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GHAOS IN SOCIOBIOLOGY

J.R. CHRISTIE, K. GOPALSAMY AND JIBIN Li

It is shown that the dynamical game theoretic mating behaviour of males and
females can be modelled by a planar system of autonomous ordinary differential
equations. This system occurs in modelling “the battle of the sexes” in evolutionary
biology. The existence of a heteroclinic cycle and a continuous family of periodic
orbits of the system is established; then the dynamical characteristics of a time-
periodic perturbation of the system are investigated. By using the well-known
Melnikov’s method, a sufficient condition is obtained for the perturbed system to
have a transverse heteroclinic cycle and hence to possess chaotic behaviour in the
sense of Smale. Finally, subharmonic Melnikov theory is used to obtain a criterion
for the existence of subharmonic periodic orbits of the perturbed system.

1. INTRODUCTION

It is common for individuals of the same species to behave differently when conflicts
arise. One of the important aspects of sociobiology deals with the choice of mates
and mating behaviour. In this article, we consider the dynamics of mating behaviour,
commonly known as “the battle of the sexes” [8]. We consider a single species population
of males and females divided into distinct groups according to their behaviour patterns.
We assume that the behavioural patterns of individuals do not change during their
lifetime and the patterns are inherited by their offspring. Let us suppose that there
are n distinct behavioural patterns known as “pure strategies”, say E;, Es,...,E,,
corresponding to some conflict. The state of the population concerned with this conflict
is described by a vector z = (%1,23,...,2,) € R%} in which z; denotes the frequency
of individuals with strategy E;, 1 = 1,2,...,n. Thus, z; 2 0, i = 1,2,...,n, and
_i z; =1. Welet

=1

n
(1.1)  Sa={z=(z1,22,...,2a) ER™: ) 2 =1,2,20,i=1,2,...,n}
=1
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be the simplex of all possible strategies.

Using game theoretical ideas, we derive a dynamical system described by a set of
differential equations modelling the temporal evolution of the frequencies of individuals
with distinct strategies [9]. We assume that individuals encounter others at random
and a confrontation results, and depending on the behaviour patterns, each receives a
pay-off. If an individual with strategy E; confronts an individual with strategy E;,
then we assume that the Darwinian fitness of the former is altered by the “pay-oft”, say
aij, 1,7 = 1,2,...,n. Let the matrix A = (a;;) denote the matrix of pay-offs. Under
the assumption of random encounters, the average pay-off for an individual of strategy
E; in a population distribution z;,%2,...,Z, is given by p; and the average pay-off for
the whole population itself is p, where

n
(1.2) pi = zai,‘z,‘, t=1,2,...,n,
i=1
and
n n n
09 p=3omn= 3 (Som )
=1 =1 j:]

It is not unreasonable to assume [10] that the average rate of change of the fre-
quency zi, ¢t = 1,2,...,7n, is equal to the difference between the pay-off of the E;-
individuals and that of the whole population. Thus, we arrive at the coupled system of
ordinary differential equations

n

1 dz; i n
el PILL) D BE DILEL) e

i=1 =1

which simplifies to

d:l:,' n n n '
(1.4) ks Zagj:c_,- —EZakakzj , t>0,i=1,2,...,n.
i=1 k=1 j=1

The system (1.4) governs the dynamical evolution of groups of individuals with various
strategies.

The plan of the paper is as follows. In Section 2, we consider the dynamics of
a population with a conflict of evolutionary significance, concerned with mating be-
haviour, and known as “the battle of the sexes”. We derive a system of differential
equations modelling the population dynamics of the problem and we examine the phase
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space structure of the system. In Section 3, we perturb the system and use Melnikov’s
method [7, 11] to establish a sufficient condition for the existence of chaotic behaviour
in the sense of Smale. Then, in Section 4, we consider a special case of the perturbed
system. We first simplify the Melnikov condition derived in Section 3 and we then use
subharmonic Melnikov theory [7, 11] to deduce a criterion for the existence of sub-
harmonic periodic solutions of the perturbed system. Finally, in Section 5, we briefly
comment on the biological relevance of the perturbations and their implications.

