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The Springer Correspondence
Sam Gunningham

Overview

The goal of these lectures is to introduce the audience to some of the key
concepts and tools in the field of geometric representation theory, using the
Springer correspondence as a motivating example.

• In the first lecture, we will go over the background necessary to state the
Springer correspondence for an arbitrary semisimple Lie algebra.

• In the second lecture, we will study the notion of convolution in
Borel–Moore homology and see how to apply it to the Springer
correspondence.

• In the third lecture we will reframe these ideas in the language of perverse
sheaves and intersection homology.

These notes are not intended as a detailed reference with complete proofs.
Rather, they are designed to give a somewhat informal overview of the subject
broadly aimed at new(ish) PhD students.

Acknowledgements I would like to thank Gwyn Bellamy for his generous
help with the preparation of these lectures, and an anonymous referee for their
useful comments. Any errors are, of course, my own.

Further Reading

Textbooks

• A good place to start is the textbook Representation Theory and Complex
Geometry by Chriss and Ginzburg [4]. Chapters 2 and 3 form the basis for
these lectures.

• There are many good textbooks on algebraic groups and Lie theory, e.g.
Springer’s book [18] is an appropriate choice.
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170 Sam Gunningham

• For background on derived categories and perverse sheaves, there is the
book of Dimca [6], and the (somewhat more technical) classic by
Kashiwara and Schapira [12].

• For those looking for some further reading on geometric representation
theory, the book D-modules, Perverse Sheaves, and Representation Theory
[11] by Hotta, Takeuchi and Tanisaki and Takeuchi has good background on
D-modules and perverse sheaves and a nice introduction to
Kazhdan–Lusztig theory.

Other online resources There are plenty of other lecture notes, theses and
the like available online. For example:

• Lecture notes by Zhiwei Yun on Springer theory and orbital integrals (see
Lecture I):
http://math.mit.edu/~zyun/ZhiweiYunPCMIv2.pdf

• Senior thesis of Dustin Clausen on the Springer correspondence:
www.math.harvard.edu/media/clausen.pdf

• Survey of Julia Sauter on Springer theory (in a more general sense):
https://arxiv.org/abs/1307.0973

• A great set of notes on perverse sheaves (including representation theoretic
applications) by Konni Rietsch:
https://arxiv.org/abs/math/0307349

Original papers Of course, there are also the original papers in which the
subject was first developed. We give a partial list here: [17], [19], [13], [3],
[16], [10], [14], [7], [15] (the introduction to this last paper of Shoji contains a
nice overview of the history of the subject).

5.1 The Statement of the Springer Correspondence

The goal for this lecture We will start by stating the Springer correspondence
in type A (i.e. for the symmetric group). Then we will review some of the
necessary background from Lie theory to state the Springer correspondence in
arbitrary type.

5.1.1 The Springer Correspondence in Type A

Motivation
Let n be a positive integer, and consider the following two sets:

• The set Irrep(Sn) of isomorphism classes of irreducible (complex)
representations of the symmetric group Sn.

• The set Nilpn of conjugacy classes of n×n nilpotent matrices.
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5 The Springer Correspondence 171

It is not too difficult to see that both these sets have cardinality equal to
the set Part(n) of partitions of n. For example, we know that, in general, the
set of irreducible representations of a finite group is in bijection with the set
of conjugacy classes, and the conjugacy class of an element in the symmetric
group is determined by its cycle type – a partition of n. On the other hand,
conjugacy classes of nilpotent matrices are classified by their Jordan type –
also a partition of n.

It is natural to ask if we can make this bijection explicit. That is, given a
nilpotent conjugacy class can one construct a representation of the symmetric
group?

In these lectures, we will discuss a geometric approach to this problem, first
identified by Tonny Springer in the 1970s [17]. In this theory, the representa-
tion of the symmetric group will live in the cohomology of a certain algebraic
variety (known as a Springer fibre) associated to a nilpotent matrix. (Recall that
a square matrix A is said to be nilpotent if AN = 0 for N� 0.)

Springer Fibres
To define the Springer fibre, let us recall that a (full) flag in the vector space Cn

is defined to be a sequence of linear subspaces

0 =V0 ⊆V1 ⊆ ·· · ⊆Vn−1 ⊆Vn = Cn

with dim(Vi) = i. The set of all flags in Cn is denoted F`(n). This naturally sits
inside a product of Grassmannians as a closed subspace, cut out by polynomial
equations. In fact, it has the structure of a smooth projective algebraic variety
(and thus a compact Kähler manifold).

