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The fate of particles in a volumetrically heated
convective fluid at high Prandtl number

Cyril Sturtz1,†, Édouard Kaminski1, Angela Limare1 and Stephen Tait1

1Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France

(Received 19 January 2021; revised 9 July 2021; accepted 28 September 2021)

The dynamics of suspensions plays a crucial role in the evolution of geophysical systems
such as lava lakes, magma chambers and magma oceans. During their cooling and
solidification, these magmatic bodies involve convective viscous fluids and dispersed solid
crystals that can form either a cumulate or a floating lid by sedimentation. We study such
systems based on internal heating convection experiments in high Prandtl fluids bearing
plastic beads. We aim to determine the conditions required to produce a floating lid or
a sedimented deposit. We show that, although the sign of particles buoyancy is the key
parameter, it is not sufficient to predict the particles fate. To complement the model we
introduce the Shields formalism and couple it with scaling laws describing convection.
We propose a generalized Shields number that enables a self-consistent description
of the fate of particles in the system, especially the possibility to segregate from the
convective bulk. We provide a quantification of the partition of the mass of particles in
the different potential reservoirs (bulk suspension, floating lid, settled cumulate) through
reconciling the suspension stability framework with the Shields formalism. We illustrate
the geophysical implications of the model by revisiting the problem of the stability of
flotation crusts on solidifying rocky bodies.

Key words: granular mixing, particle/fluid flow, magma and lava flow

1. Introduction

According to the classical scenarios of planetary formation, terrestrial bodies were likely
partially or totally molten, forming a magma ocean (Taylor & Norman 1992; Tonks
& Melosh 1993; Abe 1995, 1997). This initial stage in planetary history is due to
two major phenomena. In the first few million years of the solar system, during the
accretion of planetesimals, the decay of short lived radioactive elements such as 26Al
and 60Fe is an important heating source (Urey 1955; Neumann, Breuer & Spohn 2012;
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Weidenschilling 2019; Kaminski et al. 2020). Later, collisions between planetary embryos
and giant impacts converted gravitational energy into heat and produced massive melting
events (Tonks & Melosh 1992; Safronov & Ruskol 1994; Canup & Asphaug 2001). During
the cooling of such a system, the temperature evolves from the liquidus to the solidus, a
melting interval which is several hundreds of degrees for silicate systems. If the cooling
rate controls the pace of solidification of the system, solidification and the fate of crystals
can also introduce a feedback on the thermal history of the system. For example, the
anorthosite crust of the Moon formed by flotation of light plagioclase crystals (Wood
1972; Warren 1985; Shearer et al. 2006). This thick crust has an insulating effect on
the convective system underneath (Lenardic & Moresi 2003; Grigné, Labrosse & Tackley
2007) and hence slowed down its thermal evolution (Elkins-Tanton, Burgess & Yin 2011;
Maurice et al. 2020).

If the fluid were quiescent, crystals would settle down or float according to the sign
of their buoyancy. Convection may prevent this behaviour by maintaining particles in
suspension. The crucial issue lies in the determination of the stability of such a suspension.
Sparks et al. (1984) pointed out that the Stokes velocity of particles in magma chambers,
which stands for the typical settling velocity, is small compared with the mid-depth vertical
root-mean-square fluid velocity. In that case, suspensions in magmatic reservoirs should
always be stable, as particles behave like passive tracers. However, Martin & Nokes
(1988) illustrated experimentally that negatively buoyant particles initially in suspension
eventually settle down and form deposits. Lavorel & Le Bars (2009) furthermore
highlighted that deposition occurs at the Stokes velocity even though convection is
turbulent. These observations can be interpreted by considering the interactions between
particles and the dynamical boundary layers that develop at the borders of the reservoir,
where velocities vanish because of rigid boundary conditions (Sparks et al. 1984). As
a matter of fact, dealing with suspension sustainability requires a criterion that involves
both convection and sedimentation. Solomatov & Stevenson (1993) proposed a description
based on the energy balance of fluid–particle interaction. These authors assumed that the
fluid can transfer an amount ε of its convective energy to particles. If the suspension
gravitational energy that drives settling exceeds this quantity, the suspension is not stable
and deposits form. Even though ε = 0.1 %–1 % had been evaluated from experiments
(Solomatov, Olson & Stevenson 1993; Lavorel & Le Bars 2009), it has been underlined
that this ad hoc parameter is not well constrained (Solomatov et al. 1993). If it were, this
model could make possible a totally self-consistent mass budget, without involving any ad
hoc parametrization.

Instead of dealing with suspension stability, other authors prefer to consider the stability
of the beds of particles that may form. Erosion and entrainment of particles is usually
described by the formalism proposed by Shields (1936). Basically, particles are locked
on the bed surface because of frictional forces that have the same order of magnitude
as the buoyancy force according to Coulomb’s law. Entrainment is possible if the ratio
of the stress acting on particles over the particles buoyancy exceeds a critical value that
lies in the range 0.1–0.2 (Charru, Mouilleron & Eiff 2004). This model was used to
determine sediment transport upon bedloads (Lajeunesse, Malverti & Charru 2010) and
the equilibrium height of the settled bed (Leighton & Acrivos 1986). However, these
studies refer to experiments that involve controlled flow, with isoviscous and isothermal
conditions, that are not consistent with the geophysical applications considered here.
Convection in magmatic reservoirs involves destabilization of thermal boundary layers
(TBLs) that complexifies both temperature and velocity fields. Solomatov et al. (1993)
adapted the previous reasoning by considering that a single particle in the TBL cannot be
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lifted, but is moved horizontally at the surface of the bed by the tangential stress. Then,
particles form dunes that make the stress quasi-vertical, enabling entrainment. However,
these authors do not study the equilibrium thickness of the underlying bed, or its influence
on the thermal state.

In the present study, we aim at quantifying the behaviour of such a lid embedded within
the TBL of a convective system. We will consider the case of an internally heated system
cooled from above, displaying only one TBL which is at the upper surface of the convective
layer, and we will focus on the stability and the equilibrium thickness of a floating lid. The
first part of the study tackles the dimensionless equations that outline the problem, and
underlines the key dimensionless numbers that describe the system. In the second part, we
develop an experimental approach to study this issue. The set-up used is composed of a
tank containing the convective fluid internally heated by microwave absorption and plastic
beads that represent crystals. We examine the erosion of the floating lid, and we introduce
a model that predicts the equilibrium thickness of the crust according to the thermal
state. We identify and test experimentally the stability condition to form a cumulate. We
emphasize one dimensionless parameter, the Shields number, as the key parameter to deal
both with the lid stability and with the suspension sustainability. Finally, we discuss a
geological case illustrating the relevance of our model: the condition of stability of a
floating lid on terrestrial bodies.

2. Theoretical framework

2.1. Internally heated convective systems
Geophysical problems considered here involve convective systems driven by internal
heating and secular cooling, phenomena that are mathematically equivalent. Thermal
convection in the Boussinesq approximation is governed by the following equations
representing the conservation of momentum, energy and mass (see, e.g. Jaupart &
Mareschal 2010, p. 114):

ρ0,f

(
∂uf

∂t
+ uf · ∇uf

)
= −∇P + ηf ∇2uf − αf ρ0,f θg, (2.1)

ρ0,f cp,f

(
∂T
∂t

+ uf · ∇T
)

= λf ∇2T + H, (2.2)

∇ · uf = 0, (2.3)

where uf is the fluid velocity field, ρ0,f is the reference fluid density, ηf is its dynamic
viscosity, αf is its thermal expansion, cp,f is its specific heat, λf is its thermal conductivity,
g is the acceleration due to gravity, H is the rate of internal heat generation, P is the
pressure, T is the temperature field and θ = T − 〈T〉 is the thermal anomaly with 〈T〉 the
horizontal average temperature.

Internally heated convective systems are characterized by the internal temperature scale
�TH defined as

�TH = Hh2

λf
, (2.4)

where h is the vertical thickness of the system. This temperature scale introduces a new
definition of the Rayleigh number, called the Rayleigh–Roberts number (Roberts 1967)

RaH = αf ρ0,f gHh5

ηf κfλf
, (2.5)
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where κf = λf /ρ0,f cp,f is the fluid’s thermal diffusivity. This dimensionless number
enables the characterization of the vigour and patterns of convection (e.g. Vilella et al.
2018).