2. THE BATTLE OF THE SEXES

In this section, we briefly describe a model known as “the battle of the sexes”
introduced by Dawkins [4] dealing with the dynamical characteristics of a two sex
population of males and females which use different strategies in their choice of partners.
Suppose that the males use strategies E;, E; and the females use strategies Fi, Fp. Let
a;j denote the pay-off for males using strategy E; against a female using strategy Fj;
similarly, let b;; denote the pay-off for a female using strategy F; against a male using
strategy E;. Let z;, i = 1,2, denote the proportion of males using strategy F; and
let y; denote the proportion of females using strategy F;; thus

(2.1) z1t+z2=1, pi+y2=1.

The pay-off for a male using strategy E; against a female population (y1,y2) is
(2.2) ai1y1 + aiay2

and the average pay-off for the male population is

(2.3) (@1191 + a12y2)21 + (@211 + a22y2)22.

The other pay-offs are similar. The dynamical equations governing the population of
males and females can be obtained from (1.4) as follows:

1 dz

7, dtl (allyl + alzyz) = [(‘111‘.‘/1 + alzyz)zl + (anyl + a22y2)z2]
1 dﬁz

- @ = (an1y1 + a22%2) — [(@11y1 + @1292)21 + (@211 + a22y2)22]

(24)

1 d;

" :tl (br1zy + b12z2) — [(B1121 + b1222)y1 + (ba121 + b22z2)y2]
1 dy2

v dt = (ba1z1 + b2222) — [(br121 + br222)y1 + (b2121 + baaz2 )y2)-

Since we have

d d
(2.5) E(zl + z2) = E(yl +y2) =0,
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then the product of the simplexes S; x 52, that is, the set of all possible strategies, is
invariant, so we consider the restriction of (2.4) to §; x S;. Furthermore, if ¢; and ¢,
are arbitrary constants, then

[(@11 = e1)ys + (@12 — e2)y2] — [(a11 — c1)yn + (@12 — €2)y2]zs
— (@21 — e1)y1 + (@22 — c2)y2]=2
=any + a12y2 — (111 + a1292)z1 + (a2191 + a22y2)z2]
(26) —(ay + cam2) + (191 + c2y2) (21 + 22)

=any +a2y2 — [(en1y1 + a12y2)21 + (a2191 + a22y2)z2]
_ 1 dl‘]

z dt

A similar subtraction of constants from the respective coeflicients and subsequent sim-
plification, as in the derivation of (2.6), can be performed for the other equations in
(2.4). Thus, arbitrary constants can be subtracted from the columns of the two pay-off
matrices A = (a;;) and B = (b;;) without affecting the dynamics described by (2.4).
In view of this, we can assume that the pay-off matrices are of the form

0 an 0 b2
2.7) A_(a21 0), B_<b21 0).

The first equation of (2.4) becomes

iﬁ — - [ + ]
— = aj2Y2 Q12Z1Y2 T @21 T2Y1
=a12(1 — ) —e1221(1 — 1) — @y (1 — z1)
=a12(1 ~y1)(1 - 21) — anyi(l — z1)
= (1 —z1)[a12 — y1(a12 + an)];
thus, we obtain
d:cl
(2.8) e z1(1 — z1)[a12 — (@12 + a21)m)-
Similarly,
dyl

U [012(1 — 21) —b12y1 (1 — 21) — b2122(1 — 31)]
(2.9) =y1[b12(1 — 21)(1 — y1) — b1 z1(1 — 1))

= y1(1 — y1)[b12 — (b12 + b21)z1].

https://doi.org/10.1017/5000497270001426X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001426X

[5] Chaos in sociobiology 443

For subsequent analysis, it is convenient tolet z; =z, y1 = ¥, a12 = @, a12+a21 =,
bi2 = v and b2 + b2y = 8. Then, we have the system

% =2(1-2)(a-By)

Y Y1 - y)(r — b2).

(2.10)

ylt)
N B
0.81
0.61
0.41
0.21
0 . A
¥ 0.2 0.4 0.6 0.8
x(t}

Figure 1. The phase space of (2.10) restricted to the unit square
fora=1,=2,y=-1and § =-2.

In general, this system is non-Hamiltonian, but the system is integrable with first
integral given by

(2.11) V(z,y) =2 " (1—2)" (1 -y) > =,

for 0 <z <1, 0 <y <1, where h is the integral constant. Assume that 0 <
a/f <1,0<9/6§ <1 and ay < 0. Then, the fixed point (v/é,a/B) of (2.10) is a
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centre, and the other fixed points of (2.10) at 0(0,0), A(1,0), B(1,1) and C(0,1) are
all saddles. The centre at (vy/8,a/8) is surrounded by a continuous family of periodic
orbits given by (2.11) for h € (0, a® B Py 165 (B—a)lf (6 7)7_6) , and there are
four heteroclinic orbits consisting of four straight line segments connecting the four
saddles, as shown in Figure 1. The existence of this heteroclinic cycle enables us to
consider an application of Melnikov’s method in the next section.

