, called a Coulomb explosion.
The reason for this name is that clusters with almost any number of electrons can
be made to fission, by charging them positively (see Eckhardt (1984)). Local-
spin-density molecular dynamics calculations (Saunders (1990), Barnett et al.
(1991)) predict the asymmetric fission of small doubly charged sodium (Na)
clusters to occur predominantly via Na+2

n → Na+n−3 + Na+3 , for 4 ≤ n ≤ 12.
For n less than or equal to 6, no fission barrier is present, while fission of larger
clusters involves a barrier. The largest barrier for the range of clusters investigated
is in the case of the process

Na+2
10 → Na+7 + Na+3 , (7.40)

and is associated with the closed shell produced by eight electrons. The mean
lifetime τ calculated by Saunders (1990) is

τ ≈ 2× 10−12 s. (7.41)

The deformation of clusters involves the electronic and phononic response of
the system characterized by the times 10−15 s (≈ 1 eV) and 10−13 s (≈ 10 meV).
Both these times are shorter than τ implying that one can use the Born–
Oppenheimer (adiabatic) approximation for the description of a Coulomb ex-
plosion. The path to fission is determined by electronic level crossings rather
than the inertia of the atomic nuclei. The fission decay rate for Na+2

10 clusters is
given by equation (7.22) with a preformation factor P , a knocking rate f and
a barrier penetration T . However, in this particular case, it is easier to calculate
the product PT than to calculate the factors separately. In other words P(n = 3)
(see below) provides a situation where the two clusters Na+7 and Na+3 are beyond
the fission barrier, i.e. a quantity that also contains T .
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Within the framework of the model discussed in the previous section one
expects to find n = 3 level crossings in the process. From the potential energy
surface displayed in Fig. 1 of Saunders (1990), and dividing the interval between
the ground states and scission (≈20 Å) into three equal parts, one can calculate
the restoring force in the harmonic approximation

1
2Cξ 2 = 0.1 eV

(
ξ = 1

3

)
, (7.42)

leading to

C ≈ 2 eV. (7.43)

The inertia of the motion is given by

D

�2
= n2

2|v| =
4.5

|v| , (7.44)

where v is the matrix element responsible for the jump of two electrons from an
occupied to an empty orbital, measured in eV.

Using ω = √C/D the knocking rate is determined by

f = ω

2π
≈ 0.16

√
|v|1015 s−1. (7.45)

The formation probability of the outgoing cluster on the surface of the parent
cluster is determined by the parameter α2 (see equation (7.21)) which in the
present case is given by

α2 =
√

C

2|v|n =
3√|v| , (7.46)

so that

P ≈ 1

|v|1/4 exp
(
− 3√|v|

)
. (7.47)

The lifetime is then given by (see the discussion after equation (7.41) above)

τ = ( f P)−1 =
exp

(
3√|v|

)
|v|1/4 × 6× 10−15 s. (7.48)

Setting this quantity equal to (7.41) one obtains |v| ≈ 0.3 eV. Matrix elements of
the order of 0.3 eV are typical for interaction among electrons. It is still an open
question to what extent such matrix elements are related to pairing in clusters
(Snider and Sorbello (1984), Mottelson (1992), Barranco et al. (1992), a subject
which is closely related to that discussed in connection with equation (2.3) (see
Satula et al. (1998)).
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