Using h as the length scale, �TH as the temperature scale, W = ρ0,f αf g�THh2/ηf as
the velocity scale that represents the Stokes velocity of a laminar thermal, h/W as the
time scale and ηf W/h as the pressure scale, one can provide dimensionless form of the
Boussinesq equations as follows (see, e.g. Jaupart & Mareschal 2010, p. 114):

RaHPr−1
(

∂uf

∂t
+ uf · ∇uf

)
= −∇P + ∇2uf − θez, (2.6)

RaH

(
∂T
∂t

+ uf · ∇T
)

= ∇2T + 1, (2.7)

∇ · uf = 0, (2.8)

where Pr is the Prandtl number, which compares viscous and thermal diffusion

Pr = νf

κf
, (2.9)

where νf = ηf /ρf is the kinematic viscosity. The Prandtl and Rayleigh–Roberts numbers
characterize the regime of convection occurring in the system. They scale inertia in (2.6).
The high-Pr low-RaH limit corresponds to laminar flows, whereas low-Pr high-RaH yields
turbulent inertial flows. In geophysical systems, these dimensionless numbers span a
large range of values. For instance, solid-state convection in the current Earth’s mantle
verifies Pr ≈ 1023 and Ra ≈ 107, whereas magmatic reservoirs are rather evolving with
Pr ≈ 103 − 108 and Ra ≈ 1011–1016. In the case of magma oceans, huge variation of Pr
and RaH over the thermal history are expected. Massol et al. (2016) estimated for the
terrestrial magma ocean a Rayleigh number that goes from 1031 at the very beginning if
the planet is totally molten, to 1014 when crystals are in suspension. This drop can partly
be explained by the fact that the presence of crystals increases the apparent viscosity of the
mixture by several orders of magnitude when the rheological transition is reached (Lejeune
& Richet 1995; Guazzelli & Pouliquen 2018). As a consequence, the Pr number increases
drastically during the solidification, from an initial value around 101–102 to the current
value of 1023 for solid mantle convection. In comparison, experiments carried out in the
present study lie in the following ranges: Pr ≈ 103 and RaH ∈ [3.106, 108]. According to
the theory by Grossmann & Lohse (2000), partially crystallized magma oceans and our
experiments occur in the same regime of convection.

Internally heated convective systems are characterized by a single upper TBL generating
cold instabilities. The temperature drop across the TBL �TTBL and the velocity of
downwellings Wi have been studied experimentally and numerically, and can be expressed
based on local scaling analyses (Limare et al. 2015; Vilella et al. 2018)

�TTBL = CT�TH Ra−1/4
H , (2.10)

Wi = CW
κf

h
Ra3/8

H , (2.11)

where the pre-factors CT and CW depend only on the mechanical boundary condition at
the top of the system (see table 1).

Introducing particles into the convective fluid adds significant complexity in the
problem. Indeed, depending on the density, shape and size of the particles, but also
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Conditions CT CW

Rigid 3.41 0.732
Free-slip 2.49 1.216

Table 1. Pre-factors of scaling laws (2.10) and (2.11) determined numerically (Vilella et al. 2018).

depending on the fluid flow, multiple phenomena are likely to occur, which are described
in an abundant literature (Andreotti, Forterre & Pouliquen 2011; Boyer, Guazzelli &
Pouliquen 2011; Houssais et al. 2015). We summarize below the theoretical framework
and fundamental parameters that will later be used to model these interacted phenomena.

2.2. Particles in suspension – two-phase flow
The presence of crystals dispersed in a magma reservoir makes it a two-phase system.
To describe the dynamics of two-phase flow, a set of complementary equations has to
be added to the conservation equations (2.1)–(2.3) to describe the two phases and the
interactions between them (see, e.g. Andreotti et al. 2011, p. 306). Considering the fluid
phase (f ) and the solid phase (p), and assuming that the volume fraction φ of the solid
phase is uniform, i.e. no chemical or mass exchanges between the phases, equations of
motion for the fluid and the particles are, respectively,

(1 − φ)ρ0,f

(
∂uf

∂t
+ uf · ∇uf

)
= −(1 − φ)∇P + (1 − φ)ηf ∇2uf ,

− (1 − φ)ρ0,f αf θg − f , (2.12)

φρ0,p

(
∂up

∂t
+ up · ∇up

)
= φ�ρg + f , (2.13)

where �ρ = ρf − ρp is the density difference between the fluid and the particles, and f is
the fluid–particle interaction force. All other forces are neglected, such as Van der Waals
interactions or frictional forces between particles. There are many approaches describing
the interaction force f depending on the flow regime and particle properties (Maxey &
Riley 1983). Here, we consider that, at high Pr number, the interaction between the fluid
and particles is dominated by the viscous drag, which is written as

f = β(φ)
ηf

r2 (uf − up), (2.14)

where r is the particle radius and β(φ) is a dimensionless function that refers to the
contribution of the other particles to the drag. It increases as φ increases (Andreotti et al.
2011, p. 306).

Using the same scales as before, the dimensionless set of equations becomes

∂uf

∂t
+ uf · ∇uf = Ra−1

H Pr(∇P + ∇2uf − θez) − β(φ)

1 − φ

ρ0,p

ρ0,f
St−1(uf − up), (2.15)

∂up

∂t
+ up · ∇up = Cez + β(φ)

φ
St−1(uf − up). (2.16)
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Two other dimensionless numbers appear. The C parameter compares the gravitational
potential energy of particles with the inertial drag

C = �ρgh
ρ0,pW2 . (2.17)

In our experiments, this parameter is of order unity. The Stokes number characterizes the
interaction between the fluid and particles

St = ρ0,pr2W
ηf h

. (2.18)

For reservoirs much larger than the size of the particles, which is a limit relevant for magma
oceans or magma reservoirs and/or for laminar flow, the Stokes number is likely to be
much smaller than unity. In this case, particles are statistically passive tracers, following
fluid motions (e.g. Crowe et al. 2011, p. 25). Consequently, (2.16) becomes

up = uf . (2.19)

We emphasize that this limit describes the average behaviour of particles but does not
imply that particles never settle. Over a short time scale compared with the convective
time scale, the particles are indeed passive tracers and the equality (2.19) holds true.
Nevertheless, particles are still buoyant, so there is a small component of the particle
velocity that participates in settling. In this way, (2.19) rewrites up = uf + us, with ‖us‖ �
‖uf ‖. Thus, sedimentation actually occurs with a low probability (Patočka, Calzavarini &
Tosi 2020), and deposits form at long time scales compared with the convective one.

A direct consequence of particles sedimentation is the formation of settled cumulates
or floating lids. This implies in turn that erosion and particles re-entrainment from these
layers must be taken into account in the modelling of convective systems.

2.3. Settling and re-entrainment
Erosion and re-entrainment from settled cumulates and/or floating lids bring particles
back in suspension (Solomatov et al. 1993). However, the framework that describes this
phenomenon is different from the one used to treat suspensions as it depends on local
mechanical equilibrium of the particles (Charru et al. 2004; Lajeunesse et al. 2010).
Particles at the surface of the bed are submitted to two forces: (i) the frictional force
between the particles and the underlying bed that captures particles at the surface of the
bed and is proportional to the particles buoyancy according to Coulomb’s law and (ii)
the shear stress induced by the flow. A dimensionless number, called the Shields number,
compares these two forces (Shields 1936)

ζ = τ

�ρgr
, (2.20)

where τ is the shear stress at the surface of the bed. This ratio enables the definition of a
critical value ζc that describes the threshold behaviour of particles on the bed. If ζ < ζc,
particles are locked on the bed by frictional forces, whereas if ζ > ζc, the shear stress is
strong enough to erode particles. For spherical plastic particles homogeneously sheared by
a viscous, laminar flow, Charru et al. (2004) estimated ζc = 0.12.

The force driving particles (re-)entrainment does not take into account any vertical
pressure effects. This follows the comment made by Solomatov et al. (1993) that a single
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particle cannot be lifted by a vertical pressure gradient by comparing the pressure force
exerted on the particle with its buoyancy. The authors proposed that the mechanism for
entrainment of particles is strongly linked to the shear stress acting at the interface, that
manages to displace particles and forms dunes that enable entrainment.

The framework presented above can be used to describe the dynamics of a suspension
and the coupled stability of cumulates and/or floating layers. To our knowledge, this
coupling has not been studied yet in internally heated convective systems relevant for
magma reservoirs. To fill this gap, we present below laboratory-scale experiments.

3. Experimental approach

3.1. Convection with internal heating
Achieving experimental convection driven by homogeneous internal heating at high
Rayleigh numbers was challenging until Limare et al. (2013) developed a unique
experimental set-up based on microwave absorption. A 30 × 30 cm2 wide and 5 cm high
tank is introduced in a specially designed microwave oven (Surducan et al. 2014). The top
of the tank is a thermostated aluminium plate whose temperature is fixed and monitored.
The other walls and the base of the tank are made of poly(-methyl methacrylate) (PMMA),
transparent to visible light and microwave radiation, and ensuring adiabatic thermal
boundary conditions.