Example 5.1 When n = 2, we observe that a flag is nothing more than a line
in C2. Thus F`(2) is just the projective line P1.

The Springer fibre F`(n)A associated to an n×n matrix A is the subspace of
F`(n) consisting of flags V• such that A(Vi)⊆Vi for all i = 0, . . . ,n. We will see
that the most interesting Springer fibres are those where A is nilpotent.

Example 5.2 If A = 0, the Springer fibre F`(n)0 is the entire flag variety
F`(n).

Example 5.3 Suppose A is the Jordan normal form n×n matrix with a single
Jordan block. Then F`(n)A consists of a single point, namely the coordinate flag

〈e1〉 ⊆ 〈e1,e2〉 ⊆ 〈e1,e2,e3〉 ⊆ · · · ⊆ 〈e1,e2, . . . ,en〉.
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Springer fibers are typically singular and have multiple irreducible compo-
nents, however, they are known to always be equidimensional – that is, every ir-
reducible component has the same dimension d(A). Specifically, if
λ = (λ1 6 . . .λr) is the partition corresponding to the lengths of the Jordan
blocks of A, consider the dual partition µ = (µ1 6 · · · 6 µs). Then the dimen-
sion of the Springer fiber is 1

2 ∑i µi(µi−1) [16] II.5.5.

Example 5.4 Here is a slightly more involved example. Consider the case
n = 3,

A =

Ñ
0 0 1
0 0 0
0 0 0

é
.

Any flag preserved by A lies in one of the two following families:

〈e1〉 ⊆ 〈e1,λe2 +µe3〉 ⊆ 〈e1,e2,e3〉, λ ,µ ∈ C,
〈λe1 +µe2〉 ⊆ 〈e1,e2〉 ⊆ 〈e1,e2,e3〉, λ ,µ ∈ C.

Each of these families corresponds to a copy of P1 in the flag variety, and the
two P1’s intersect at a single point

(
corresponding to the flag 〈e1〉 ⊆ 〈e1,e2〉 ⊆

〈e1,e2,e3〉
)
, see Figure 5.1.

The Springer Correspondence
Consider the top non-zero cohomology H2d(A)(F`(n)A). Cohomology here
means singular cohomology of the underlying topological space in the classical
topology with rational coefficients. This is a Q-vector space whose dimension
is equal to the number of irreducible components in the Springer fibre.

Theorem 5.5 (see e.g. [4], Theorem 3.6.2) Let n be a positive integer.

1 For every nilpotent n×n matrix A, the vector space H2d(A)(F`(n)A) carries
a natural Sn action, affording an irreducible representation of Sn.

Figure 5.1 A Springer fibre in F`(3).

https://doi.org/10.1017/9781009093750.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.007


5 The Springer Correspondence 173

2 Each irreducible representation of Sn is isomorphic to H2d(A)(F`(n)A) for
some nilpotent n×n-matrix A. Moreover, the matrix A is uniquely
determined up to conjugation.

In particular, the theorem establishes a bijection between isomorphism
classes of irreducible representations, and conjugacy classes of nilpotent matri-
ces as desired.

Remark It is important to note that the action of Sn on the cohomology is not
in general induced from an algebraic action on the Springer fibre itself. This is
partly what makes the subject so interesting!

Example 5.6 In Example 5.4 we have that H2(F`(3)A) carries the unique two-
dimensional irreducible representation of S3. Try to convince yourself that this
action cannot arise from automorphisms of F`(3)A.

The Springer representations have been constructed and interpreted in vari-
ous contexts using convolution algebras, perverse sheaves, D-modules and van-
ishing cycles. As such, Springer theory provides a fantastic gateway to many
of the key concepts and tools in contemporary geometric representation theory.
The ideas we will see in these lectures appear all over the subject: in the the-
ory of quiver varieties, cohomological Hall algebras, representations of finite
groups of Lie type, Kazhdan-Lusztig theory and Coulomb branches, to name a
few such areas.

5.1.2 The Lie Theoretic Set-up

In fact, Springer theory takes place in the wider context of semi simple Lie al-
gebras (or algebraic groups) and their associated Weyl groups. The Springer
correspondence in general exhibits an explicit bijection between the set of irre-
ducible representations of the Weyl group and (a certain refinement of) the set
of nilpotent orbits in the Lie algebra. The above example with symmetric group
representations and nilpotent matrices corresponds to the special case in which
the Lie algebra is sln and the Weyl group Sn. In what follows we will give a
brief outline of this set-up.