3. CHAOTIC DYNAMICS

The parameters a;; in (1.4) are constants in a first approximation. In reality, the
system (1.4) is susceptible to small perturbations arising through mutations and other
random events which affect the pay-off values [5]. Thus, it is reasonable to consider the
system (1.4) and hence the system (2.10) subjected to perturbations; in particular, we
consider the following perturbed version of (2.10):

‘;_: = z(1 — z)(a - By) + e(Mz + Az sinwt)
(3.1).

d .

E“% =y(1l — y)(v — bz) + e(M1y + Az sinwt),

in which 0 € € € 1 denotes the perturbation parameter, w > 0 is the frequency of
the perturbation, and A; and ); are real parameters. When ¢ = 0, by integrating the
unperturbed system (3.1).=0, we easily find the parametric representations of the four
heteroclinic orbits as follows:

. _ _ 1 _ _exp(at/2)
OA: yo(t) =0, =o(t) = 1+exp(—at) 2cosh(at/2)’
. ~ _ 1 _ _exp((v—é)t/2)
. AB: zo(t) =1, woft)= 1+exp[—(y — 6)t] ~ 2cosh((y — 6)t/2)’
(3:2) G ()1 o 1 _ _exp((a—p)t/2)
Pl =1 20(t) = T TN T Seosh (o= B)/2)
CO: zo(t) =0, wo(t) = 1 _ exp(vt/2)

1+exp(—qt) 2cosh(vt/2)
The system (3.1). is of the form

%-::- = fi(z,y) + eq1(z,y,1)
%— = fz(t,y) + €y2($$y’ t)
and we write
_ fl(z’y) an = gl(z’y’ t)
Iz = (fz(z,y)) 4 gt = (gz(z,y, t)) '
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We now investigate the conditions for the existence of transverse heteroclinic cycles for
the system (3.1).. We have noted that, in general, the unperturbed system (3.1) .o is
non-Hamiltonian. Let go(t) = (zo(t),y0(2)) be one of the heteroclinic solutions given
by (3.2). By using Melnikov’s method, the Melnikov function corresponding to the
perturbed system (3.1). is defined as [1, 2]

(3.3)

M(tp) = [-°° F(qo(2)) A g(go(t),t + to) exp (— /ot trace Df(qo(3)) ds) dt
= [ Joott)1 ~ 2a(t)(a - Bun(D)uzo(t) + dssin (e + 1))

—o0

=yo()(1 — %o(8))(y — 6zo(t))(A1zo(t) + Az sin (w(t + to)))]

X exp (— [ 1 = 2200t - Bun() + (1 = 230 () = B0 da) dt.

For convenience, we denote by

A(t) = exp (— [ 0= 220(6))(a - un(e)) + (1 = 23007~ Bza(o))] ds) :

and we write a three-parameter integral and two four-parameter integrals as follows:

* exp(qt)
Io(p,q,p) = /_w ;sh—“(p—t)dt’

* exp (qt)sinwi * exp (qt) coswt
L—dt, Iz(p,q,u,w)=/ __pgg_dt.

cosh” (pt) —oo cosh”(pt)

Il(p, q, ””w) = /

—Oo0

To calculate (3.3) along the four heteroclinic orbits, we have, after some simplification,
the following results:

(3.4)
M(to)|0A = a); [coswto /

oo

zo(t)(1 — =o(t))A(t) sinwt dt

+ sinwty /oo zo(t)(1 — zo(t))A(t) coswt dt]

- 00

o a é ) a b 6 )
= 26/2q), [Il (5,5 o ;,w) coswiy + I, (5,5 -, - ;,w) smwto] s
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(3.5)
M), = 6= (M [ w0 - w) 4 d