A laser sheet scans half of the tank (15 cm), and we acquire images at a spacing of
1 cm. Two CCD cameras register images in different spectral ranges allowing non-invasive
measurement of the temperature field via a two-dye laser induced fluorescence method
(LIF). The velocity field is measured by particle image velocimetry (PIV). The temperature
and velocity spatial resolutions are 0.2 and 0.8 mm, respectively. Further details on
the experimental set-up and calibration can be found in Fourel et al. (2017). The same
set-up and methods are used in the following study, but the fluid is adapted to study
the sedimentation of beads. Typical two-dimensional velocity and temperature fields
are shown in figure 1 for experiments without beads. Panels (a.1) and (b.1) show the
two-dimensional horizontal and vertical velocity fields and their correspondent r.m.s.
vertical profiles (panels (a.2) and (b.2)). The velocity is zero on the boundaries since
they are all rigid. Negative vertical velocities are associated with thermal instabilities
generated at the top boundary of the tank. Positive vertical velocities correspond only
to return flow. Figure 1(c.2) displays the temperature vertical profile, showing that the
thermal structure of the convective layer can be split into an upper boundary layer and a
convective interior. An important feature is that the fluid interior has a slightly negative
temperature gradient. This has been verified numerically (Sotin & Labrosse 1999; Vilella
et al. 2018) and experimentally (Limare et al. 2015).

3.2. Fluid and particles
The working fluid used in experiments is a mixture of 44 wt % glycerol and 56 wt %
ethylene glycol. Particles are PMMA spherical beads. Two sets of beads are used,
corresponding to two different radii (r1 = 290 µm, r2 = 145 µm). The main properties
are summarized in table 2. Particles have a different thermal expansion coefficient αp
than the fluid, allowing the investigation of the full range of particle behaviours. For both
phases, the density is linked to the temperature according to the thermal equation of state

ρi(T) = ρ0,i[1 − αi(T − T0)], (3.1)
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Figure 1. Two-dimensional horizontal velocity (a.1), vertical velocity (b.1) and temperature (c.1) fields for an
experiment without beads (IHB29_3). We display the corresponding root-mean-square (r.m.s.) vertical profiles
for the horizontal and vertical velocity in (a.2) and (b.2) respectively, and the average temperature profile (c.2).

Properties Symbol Value Unit

Fluid density (20 ◦C) ρ0,f 1192 kg m−3

Bead density (20 ◦C) ρ0,p 1187 kg m−3

Fluid thermal expansion αf 5.5 10−4 K−1

Bead thermal expansion αp 3.2 10−4 K−1

Fluid viscosity (20 ◦C) ηf 0.151 Pa s
Activation energy Ea 41.7 kJ mol−1

Fluid thermal diffusivity κf 9.1 10−8 m2 s−1

Bead thermal diffusivity (*) κp 1. 10−7 m2 s−1

Fluid thermal conductivity λf 0.276 W m−1 K−1

Bead thermal conductivity (*) λp 0.21 W m−1 K−1

Table 2. Main physical properties of the fluid and beads. The activation energy is obtained from the viscosity
fit with an Arrhenius law: η(T) = ηf exp[(Ea/R)(1/T − 1/T0)], with T0 = 20 ◦C. Properties are all measured
in the laboratory, except those marked with (*) which are taken from Mark (2007). See supplementary material
available at https://doi.org/10.1017/jfm.2021.862 for further information on the way property measurements
have been carried out.

where T0 is the reference temperature, ρ0,i is the reference density at the reference
temperature T0 and i refers to the fluid or particles. In this case, the density difference
between the fluid and particles is

�ρ(T) = ρf (T) − ρp(T) = �ρ0

(
1 − �(ρ0α)

�ρ0
T
)

, (3.2)

with �(ρ0α) = ρ0,f αf − ρ0,pαp. If the fluid is cold enough, particles are lighter than
the fluid and float, whereas at higher temperature, beads become heavier and can sink.
Thus, an inversion of buoyancy exists at an ‘inversion temperature’ Tinv (figure 2).
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Figure 2. Variation of the density of the beads and the fluid with temperature. The range of temperatures
reached in experiments (10–60 ◦C) gives rise to both sinking and floating particle behaviours.

Furthermore, when the thermal state in the experimental tank spans a large range of
temperatures, from the cold surface temperature Ts < Tinv to the bulk temperature Tbulk >

Tinv , the system can display simultaneously both a floating lid and cumulate formation. In
our case, Tinv = 37.4 ◦C.

Experimental conditions are summarized in table 3. The fluid Prandtl number is
high (Pr ≈ 1000) and experiments reached high Rayleigh–Roberts numbers (RaH ∈
[3.106, 108]). The particle Stokes number is approximately 10−5–10−4, which makes them
passive tracers.

As particles are made of PMMA, they are transparent to microwave radiation, so internal
heating only occurs in the fluid. Comparing the diffusive time scale in one particle
τd ∼ r2/κp and the convective time scale τc ∼ h/W leads to τc/τd ≈ 101 − 102, which
shows that the thermal equilibration of the particles is rapid. Thus, we assess that the local
temperature difference between the particles and the fluid is negligible.

Unfortunately, in this configuration, we could not achieve refractive index matching
between the beads and particles (see supplementary material). Consequently, plastic beads
are light-scattering objects and the images recorded by the cameras are blurred. This has
little influence on the velocity measurement, as particles behave like passive tracers. In
order to check if it affects the temperature measurements, we carried out a sedimentation
experiment using a homogeneous suspension in a controlled isothermal environment. We
monitored the fluorescent signal whilst particles settled, and confirmed that the mean
temperature measured was consistent with the imposed temperature. Hence, the presence
of beads does not affect the measurement of the average properties of convection, on which
further reasoning is based.

3.3. Experiments
Experiments were conducted as follows. The tank was filled with a mixture of fluid and
particles. One has to avoid introducing air into the system, in order to limit surface tension
effects (see supplementary materials for more details). The system is thermostated at the
surface temperature Ts generally bellow Tinv , so that particles form initially a floating lid
(see figure 3). Then, the microwave power is turned on and convection starts within a
time lapse of a few tens of seconds. As convection proceeds, the floating lid is eroded,
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Name Bead radius (µm) δ0 (mm) Ts (◦C) Tbulk (◦C) RaH (107) Erosion? Cumulate?

IHB04 290 5.3 21.8 44.5 4.3 Partial yes
IHB05 290 5.3 21.8 47.7 8.9 Partial yes
IHB07 290 1.9 22.3 35.9 2.8 Partial no
IHB08 290 1.9 14 32.8 2.4 Partial no
IHB09 290 1.9 34.1 43.4 4.1 Partial yes
IHB11 290 4.7 22.8 43.9 4.2 Partial yes
IHB12 290 4.7 22.8 35.3 1.4 Partial no
IHB13 290 4.7 23 48.3 8.0 Partial yes
IHB14 290 4.7 8.9 42.0 5.9 Partial no
IHB16 290 3.8 22.3 53.7 14.4 Partial yes
IHB17 290 3.8 22.2 38.7 2.8 Partial no
IHB18 290 3.8 22.2 47.4 11 Partial yes
IHB18SC 290 3.8 27 51.2 11 Partial yes
IHB19 145 4.7 22.9 42.1 6.8 Total no
IHB20 145 4.7 29.2 45.7 8.1 Total no
IHB20hot 145 4.7 34.5 49.4 9.7 Total yes
IHB21 145 4.7 23.1 30.6 1.5 Total no
IHB22 145 4.7 30.5 45.3 10 Total yes
IHB23 145 4.7 23.2 33.1 2.6 Total no
IHB24 145 4.7 23.1 26.3 0.27 Partial no
IHB25 145 4.7 23.2 28.5 0.67 Total no
IHB26 145 4.7 33.2 36.3 1.0 Total no
IHB27 145 4.7 34.4 43.7 4.4 Total no
IHB27TS 145 4.7 37.7 45.3 4.8 Total yes
IHB29_1 — 0 22.2 26.0 0.28 — —
IHB29_2 — 0 22.2 34.5 3.4 — —
IHB29_3 — 0 22.3 38.9 7.9 — —
IHB30_1 — 0 22.3 28.5 0.77 — —
IHB30_2 — 0 22.4 31.4 1.8 — —
IHB30_3 — 0 25.6 43.1 12.2 — —
IHB31_1 — 0 9.1 16.5 0.16 — —
IHB31_2 — 0 29.4 46.6 13.3 — —

Table 3. Experimental characteristics: the beads’ radius r, the initial floating bed thickness δ0, the imposed
surface temperature Ts, the mean bulk temperature at steady state Tbulk, the Rayleigh–Roberts number
calculated at steady state RaH . The two last columns inform about the erosion of the floating lid (whether
partial or total), and the formation of a cumulate at the bottom of the tank. Note that two families of beads with
different radii are used. The last 8 rows correspond to experiments done without beads.

and particles are placed in suspension. In some experiments, the inversion temperature
was reached, and particles could further form a cumulate (table 3). We waited until the
thermal steady state was reached (which corresponds to a period of time spanning from 2
to 6 hours).