Semisimple Lie Algebras
A Lie algebra (over the complex numbers) is simple if it has no proper Lie
ideals, and semisimple if it is a direct product of simple Lie algebras. It is quite
remarkable that such a short and abstract definition leads to such a deep and
intricate theory, as we will now describe.
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The classical approach There are a number of ways of approaching the sub-
ject of semisimple Lie algebras. In the classical approach, we consider symme-
tries of vector spaces, possibly equipped with bilinear forms. This leads to the
following list of examples:

• The special linear group SLn consists of n×n matrices with determinant 1.
Its Lie algebra sln consists of matrices with trace 0. This is simple for n> 2.

• The orthogonal group On consists of n×n orthogonal matrices – those
preserving the standard inner product on Cn. Its Lie algebra son consists of
n×n skew-symmetric matrices. This is simple for n> 5. Moreover,
so4
∼= sl2× sl2 and so3

∼= sl2.
• The symplectic group Sp2n consists of 2n×2n symplectic matrices – those

preserving the standard symplectic form on C2n:

Ω =

Ç
0 In

−In 0

å
.

Its Lie algebra sp2n consists of 2n×2n-matrices A such that ΩA+AΩ = 0.
This is simple for all n> 1.

The root-theoretic approach In this route, we start by choosing a Cartan sub-
algebra h of g (a maximal abelian subalgebra). The restriction of the adjoint
action of h on g gives a decomposition in to 1-dimensional root spaces gα (to-
gether with the fixed space h itself):

g= h⊕
⊕
α∈Φ

gα .

The set Φ = Φ(g,h)⊆ h∗ is called the set of roots of g. The real span E of the
roots carries an inner product coming from the Killing form of g. It turns out
that all the information about the semisimple Lie algebra g can be encoded in
terms of the Euclidean space E together with the set of roots Φ (this data is
called the root system associated to g).

If one further specifies a choice of positive roots Φ+ ⊆ Φ then we obtain a
triangular decomposition:

g= n−⊕h⊕n,

where n (respectively, n−) is spanned by the root spaces of positive (respec-
tively, negative) roots. Given the choice of positive roots, one may define the
set ∆⊆Φ+ of simple roots which form a basis of h∗.

Example 5.7 In the case g = sln, we can take h to be the diagonal matrices.
The set of roots α(i, j) is indexed by pairs (i, j) ∈ {1, . . . ,n}2, i 6= j. The root
space gαi, j consists of matrices whose only possible non-zero entry is in the
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5 The Springer Correspondence 175

Figure 5.2 The root system of sl3 (type A2). The positive roots with respect to the
simple roots {α,β} are {α,β ,α + β}. (Image: Wikipedia commons https://commons
.wikimedia.org/wiki/)

(i, j)-position. A standard choice for the set of positive roots is to take α(i, j)

with i < j. The simple roots are α(i,i+1) for i = 1, . . . ,n−1. With this choice, n
(respectively n−) becomes the set of strictly upper (respectively, strictly lower)
triangular matrices.

Borel subalgebras and the canonical Cartan In the above presentation, we
needed to pick a Cartan subalgebra h ⊆ g to get started. Further choosing a
subset of positive roots, we obtained a triangular decomposition n−⊕h⊕n. The
subspace b := h⊕n is an example of a Borel subalgebra: a maximal solvable
Lie subalgebra. In fact, any Borel subalgebra is G-conjugate to this one. There
is another approach to this subject, where instead of choosing a Cartan and a
set of positive roots, we rather consider all possible Borel subalgebras at once.

More precisely, given a Borel subalgebra b ⊆ g, we consider its nilpotent
radical, the ideal n(b) = [b,b] and the corresponding quotient H(b) = b/n(b).
Thus we get a short exact sequence:

0→ n(b)→ b→ H(b)→ 0. (5.1.1)

This sequence is non-canonically split: choosing a splitting makes H(b) into a
Cartan subalgebra of g with a choice of positive roots determined by b.

On the other hand, it turns out that H(b) is actually independent of the choice
of b in the strongest sense. Namely, suppose b′ is another Borel subalgebra.
Then we can choose g∈G such that Ad(g)(b)= b′ (as all Borels are conjugate),
which defines an isomorphism:

Ad(g) : H(b)∼= H(b′).