+ A2 [cos wtp /°° yo(2)(1 — yo(2)) A(2) sin wt dt

-0

+sinwto /_ : o(£)(1 — vo(t))A(t) cos wi dt] }
= 98/G=7) (5 _ ) {,\110 (7;6’(1 g 7ﬁ 6)

ya

2 YT 2=
+A21 (77_6,a g A 6,w) smwto}
(3.6)
M), =(@-8){x [

+ Ay [coswto /

+ sinwto / " 2o(t)(1 — zo(£)) A(t) cos wt dt]}

-0

(7_6 é L )coswto

2o(t)(1 — zo(£))A(t) dt

2o (t)(1 — zo (1)) A(t) sinwt dt

= 926/(B— ")(a '3){,\1[0(‘12'3,7 gacsﬂ)

-8 § &
+A2I1( 2 Y — po— ﬂ,w cos wiy

2’
-p § & .
+A21; ( D) Y — PX m)“') Sln“’to} ’
= —7A2 [cos wtp / Yo()(1 — yo(1))A(2) sinwt dt

+ sinwty /;°° yo(t)(1 — yo(2))A(E) coswt dt]

—0,— é:‘b’) coswio + I2 (l, é —a,— E,w) sinwto] .
v 272 Y

(3.7)
M(to) co

— 9B/~ I ﬂ
2 7A2 [Il (2 2

Denote by Ii; = (112 +I22)1/2, and define ¢ by sing = I /I;; and cos¢ = I /I1,.
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Then, (3.4)-(3.7) can be rewritten as:

(3.8) M(to)|,, = 2572 g5 IS sin (wio + do4),
(3.9) M(to)|, = 2P/C=(§ — )M IPB + Xp 1P sin (wto + $aB)),
(3.10) M(to)| = 25/F=)(a — B)[M IPC + Xp I3 sin (wto + éB0)]s
(3.11) M(to) co = 2817425 ISP sin (wto + dco).

From (3.8)-(3.11), we see that if

A1

AB BC
(3.12) 1, | < min (I“ L, )
2

AB® rBC
IO IO

then each Melnikov function has simple zeros and hence the system (3.1). has a trans-
verse heteroclinic cycle; it follows that the Poincaré map of (3.1). has transverse ho-
moclinic points, so that chaotic behaviour in the sense of Smale exists in the system
(3.1) for sufficiently small ¢ by the Smale-Birkhoff homoclinic theorem [12], that is,

we have:

THEOREM 3.1. Supposethat 0 < a/f<1,0<7/6<1, oy <0 and w > 0.
If the condition (3.12) holds, then chaotic behaviour in the sense of Smale exists in the
system (3.1). for sufficiently small €.

4. A SPECIAL CASE OF SUBHARMONIC SOLUTIONS

In this section, we take a =1, f# =2, v = —1 and § = —2, that is, we consider
the perturbed system

dz/dt = z(1 — z)(1 — 2y) + e(A1z + Az sinwt)

4.1),
(1) dy/dt = y(1 — y)(—1 + 2z) + e(A1y + Az sinwt).

In this case, the unperturbed system (4.1).=¢ has the Hamiltonian
(4.2) H(z,y) =zy(l -z)(1 —y) =h.

First of all, we can simplify the condition (3.12) because the integrals can be analytically
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evaluated [6]. We have

*® 1 * 1 AN
()« [ a2t Q] -
0 0 oo cosh? (/2) o cosh?(t/2) 2 0

sin wt
dt =0,
/ cosh? (£/2) (t/2)

1 coswt *®  coswt dnw
IAB — T. —,0,2,w> =/ dtzz/ dt = — ,
2 2\2 oo cosh? (£/2) (t/2 o cosh?(t/2) sinh (7w)

1 o oo 1

-2,0,2 —_— _dt= — dt =IAB

2 ) / oo cosh? (—£/2) ( t/2) /_w cosh? (¢/2) 0

_Lo ) / sinwt dt=/ L‘z“‘it——dt=1;43=o,
2’ oo cosh? (~t/2) —oo cosh® (£/2)

L

2

’2"0) =/ cos wi dt=/ cozswt &t =I.fB - 4rw .
—oo cosh? (—1/2) —oo cosh” (t/2) sinh (mw)

Hence, the Melnikov condition (3.12) for the existence of chaotic behaviour becomes

IfB =1,

(=]

M
Xz

W

sinh (7mw)’

We now consider the existence of subharmonic periodic solutions of (4.1).. When
h € (0,1/16), (4.2) defines a continuous family of periodic orbits surrounding the centre
(1/2,1/2). We can show that the parametric representation of this family of periodic
solutions of (4.1).—o is as follows:

1 k t 1 kecn
. )= —-—— — - =4t/
(4.3) 0 2 2 s (2’k) » w(?) 2 ' 2dn(t/2,k)’

where k = +/1— 16h, and sn(u, k), cn(u,k) and dn(u,k) are Jacobi elliptic functions
with modulus & [3]. The orbit (zx(t),yx(t)) has period T(k) = 8K(k), where k €
(0,1), in which K(k) is the complete elliptic integral of the first kind [3]. We next use
subharmonic Melnikov theory [7, 11] to examine the existence of subharmonic periodic

solutions of (4.1).. For relatively prime positive integers m and n, the subharmonic
Melnikov function (for a Hamiltonian unperturbed system) is defined as [7, 11]
mT/[2
i) = [ Han(e) Aalan(e) ¢ + o)
—mT/2
where gi(t) = (zx(t),yx(t)), and the resonance condition is T(k) = (mT/n), in which
T > 0 is the period of the perturbation. For n = 1, the resonance condition is

2mm

(4.4) T(k) = 8K(k) = == = mT.
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For a given m, it defines a relationship k = k(m). Corresponding to the periodic orbit
qr(t) = (z(t), yx(t)) with k = k(m), the subharmonic Melnikov function is:

(4.5)
M™(ty) = /

—mT/2

— pa()(1 = pa(8))(—1 + 224(t))(Aaza(2) + Azsin (ot + t0))) | dt

mT/2
#4001~ 24(0)(1 2D Aa2a) + Dasin (w(t-+ o))

mT/2 d:l:k
= [m /2 [ (&) (A1ye(t) + Azsin (w(t + 20)))

_dTiyti(t)(Al zx(t) + Az sin (w(t + tﬂ)))] dt

n [ (w0 %0 - a0 W)

—-mT/2
mT/2

+ Azw sinwiy / zi(t) sinwt dt
-mT/2

mT/2

+ Aaw cos wto/ yi () coswt dt
-mT/[2

_2{,\1 [%/ (dn k) )du+—/ cnz(u,k)du]

Aw |k sinwt /2K sn(u, k) si (m_ﬂ'u) d
2 o f . u, k)sin ( —- ) du
2K
cn(u, k) mru
—kcoswiy /2K dn(a, k) os( 2K )du:| } .
The first two integrals of (4.5) can be found from [3]. The last two integrals require the
Fourier series expansion of sn(u, k) and cn(u,k)/dn(u, k) = cd(u, k) respectively; both

of these can be obtained using contour integration and are listed in [3]. By calculating
the integrals of (4.5), we have

M2m+1/1(to) = —Z{AI[E(k) - (1 - kz)K(k)]

(4.6)
(2m + )rK'(k)\, . m

+ A27w cosech ( 2K (k) [—sinwtp + (—1)™ coswiy)

where E(k) is the complete elliptic integral of the second kind, and K'(k) = K(k'), in

which k' = /1 — k? is the complementary modulus [3]. From (4.6), we see that if

A1l mw cosech((2m + )wK'(k)/(2K(k)))

(47 % E(k) - (1 - k5)K(k) ’

https://doi.org/10.1017/5000497270001426X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001426X

450 J.R. Christie, K. Gopalsamy and J. Li (12]

then M?™+1/1(4,) has simple zeros. In order to deduce that the system (4.1), has
subharmonic periodic solutions of order 2m + 1 [7, Theorem 4.6.2], we need to show

dT(k) # 0. Using (4.3) and (4.4), we obtain

that (k)

dT 4T dk 64 dK

(4.8) -k dh T ioienak 2

since K is an increasing function of k. In summary, we have the following conclusion:

THEOREM 4.1. For w > 0, if the condition (4.7) holds where K(k)
= m(2m + 1) /4w, then the system (4.1), has a subharmonic periodic orbit of period
(2m + 1)T for sufficiently small .

5. CONCLUSION

Most population systems are susceptible to time-periodic perturbations due to
periodic fluctuations of the environment like food availability, mating habits and other
resources. There are also evolutionary perturbations in the fitness parameters arising
due to mutations and other fluctuations influencing the phenotypic behaviour resulting
in the variation of strategies. We have considered a class of perturbations in (3.1),, and
we have established that the densities of males and females adopting different strategies
in their mating behaviour can vary in a complex way without converging to any limiting
form. Such a variability is necessary for the evolutionary forces to be in action since
one of the essential ingredients of evolutionary modifications is variety. Our analysis is
complementary to the analysis of Foster and Young [5].
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