In the following section, we will study in detail these two aspects: the erosion of the
floating lid and the formation of the cumulate.

4. Floating lid

4.1. Thermal steady state
The presence of a floating lid is likely to influence the thermal state of the system as it is
situated in the TBL (figure 4). In the following section, we will quantify the thickness of
the steady lid and the thermal state of the system.
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Figure 3. Snapshots of one cross-section (y = 20 mm from the tank front wall) during an experiment (IHB05),
showing the typical phenomena observed. Images are taken at 3 different moments in time: t = 0, 40 and
150 min after the microwave power was turned on. Colours stand for the laser light intensity scattered. Blue
colour corresponds to the fluid. Hotter colours correspond to beads. At t = 0, convection begins, and particles
are eroded from the floating lid. The erosion of the floating lid can be either partial or total depending on the
experimental conditions (table 3). In some cases, due to progressive heating of fluid, beads become heavier
than the fluid and settle to form a cumulate.

h
z

(a) (b)

Qs

Ts Tlid
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Figure 4. (a) Illustration of the thermal state of the system and of the erosion model used to determine the lid
thickness at steady state, with h the reservoir thickness, Ts the surface temperature, Tlid the basal temperature
of the floating lid, Tbulk the average bulk temperature, Qs the surface heat flux, δ the floating lid thickness, ζ

the Shields number defined in the text, ζc its critical value, τ the convective shear stress and UL the horizontal
velocity scale. (b) Schematic view of a downwelling used for the shear stress scaling law. Here, �S stands for
the surface from which the fluid is drained, δTBL is the TBL thickness, Wi the maximal velocity of cold plumes.

Figure 5 reveals that the dimensionless drop of temperature between the bulk and
the surface is systematically higher than the one predicted by the scaling laws (2.10).
We displayed the scalings for both mechanical conditions (rigid and free slip) since
this boundary condition is not well defined beneath a granular lid. The lid reduces the
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Figure 5. Experimental dimensionless drop of temperature (Tbulk − Ts)/�TH as a function of the
Rayleigh–Roberts number at steady state. The two solid lines stand for scaling laws for homogeneous internal
heating with rigid and free-slip top conditions: (Tbulk − Ts)/�TH = CT Ra−1/4

H where CT is given table 1.

efficiency of heat transfer that occurs at the top of the reservoir and causes an insulating
effect related to the lid thickness.

To quantify this effect, we use the model developed to study convection under a
conductive lid (Guillou & Jaupart 1995; Lenardic & Moresi 2003; Grigné et al. 2007).
The reasoning is based on two hypotheses. First, we consider the lid as a homogeneous
conductive layer with an average conductivity λ̄, and an averaged thickness δ, such that
the heat flow through the lid is

Qs = λ̄Tlid − Ts

δth
, (4.1)

where Tlid is the basal temperature of the lid and Qs = Hh is the surface heat flux at steady
state. The lid’s mean conductivity is estimated based on the individual values of each
component weighted by their respective volume fraction λ̄ = φRLPλp + (1 − φRLP)λf ,
with φRLP the beads packing in the lid, assumed to be the random loose one: φRLP = 56 %.
We further consider that the scaling laws for thermal convection hold true beneath the
conducting lid. It has been verified experimentally for homogeneous internally heated
systems that the drop of temperature between the surface and the bulk Tbulk − Ts scales
like the drop of temperature through the TBL �TTBL given in (2.10) with a pre-factor
CT = 3.38 ± 0.16 at steady state (Limare et al. 2019). Thus, thanks to the continuity of
temperature between the lid and the fluid, one can get

Tbulk = Tlid + CT�TH Ra−1/4
H , (4.2)

which combined with (4.1) yields

δth

h
= λ̄

λf

(
Tbulk − Ts

�TH
− CT Ra−1/4

H

)
, (4.3)

showing that the larger the lid thickness, the hotter the bulk.
To validate this model, which uses the thermal state of the system to estimate the

lid thickness, an independent way to measure δ is required. In that aim we explore
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Figure 6. The r.m.s. horizontal and vertical velocity values at steady state, averaged at each depth z for an
experiment without beads (a) and with a floating lid (b). The mid-depth of the tank is represented by the
dashed line. In the case (b), the depth at which the local extremum of the velocity is shifted, because of the
floating lid schematized by the yellow bands.

the r.m.s. velocity field. Figures 6(a.1) and 6(a.2) highlight the shape of r.m.s. velocity
profiles for a convective fluid in the absence of particles. Because of rigid boundary
conditions, velocities vanish at the surface and at the floor of the reservoir. Consequently,
by symmetry, the vertical velocity field has a maximum value at mid-depth – figure 6(a.2).
Also by symmetry, the horizontal profiles have a minimum value at mid-depth between two
maxima corresponding to 1/4 and 3/4 of the total thickness of the tank, as can be seen
in figure 6(a.1). This shape is due to the confined environment that creates a horizontal
recirculation flow. As emphasized in figures 6(b.1) and 6(b.2), the presence of the floating
lid shifts vertically the point where the horizontal velocity is minimal by an amount �δ,
which is set by the ‘mechanical’ thickness of the lid δm

�δ = δm

2
. (4.4)

Comparison between the thickness deduced from the velocity-shift method δm and the
inverted thermal thickness δth calculated thanks to (4.3) is shown in figure 7. In this
plot, we only use experiments where the lid is partially eroded and where no cumulate
appears at steady state, in order to limit unwanted shifts due to the presence of a deposit of
particles at the base of the tank. The agreement between the measurements and the model
is fair, despite some scatter due to the simplifications of the model used. We assessed
that the floating lid can be approximated by a homogeneous conductive lid whilst it is
composed of packed particles containing interstitial fluid. Moreover, its thickness is not
strictly uniform as dunes form during erosion/deposition processes (see supplementary
materials). In the following, we will use the thermal thickness δth to characterize the lid
thickness.

Besides, the symmetry observed in the horizontally averaged vertical profile Ux,rms is
clearly related to the return flow due to the rigid lateral boundaries and is not a general
feature of convection driven by internal heating. For instance, in the case of a spherical
shell, this symmetry has a priori no reason to exist. This experimental feature was used as
an additional measurement of the floating lid thickness. This assumption does not affect
the validity of the reasoning as our model does not require a symmetry of the lateral
flow.
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Figure 7. Comparison between the lid thickness inverted from the thermal state δth and the one measured
by the velocity-shift method δm. Error bars on δm correspond to one pixel of the PIV grid, and those on δth
correspond to one particle radius.

4.2. Predictive model for the floating lid

4.2.1. Local mechanical equilibrium
As illustrated in figure 4(a), local equilibrium of the beads is set by the balance between
erosion forces and the bead buoyancy. To quantify such an equilibrium, we rely on the
threshold theory of mechanical erosion (Glover & Florey 1951; Métivier, Lajeunesse &
Devauchelle 2017) and we define the Shields number ζlid at the base of the floating lid as

ζlid = τ

�ρ(Tlid)gr
, (4.5)

where τ = ηf γ̇ is the characteristic convective shear that acts on the bottom of the
lid, and γ̇ the corresponding strain rate. We consider only the experiments with partial
erosion of the floating lid at steady state, which means that the lid thickness δ /= 0.
In these experiments, the Shields number reaches the critical threshold (ζlid = ζc in
(4.5) and δ = δth in (4.1)). At steady state, we assume that the temperature field in the
floating lid varies linearly with depth, so that the temperature at the base of the lid
is Tlid = Ts + Qsδth/λ̄. Introducing this temperature in (3.2), some algebra yields the
following set of equations:

δc = δ∗
(

1 − ζs

ζc

)
, (4.6)

δ∗ = �ρ(Ts)

�(ρ0α)

λ̄

Qs
, (4.7)

ζs = τ

�ρ(Ts)gr
, (4.8)

where ζs is the Shields number calculated at the surface temperature Ts. With (4.6),
ζs appears as the control parameter that determines the critical thickness δc, as Ts and
Qs are known. The problem thus boils down to the determination of the characteristic
convective shear stress τ . For instance, in experiments done by Charru et al. (2004), the
shear is experimentally controlled and homogeneously applied to the bed, which facilitates
its characterization. Here, the bed lies in the unstable cold TBL. Thus the flow field is
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complex and contains spatial and temporal fluctuations. Hence, characterizing the shear
stress in a homogeneously heated convective system is required.

4.2.2. Scaling laws for velocities and shear stresses
Equation (4.5) emphasizes the importance of the horizontal shear stress, hence of the
velocity field, for the erosion process. The strain rate γ̇ scales as follows:

γ̇ ∼ UL

δv

, (4.9)

where UL is the characteristic horizontal velocity, and δv is the characteristic length over
which velocity vanishes. By definition, the latter corresponds to the dynamical boundary
layer (DBL) thickness. First, the Reynolds numbers Re reached in our experiments are
low, which implies laminar flows and thus δv ∼ h (see Appendix A). As a consequence,
the strain rate γ̇ becomes

γ̇ ∼ UL

h
. (4.10)

We consider the volume of fluid in the TBL that is drained by one downwelling (figure 4b).
On one side, fluid from the TBL is drained at the characteristic velocity Wi by the
downwelling whose cross-sectional area is Ai. On the other hand, fluid is converging at
the characteristic horizontal velocity UL through the lateral surface of the cylinder of
thickness δTBL and area �S. This reasoning is based on the fact that the fluid drained
in one downwelling comes mainly from the TBL. This assumption is valid at the high
Prandtl number limit where entrainment between downwellings and the ambient fluid is
negligible (Davaille & Vatteville 2005). Mass conservation imposes

ULδTBL�S1/2 ∼ WiAi. (4.11)

Using the same scalings as in Vilella et al. (2018) δTBL ∼ hRa−1/4
H , �S ∼ h2 Ra−1/4

H ,

Ai ∼ h2 Ra−3/8
H , Wi ∼ κf /h Ra3/8

H , valid for 106 ≤ RaH ≤ 109, we obtain the horizontal
velocity scale

UL = Cu
κf

h
Ra3/8

H , (4.12)

with Cu a pre-factor which depends on the boundary conditions.
To verify these scaling laws, experiments without beads have been carried out using

the same fluid and the same methods as those described previously. We recorded the
horizontal and vertical velocities using the PIV method, and we calculated the horizontal
and vertical strain rate. As we are interested in the average shear rate, we determined
their r.m.s. values calculated over the entire volume of the tank. Results are displayed in
figures 8(a) and 8(b) for the horizontal and vertical velocities. The scaling law pre-factors
determined experimentally are summarized in table 4. In our experiments, Re ≈ 10−1 − 1,
so the convection is laminar.

The scaling law for the strain rate is therefore Cγ (κf /h2) Ra3/8
H . Results are displayed in

figures 8(c) and 8(d) for the horizontal and vertical strain rates, respectively. In both cases,
the predicted scaling law is in good agreement with experimental data.

We can thus estimate the Shields number as follows:

ζs = ηf κf

h2�ρ(Ts)gr
Ra3/8

H . (4.13)
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Figure 8. Scaling laws derived from experiments without beads. Horizontal (a) and vertical (b) velocity,
horizontal (c) and vertical (d) strain rate. All these physical properties are evaluated thanks to their r.m.s.
values calculated in the entire volume of the tank and are represented by the dots. Blue lines represent best fit
laws with fixed exponent 3/8 and the orange dashed line are those with the exponent left to vary. All parameters
of these laws are summarized in table 4.

Variable Exponent left to vary Fixed exponent

Urms
x h/κf 0.99 Ra0.34

H 0.55 Ra3/8
H

Urms
z h/κf 1.01 Ra0.33

H 0.50 Ra3/8
H

γ̇ rms
xz h2/κf 5.69 Ra0.36

H 4.73 Ra3/8
H

γ̇ rms
zx h2/κf 3.56 Ra0.39

H 4.76 Ra3/8
H

Table 4. Parameters of power laws determined experimentally for the horizontal and vertical r.m.s. velocities
and the horizontal and vertical r.m.s. shear rates.

4.2.3. Critical shields number and stability of deposits
Thanks to the previous scaling analyses, (4.6) provides a way to measure experimentally
the critical Shields number. By considering that the lid thickness at steady state
corresponds to the critical thickness δth = δc, one can determine the critical Shields
number ζc for each experiment

ζc = ζs

(
1 − δth

δ∗

)−1

, (4.14)
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Figure 9. Determination of the critical Shields number ζc = 0.29 ± 0.17 to achieve a perfect match between
the reference lid thickness δth and the critical thickness δc.
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Figure 10. Stability of different deposits. (a) Stability diagram for the floating lid, based on the value of ζs =
ζ(Ts). Circles: the lid is totally eroded. Downward-pointing triangles: a stable lid is observed at steady state.
(b) Stability of the cumulates that is likely to form when Tbulk > Tinv . This stability is compared with the
value of the local Shields number at the bottom of the tank ζbulk = ζ(Tbulk). Circles: no deposit at steady state.
Upward-pointing triangles: a cumulate is observed at steady state.

with ζs given by (4.13). The critical number is calculated for each experiment, and results
are displayed in figure 9. We obtain ζc = 0.29 ± 0.17. This value is of the same order of
magnitude of the one estimated by Charru et al. (2004). Error bars represent a variation
of one bead radius of the floating lid thickness. The discrepancy is due to the sensitivity
of the prediction to the value of the lid thickness, and the higher the heat flux, the steeper
the thermal gradient in the lid and the greater the error bars. This is the reason why one
experiment in particular (IHB13) does not appear in the plot because the uncertainties are
too large.

With the critical number ζc determined, we can compare the stability of the different
deposits predicted by the Shields approach with the experimental observations (figures 10a
and 10b). For the floating lid, we calculate the surface Shields number ζs. If ζs > ζc, the
floating lid is unstable and erosion should be total. But if ζs < ζc, a floating lid of some
thickness is stable. Results are displayed in figure 10(a) and the transition between total
erosion and partial erosion is well described by ζc. Similarly, we calculate the bulk Shields
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number ζbulk, which is also the Shields number at the base of the reservoir

ζbulk = ηf κf

h2�ρ(Tbulk)gr
Ra3/8

H , (4.15)

and we compare it with ζc. If ζbulk > ζc, convection prevents deposition at the base of the
tank. Otherwise, a basal deposit is stable. This transition is also verified experimentally in
figure 10(b).

5. Suspension stability

The scalings derived above allow prediction of whether a deposit can form at the base of
the reservoir and a stable lid at the top of it, but we need another framework to describe
the full dynamics of the suspension containing the particles eroded from the deposits. In a
fluid at rest, particles with negative buoyancy will all eventually settle down. Observations
show that in a convective fluid, even negatively buoyant particles can remain in suspension
at steady state (Lavorel & Le Bars 2009). Solomatov & Stevenson (1993) proposed that the
dynamics of the suspension can be described based on the equilibrium between buoyancy
and shear forces, described by the balance

φmax

∫∫∫
(V)

�ρg · up dV ∼ ε

∫∫∫
(V)

ηf uf · ∇2uf dV, (5.1)

or in compact form,
φmaxBp ∼ εVf , (5.2)

where Bp is the integral on the left-hand side of (5.1) related to beads buoyancy, Vf is
the integral on the right-hand side of (5.1) referring to the bulk viscous dissipation, (V)

is the total volume of the reservoir and ε is the percentage of viscous energy being used
to maintain particles in suspension (also called the efficiency parameter). This description
can be further used to determine the maximal concentration of particles φmax that can
be maintained in suspension by convection. Assuming ε to be constant, Solomatov &
Stevenson (1993) get the following law for φmax:

φmax = Csε

(
τ̄

�ρgr

)2

= Csεζ̄
2, (5.3)

where τ̄ and �ρ stand for the volume averaged values of τ and �ρ, respectively, and
Cs = 9/2 (Solomatov & Stevenson 1993). Basically, if the concentration of particles in
the convective bulk φ̄ is below this limit, particles stay in suspension. Otherwise, the
convective fluid only sustains the quantity of particles corresponding to the maximal
concentration φmax, and the rest settle, forming a cumulate. Interestingly, this law can
be expressed with a Shields parameter ζ̄ similar to the one used previously. The major
difference lies in the fact that ζ̄ is a global parameter, comparing volume average
properties, whereas previously ζ has been estimated locally. However, by neglecting the
thin TBL at the top of the reservoir, one can approximate that ζ̄ ≈ ζbulk = ζ(Tbulk), and
thus φmax is described by previous scaling laws.

In order to verify the validity of this criterion in our experiments, we considered the
formation of the cumulate at the base of the tank. As the direct measurement of particle
concentration φ is not possible due to the refractive index mismatch, we calculate a proxy
ϕ of the quantity of particles eroded from the floating lid. To do so, taking δ0 as the initial
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Figure 11. Proxy of particle concentration at steady state for all experiments where particles in suspension
are heavier than the fluid. The blue line represents the transition between the cumulate regime et the absolute
suspension one, assuming a constant efficiency coefficient.

thickness of the bed, and δth as the thickness at steady state, the quantity of particles that
are eroded is proportional to δ0 − δth. The coefficient of proportionality is linked to the
packing of particles inside the floating lid. The packing is assumed to be constant, as
all experiments are prepared similarly. Thus, the concentration of particles in the bulk is
calculated as if all the eroded material stays in suspension

φ̄ = aϕ = a
δ0 − δth

h − δth
, (5.4)

where a is a constant which depends potentially on the packing of beads inside the lid
(a = 0.56 for a random loose packing). As the measurement of the total quantity of deposit
particles is subject to large uncertainties, we detect φmax as the limit between partial
sedimentation and absolute suspension defined by the limit φmax ∼ ζ

2. The blue line in
figure 11 represents the empirical boundary between the two regimes. Now, we have a
complete framework that describes the steady state of any suspension in a convective
environment driven by internal heating. The Shields formalism enables us to quantify the
thickness of the lid located in a boundary layer, and Solomatov’s approach enables us to
describe the maximal quantity of particles that can stay in suspension.

6. Lid formation in a convective system bearing particles

Our results can be used to describe the fate of particles in a convective fluid by splitting
the system into three reservoirs: (i) the floating lid situated in the TBL, (ii) the bulk fluid
containing suspended particles and (iii) the deposit at the base. Our model quantifies the
volume of particles that can be stored in each reservoir (figure 12). Buoyant crystals
first fill the floating lid reservoir. We can define the maximal capacity of the floating
lid Vc determined by (4.6). Particles exceeding this critical volume of the lid remain in
suspension or form a cumulate. In the same way, for negatively buoyant crystals, if the
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V0

Vc

Vc

Vd

V0 > Vc

ζs < ζc

ζs > ζc

ζbulk > ζc

ζbulk < ζc

ζbulk < ζc

ζbulk > ζc

V0 V0

Vd

Vc

Vsus

Vsus

Vsus

Vsus = V0 – Vc

Total
erosion

Partial
erosion

No deposit

No deposit

No deposit

Cumulate

Cumulate

Vsus ≈ 0 Vsus ≈ 0

Vsus = V0

Vsus = Vmax

Vsus = Vmax

Vmax = φmax × V

Vd = Vsus – Vmax

V0 < Vc

Figure 12. Synopsis that fully determines the system’s regime at steady state. The surface Shields number
ζs is given by (4.13) and depends on the surface temperature Ts, the Rayleigh–Roberts number RaH and the
initial volume of particles V0 which are all input parameters. Here, Vc is the volume of the critical floating
lid that can form at the surface of the convective fluid, corresponding to a lid of thickness δc given by (4.6).
Stability of the floating lid: if ζs > ζc, the floating lid is unstable and all particles are placed in suspension.
If ζs < ζc, the erosion is partial. In this case, if V0 < Vc, the initial crust is stable, and very few particles are
placed in suspension. If V0 > Vc, only a volume of particles Vc stays at the surface, the rest of the volume
Vsus = V0 − Vc is placed in suspension. Cumulate formation: we consider the stability of the suspension in
the case of negatively buoyant suspended particles. If the basal Shields number ζbulk is greater than ζc, the
suspension is stable and no cumulate forms. If ζbulk > ζc, a basal cumulate can settle down. The volume of this
cumulate is given by the maximal concentration of particles that can stay in suspension φmax given by (5.3).
The convective fluid can only sustain a maximal volume Vmax = φmaxV in suspension, where V is the volume
of the convective layer; Vmax has to be compared with the volume of particle that have been eroded Vsus. The
surplus Vd = Vsus − Vmax forms a basal cumulate.

bulk Shields number is below the critical value, a deposit may form. The concentration of
crystals that stay in suspension is limited to φmax, the rest settle and form the basal deposit.

7. Discussion

7.1. Validity of the experimental results
The approach adopted here takes into account the main mechanisms that deal with
suspension and deposit stability. The main goal was to highlight how to use the framework
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treating of fluid/crystal interaction in the case of convective systems bearing crystals. It is
based on hypotheses that allow us to express the problem in terms of scaling laws that can
easily be re-scaled to conveniently describe a geophysical system as it will be illustrated in
next section.

Even though experimental results are well described by our models at first order, certain
discrepancies exist and should not be ignored. They result from different factors. First, our
experiments enable the estimation of the floating lid thickness by an indirect measurement
based on the average temperature state of the system. This method might increase the
uncertainty on the determination of δ and, thus, all parameters that are linked to it, such
as the entrainment threshold. One way to improve this measurement could be the use of
fluid and beads that have a near-perfect optical index matching. In this way, the bottom of
the lid would be directly observable, and the thickness measurable more precisely. This
prerequisite enabled the study of the bed surface motions and even of the motions of beads
inside a granular bed (Mouilleron, Charru & Eiff 2009; Houssais et al. 2015). In this
way, the bottom of the lid will be directly observable, and the thickness measurable more
precisely.

Second, our theory is based on averaged physical properties, which leads to the general
predicament of describing a three-dimensional problem by a one-dimensional theory. This
crude approximation leads to results that are fairly consistent with data at first order,
but a local description of the convection and the erosion mechanism can improve this
approach. Downwellings develop from the TBL, which can have an influence on the local
behaviour of beads at the bottom of the floating lid. Equivalently, we describe the floating
lid as a quiescent solid medium of homogeneous thickness, but this assumption is a strong
simplification. We point out the existence of a topography (see supplementary materials)
that can have an influence on the local flow in the TBL, which, in turn, impacts the
erosion mechanism that occurs at the interface (Charru & Hinch 2006). Local recirculation
flow that induces dune formation is intimately linked to downwellings in our case, and
understanding the interaction between dune growth and the downwelling dynamics can
upgrade the present study. Furthermore, the suspension is also considered in our model
as evenly distributed in the bulk. This assumption represents only a particular case and
numerical simulations underline the fact that crystals can concentrate depending on the
flow field and their buoyancy (Patočka et al. 2020). Further investigations are required to
observe experimentally the behaviour of particles in suspension as a function, for instance,
of the Shields number, with a set-up that allows the study of a large range of values for ζ .

Dealing with the erosion mechanism, we have only treated the threshold in terms of one
critical value of the Shields number. Our estimate is consistent with data but deviation
from this value can be due to an oversimplification. First, as time scales to reach the steady
state are long, the steady state might not have been reached for the erosion of the floating
lid when we stopped the experiment. This might induce an over-estimate of the equilibrium
thickness of the bed, and consequently an under-estimate of the threshold value. Besides,
the Shields number may depend on parameters such as the grain size and the flow regime.
Buffington (1999) showed for instance a variation for turbulent flow in the range 0.03–0.1,
whereas Ouriemi et al. (2007) underlined that the threshold is stable in laminar flow but
it depends on the way the bed is packed (Agudo & Wierschem 2012). The latter authors
measured changes in the critical Shields number of a factor 2 up to a factor 5 depending on
the exposure of the beads to the flow and the packing and orientation of the substrate. Thus,
a dependence of ζc on other physical parameters related to the flow (such as the RaH), or
related to the substrate (such as the packing), has to be verified with an experimental device
that enables a study over several orders of magnitude.
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All these effects could explain the outliers that appears in our data. Nonetheless, our
results are proposed here as a first step in the path of using the physical framework used in
granular media in order to describe the behaviour of particles in convective systems.

7.2. Characterization of fluid/particle coupling in our experiments
We now illustrate a way to draw a parallel between the two-phase flow framework and the
above energy balance approach developed in § 5. The purpose is to show qualitatively how
the efficiency parameter ε could be refined and how it relates to the different regimes that
are reached in our experiments. This parameter is supposed to depend on many factors
such as the fluid and particle densities, the particle size, the concentration and the heat
flux involved (Solomatov et al. 1993) but this dependency has not yet been clarified.

In a convective system without particles, there is a bulk equilibrium between the total
viscous dissipation Vf and the total buoyancy of the fluid Bf . In the presence of particles,
part of the viscous dissipation corresponds to the work done to maintain the particles in
suspension

Bf = (1 − ε)Vf , (7.1)

with

Bf =
∫∫∫

(V)

αf ρ0,f θg · uf dV. (7.2)

Combining (2.12) with (7.1) leads to

ε

∫∫∫
(V)

ηf uf · ∇2uf dV =
∫∫∫

(V)

f
1 − φ

· uf dV. (7.3)

This relation links quantitatively the efficiency parameter to the coupling force between
the fluid and particles. In our case, for laminar convection, the coupling force (2.14) can
be used and we obtain

∫∫∫
(V)

f · uf dV =
∫∫∫

(V)

β
ηf

r2 (uf − up) · uf dV. (7.4)

As discussed earlier, as St � 1, particles are statistically passive tracers. Nevertheless, we
observed experimentally the formation of cumulates, so there is a weak component of
particle motion that enables settling. In this way, we assume the following decomposition
for the particle velocity:

up = uf + us, (7.5)

where us stands for the settling velocity, which is considered to be the Stokes velocity, and
verifies ‖uf ‖  ‖us‖ in our case. This hypothesis is also corroborated by the experiments
done by Lavorel & Le Bars (2009), who showed that particles in turbulent convection
settle at a speed that scales with the Stokes velocity. Equation (7.4) thus suggest the
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Figure 13. Proxy of particle concentration at steady state for all experiments where particles in suspension
are heavier than the fluid. The blue dashed line stands for the transition between the cumulate regime, and the
absolute suspension one, using our model based on (7.8).

(order-of-magnitude) balance

εηf
U2

L
h2 ∼ β(φ)

1 − φ

ηf

r2 UsUL, (7.6)

where the convective velocity scales are UL ∼ κf /h Ra3/8
H , Us ∼ �ρgr2/ηf and where

β(φ)/(1 − φ) ≈ 0.5 − 1 in our experiments, which yields

ε ∼ h2

r2
Us

UL
∼ �ρgh3

ηf κf
Ra−3/8

H , (7.7)

which relates the efficiency parameter to the physical properties of the fluid and particles.
To verify this expression in our experiments, we rewrite (5.3) by substituting ε with (7.7)

and deduce a new scaling law for the maximal concentration of particles in the suspension

φmax ∼ h
r
ζ̄ . (7.8)

As a consequence, the proxy ϕ of the particle concentration should also follow this
law ϕ = Cϕh/rζ̄ , with Cϕ a constant that is constrained experimentally Cϕ = 8.10−4

(figure 13).
To verify qualitatively the consistency of this expression with ε, we compare (5.3) and

(7.8) to get an expression for the efficient coefficient

ε = Cϕa
Cs

�ρgh3

ηf κf
Ra−3/8

H . (7.9)

Assuming that particles are packed randomly in the floating lid (a = 0.56), we get the
average value of ε = 4 ± 3 % in our experiments. This estimate is slightly higher than
the values reported in the literature but still consistent with them (Solomatov et al. 1993;
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Physical properties Value Units

Melt density ρ 2800 kg m−3

Density difference �ρ 100 kg m−3

Viscosity η 100 Pa s
Specific heat cp 800 J K−1 kg−1

Thermal conductivity λ 4 W m−1 K−1

Thermal expansion α 3.10−5 K−1

Table 5. Physical parameters used in the model.

Lavorel & Le Bars 2009). However, the main purpose of this physical argument is to show
how to reconcile Solomatov’s ad hoc expression with the complete physical framework
that governs the two-phase flow and to verify it qualitatively. Experiments where the bulk
concentration of beads is precisely measured are required to corroborate quantitatively this
reasoning.

7.3. Application to magma oceans

7.3.1. Crystal segregation in magma ocean
Based on the model developed above, we propose an insight into the segregation process
of particles in the thermal history of a magma ocean, and especially the flotation of
plagioclase. This type of crystal is known to be lighter than the residual liquid from which
they form (Elkins-Tanton et al. 2011). The flotation of plagioclase is the main scenario
invoked to explain the formation of the light anorthosite crust of the Moon (Wood 1970;
Solomon & Longhi 1977). Convection driven by secular cooling is the relevant regime for
convective magma ocean. Secular cooling is mathematically equivalent to internal heating
treated in our model (see, e.g. Krishnamurti 1968).

Deschamps et al. (2012) demonstrated that scaling laws that describe thermal convection
in volumetrically heated Cartesian boxes are also valid in a spherical geometry, provided
we take into account a geometrical factor describing the shell curvature. In this case, the
surface heat flux is linked to the secular cooling and the internal heating rate as follows:

Qs = R(1 − f )
3

(
H − ρcp

∂T
∂t

)
, (7.10)

where f = (R − h)/R is the ratio between the depth of the magma ocean h and the
planetary radius R. Further details can be found in Appendix B.

The value of Qs ranges from 106 W m−2 for molten planetary bodies that release
heat by radiation to space (Elkins-Tanton et al. 2011; Massol et al. 2016), down to
10−3 − 10−2 W m−2 when the flotation crust is present (Maurice et al. 2020). All physical
quantities used in the model are summarized in table 5.

We deduce the critical particle radius enabling crystal flotation for two types of
magma ocean: a 200 km deep shallow lunar magma ocean (R = 1737 km, f = 0.88, g =
1.6 m s−2) and a fully molten planetesimal (R = 300 km, f = 0.42, g = 0.23 m s−2). This
critical radius rc is calculated from the critical Shields number (4.13)

rc = κη

h�ρgζc

(
αρgQsh4

ηκλ

)3/8

. (7.11)
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Figure 14. Diagram of flotation vs suspension for two planetary bodies. Each solid line corresponds to the
critical radius rc given by (7.11). Particles with radius greater than the critical one are allowed to float, otherwise
they stay in suspension. Dashed line shows the critical radius of crystals predicted by Solomatov’s law (7.12).

Results are displayed in figure 14. As the crystal size during crystallization is estimated
to be in the range r = 0.1–10 mm (Solomatov 2000), we deduce that crystals float during
magma ocean cooling. Magma ocean episodes enable efficient crystal segregation. This
segregation is less efficient for smaller bodies such as planetesimals (with R ≤ 300 km),
suggesting that the crystallization history might be more complex in these cases. We
compared our results with those displayed in Elkins-Tanton (2012) based on the law of
Solomatov et al. (1993)

rc = 1
2�ρg

(
0.1ηαgQs

cp

)1/2

, (7.12)

with η = 0.1 Pa s. Equation (7.12) was considered by these authors to be applicable in both
laminar and turbulent experiments but established for a system heated from below. Here,
we propose a model for convective systems driven by secular cooling. Our model enables
smaller particles to participate in crust formation.

7.3.2. Crust thickness and flotation efficiency
Our model not only provides criteria for the formation of stable crystal reservoirs, floating
crust or cumulates, but can also be used to quantify the partitioning of the crystals between
the suspension and these deposits. We illustrate how to quantify this partition of crystals
between the deposits and the convective bulk in the particular case of the lunar magma
ocean (LMO).

In the literature, it is widely assumed that all plagioclase crystals settle instantaneously
once they nucleate in the LMO (Elkins-Tanton et al. 2011; Maurice et al. 2020), which
yields a system composed of a flotation crust growing above a purely liquid magma
ocean. The main results of these two studies are indicated by the two highlighted bands
in figure 15. This hypothesis was relaxed using the flotation efficiency, which is the ratio
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Figure 15. Evolution of the maximal thickness of the anorthosite crust formed by plagioclase flotation above
the lunar magma ocean as a function of the crystal size and the surface heat flux. We represent also the range
of surface heat flux that is simulated by two thermal models (Elkins-Tanton et al. 2011; Maurice et al. 2020).

between the volume of crystals that float and the total volume of crystals that nucleate in
the system. This parameter can be estimated from field data. For instance, Namur et al.
(2011) determined the value for plagioclase flotation by studying the Sept Iles layered
intrusion, and they found an efficiency of 50 %. They assumed that this flotation efficiency
would be the same in the case of the LMO, and they use it to constrain the amount of
plagioclase that composed the anorthosite crust and its thickness. Charlier et al. (2018)
used the crustal thickness measured by spacecraft gravity data (Wieczorek et al. 2012)
and a flotation efficiency in the range between 40 % and 100 % in order to constrain the
thickness of the LMO.

This ad hoc parameter can be discussed in the light of our model. According to the
present study, if the initial volume of crystals is smaller than the critical volume that can
be sustained at the surface, all crystals form a flotation crust. If the crust has reached its
maximum thickness, the crystals ‘in excess’, i.e. that cannot be incorporated in the crust,
remain in suspension. This is a fundamentally different way of thinking which links crystal
flotation to physical parameters.

We consider that the LMO is a shallow shell corresponding to 20 vol% of the total
volume of the Moon. This high level of solidification is necessary to trigger plagioclase
crystallization (Elkins-Tanton et al. 2011). The evolution of the maximal thickness
sustainable at the surface of the LMO is displayed in figure 15. The crystal size has almost
no influence on the steady state crustal thickness except at the low limit. This is due to the
sub-critical value of the Shields number, which is essentially constrained by the low value
of the melt viscosity. In order to form a crust with a thickness of 40 km corresponding to
current estimates of the lunar crust, our model predicts that the surface heat flux should
be below 3 W m−2. In the cases of Elkins-Tanton et al. (2011) and Maurice et al. (2020),
100 % flotation efficiency would imply a thicker crust. Our model adds some physical
constraints on the LMO evolution in general, by coupling quantitatively the segregation of
crystals to the thermal history.
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We emphasize that our reasoning is dealing with the stability of the crust and its steady
state. The predicted crust thickness is reached after a time-dependent deposition process
which is not discussed in this paper. It requires a complete description of the transient
regime of the flotation crust.

7.3.3. Limitation of the model
We aim to illustrate how the criteria developed in this paper can be applied to natural
systems and how they can provide new constraints on conditions under which a deposit
can form or not. Of course, our illustration is a crude approximation of the complexity
of the magma ocean. We use simplified hypotheses, but the framework we propose here
is robust enough to enable refinements that can be added at will in order to include
complexity.

Our first strong assumption is the bulk crystallization that was abundantly considered
in the literature as a common end member (Solomatov 2000; Elkins-Tanton et al. 2011).
This is justified by the nature of convection driven by secular cooling, which implies that
crystals nucleate within the cold downwellings that end up in an isentropic convective
bulk. For small-size bodies, this is equivalent to an isothermal interior.

We also assume that crystals are non-cohesive, as in experiments. This hypothesis is
compatible with batch crystallization where crystals nucleate in the convective bulk. This
regime of crystallization is consistent with magma oceans, but may not be for smaller
magmatic reservoirs such as magma chambers or lava lakes. In these cases, crystals may
mainly form at the boundary of the system, directly where they are supposed to settle.
This adds a complexity to the system as cohesion between crystals becomes important.
One way to take cohesion into account in the present model may be by increasing the
erosion threshold ζc. The stronger the interactions between crystals are, the higher the
value of ζc.

In addition, we did not consider in detail the effect of crystallization series on the
evolution of composition and its consequences on all the physical parameters such as the
number of crystals, crystal size and liquidus and solidus temperatures. We expect that in
the limit of small crystal fractions, our results would still apply, but the transient behaviour
of crystallizing systems needs to be studied specifically.

Moreover, our model does not take into account the influence of pressure on all the
physical parameters. This hypothesis is consistent with small planetary bodies such as
planetesimals, or with the latest stages of shallow magma oceans, but it is less justified
for larger bodies such as the Earth. In the latter case, pressure would affect the whole
thermodynamics, as it influences the geotherm, the solidus and liquidus of crystals, the
viscosity of the liquid magma, the formation of crystals, etc. In these cases, our stability
criterion based on the Shields number is still valid, but the threshold value and the scaling
laws that are involved should be adapted accordingly.

Furthermore, we described the system by adopting a stability criterion as did Solomatov.
But magma oceans are evolving systems where temperature varies a lot during the thermal
history. Hence, describing their complex behaviour over time thanks to a stationary
criterion is a strong assumption that has to be relaxed. Complete thermal model that
takes into account the kinetics of sedimentation and erosion is required to deal with
suspension stability in magma oceans. Erosion/deposition mechanisms commonly used
in geomorphology (Charru et al. 2004; Lajeunesse et al. 2010) could be further revisited
in terms of crystal erosion and sedimentation in magmatic reservoirs.

We considered here the high Prandtl limit where inertia is negligible compared
with viscous forces. Nonetheless, magma oceans have experienced turbulent episodes
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(Solomatov 2000) that imply high Rayleigh numbers that are not yet attainable
experimentally or numerically. This seems to be all the more true for large bodies. In this
case, scaling laws used for the thermal state have to be adapted. For instance, Kraichnan
(1962) expressed the different scaling law for turbulent flow, depending on the Prandtl
number. It would lead to other scaling laws for the shear stress and thus other expressions
for the Shields number. But fundamentally, the bases of our approach would remain true
even in the turbulent case.

8. Conclusion

Particles sheared in a convective fluid can form deposits, floating crusts or cumulates,
depending on the sign of their buoyancy. Using laboratory experiments, we proposed a
model that estimates the partitioning of particles in such systems at high Prandtl number
and for Rayleigh–Roberts numbers up to 109. Our model is based on the estimation of
one dimensionless parameter that encapsulates the main physical ingredients required
to describe the system: the generalized Shields number ζ that compares the buoyancy
of particles with the shear stress generated by convection. The value of this parameter
quantifies both the thickness of the flotation crust, and the maximal concentration of
crystals that can be sustained in suspension. The volume of particles that forms a cumulate
can be deduced from these two pieces of information by a mass budget. This unifying
framework can be adapted to understand transient episodes of the thermal history of
natural systems driven by secular cooling and/or internal heating. In order to do so we
need to complete the model by the detailed description of the dynamics of erosion and
deposition, and in particular of the characteristic time scales that are involved. These time
scales have to be compared with the convective system cooling time scale. Further studies
are needed to completely understand the feedback existing between these intricate time
scales. This is a necessary step in order to explain the wealth of the observed structures in
planetary bodies and in their vestiges that reach us as meteorites.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2021.862.
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Appendix A. Reynolds numbers and DBL

With rigid boundary condition, one can define the DBL as the region where the velocity
tends to zero. The thickness of the DBL can be expressed from the balance between the
convective term and the diffusion term in the conservation of momentum equation (e.g.
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Figure 16. Scaling laws for the horizontal (a) and vertical (b) Reynolds numbers in internally heated
convective systems.

Variable Fixed exponent

Rex 0.55 Ra3/8
H Pr−1

Rez 0.50 Ra3/8
H Pr−1

Table 6. Parameters of power laws determined experimentally for the vertical and horizontal Reynolds
numbers.

Jaupart & Mareschal 2010, p. 128)

ρf
U2

L
h

∼ η
UL

δ2
v

, (A1)

which leads to δv ∼ hRe−1/2, where Re = ρf hUL/ηf is the Reynolds number. This relation
justifies quantitatively that the DBL occupies the entire reservoir in the laminar limit,
which is the regime reached in our experiments (figure 16).

The scaling law that characterizes velocity in internally heated convective systems can
be rewritten in terms of Reynolds number Re using (4.11)

Re ∼ Ra3/8
H Pr−1, (A2)

which has been verified experimentally as illustrated in figure 16. The pre-factors for the
horizontal and vertical Reynolds numbers are given in table 6.

Appendix B. Secular cooling and internal heating

In geophysical systems evolving over long periods of time, the thermal state is transient,
so one can argue that our reasoning is not applicable as scaling laws that are used here
hold only at steady state. Here, we will show that it is possible to adapt them to describe
the transient state.

First, we treat the floating lid as a homogeneous layer where Fourier’s law can be
applied. In the transient state, the heat flux departs from (4.1), which is valid only in
steady state conditions. Hence, we can define the diffusive time scale in the floating lid
τdiff = δ2/κ̄ , with κ̄ = λ̄/ρ̄ c̄p the thermal diffusivity of the floating lid where λ̄, ρ̄ and c̄p
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are respectively its average thermal conductivity, density and specific heat. This time scale
is compared with the time scale related to the evolution of the thermal state of a convective
fluid heated from inside. The latter is given by τconv = h2/κf Ra−1/4

H (Limare et al. 2019).
Thus, the criterion that ensures that the lid’s thermal state evolves quasi-statically is based
on the ratio

Rτ = τdiff

τconv

= κ̄

κf

(
δ

h

)2

Ra1/4
H . (B1)

If Rτ � 1, the lid reaches its steady state quickly and (4.1) holds true. In our experiments,
Rτ ≈ 0.1–0.5, so the approximation is justified. In geophysical systems, the approximation
holds true if RaH is moderate and/or if the floating lid is thin compared with the depth
of the convective mantle. For instance, for lids that represent δ/R = 1 % equivalent
to the ratio between the lithosphere thickness and the Earth’s radius, the quasi-static
approximation is correct for RaH up to 1012, which is relevant for geophysical applications.

Second, the model is based on scaling laws that describe the thermal state of convective
systems heated internally. In the transient state, the secular cooling term can be considered
as an additional source of internal heat. We define the modified rate of internal heat
generation as

H∗ = H − ρf cp,f
∂T
∂t

. (B2)

In this way, the Rayleigh–Roberts number is also modified

Ra∗
H = αf ρ0,f gH∗h5

ηf κfλf
. (B3)

Thus, the drop of temperature across the TBL becomes

�TTBL = C∗
T

H∗h2

λf
(Ra∗

H)−1/4. (B4)

Limare et al. (2021) showed that this model describes well the transient state in
experimental convective systems. The authors measured C∗

T = 3.58 ± 0.15 similar to the
value retrieved from experiments in homogeneous, steady state conditions. This model
was further used to describe the thermal evolution of parent bodies of iron meteorites
(Kaminski et al. 2020). It shows that convective systems where convection is mainly driven
by secular cooling can also be treated in the framework presented in this paper.

Consequently, we are able to estimate the evolution of the Shields number from the
thermal history of such systems, enabling the study of the formation of floating crust and/or
deposits.
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