Crucially, this isomorphism is independent of the choice of g (this follows from
the fact that B acts trivially on H(b)).
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176 Sam Gunningham

We refer to H (= H(b) for any Borel b) as the canonical Cartan. Moreover,
choosing any splitting of H= H(b) into b defines a root system in H (together
with a distinguished choice of positive roots); this root system is independent
of choices. Thus we can talk about the Cartan and roots of g without having to
make any choices.

The Weyl Group
Now suppose g is a semisimple Lie algebra. Let us also fix a connected linear
algebraic group G with g= Lie(G). Thus G acts on g via the adjoint represen-
tation (for matrix groups, this is simply the conjugation action).

The Weyl group is a certain finite group associated to g. It plays a central
role in our story. There are also a number of different ways to approach its
definition.

As a reflection group Recall that the root system on the canonical Cartan H

associated to g determines a Euclidean vector space E together with a distin-
guished set of root hyperplanes. One definition of the Weyl group W is as the
group generated by the reflections in the root hyperplanes. The reflections cor-
responding to simple roots give a set of generators for W, giving W the structure
of a Coxeter group. This leads to a presentation of W as follows:¨

sα ,α ∈ ∆ | (sα sβ )
m(α,β ) = 1

∂
,

where m(α,β ) is a certain number in the set {1,2,3,4,5} which records the
angle ∠ formed by α and β according to the following table:

m(α,β ) =



1 if α = β ,

2 if α ⊥ β ,

3 if ∠(α,β ) = 120◦,

4 if ∠(α,β ) = 135◦,

5 if ∠(α,β ) = 150◦.

It is a remarkable feature of root systems that these are the only possible angles
that can occur. This is related to the crystallographic restriction theorem (see
e.g. [1][Theorem 6.5.12]).

In particular, with these choices, every element w ∈ W has a well-defined
notion of length `(w) corresponding to the minimal number of terms appearing
in any expression of w as a product of simple reflections (such an expression is
called a reduced word). There is also a partial order 6 on W characterized by
the property that v 6 w if and only if there is a reduced word expression for v
that sits inside one for w.
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5 The Springer Correspondence 177

Example 5.8 The Weyl group of sln with respect to the Cartan of diagonal
matrices is naturally identified with the symmetric group Sn, acting on h by
permuting the entries. The root-reflections sα(i, j)

correspond to the transposi-
tions (i j). Given the standard choice of positive roots we get the following
presentation of Sn:Æ

s1, . . . ,sn−1 |
sisi+1si = si+1sisi+1, i = 1, . . .n−2

sis j = s jsi, i, j = 1, . . .n−1, |i− j|> 2

∏
,

where si = sαi,i+1 corresponds to the transposition (i i+1).

Example 5.9 The Weyl group of so2n+1 and sp2n may both be identified with
the hyperoctahedral group (Z/2Z)n o Sn, realized as the symmetries of an n-
dimensional hypercube. The Weyl group of so2n is isomorphic to a certain in-
dex two subgroup of the hyperoctahedral group, realized as the symmetries of
a demihypercube.

Via the normalizer of a Cartan Suppose now we fix a Cartan subalgebra
h ⊆ g, and let H ⊆ G denote the centralizer of h – this is a maximal torus of
G with Lie(H) = h. We define W (g,h) to be NG(h)/H. As H acts trivially on
h, the action of NG(h) naturally descends to an action of W (g,h) on h. If we
further choose a Borel b containing h (thus giving an identification H∼= h), we
obtain an isomorphism W (g,h)∼= W.

The Flag variety Let F` = F`(g) denote the set of Borel subalgebras b ⊆ g.
As any two Borels are G-conjugate, F` is naturally a homogeneous variety
for G. The normalizer in G of a given Borel subalgebra b is a so-called Borel
subgroup B ⊆ G with Lie(B) = b. Thus, for any such choice of a basepoint in
F`, we get an isomorphism:

F`∼= G/B.

Figure 5.3 Root systems of type B3,C3,D3. (Image: Wikipedia commons https://commons
.wikimedia.org/wiki/ File:Root vectors b3 c3-d3.png)
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In fact, F` carries the structure of a projective complex algebraic variety
(in particular, a compact Kähler complex manifold) of (complex) dimension
m = dimn.

The Bruhat decomposition A fundamental result in this subject is that the
orbits of the diagonal G-action on F`×F` are in bijection with the canonical
Weyl group W. To understand why this is, note that if we pick two Borels
b1,b2, one can choose a Cartan subalgebra in their intersection. Then b1 and
b2 correspond to two choices of a set of positive roots and are thus related by
an element of W (g,h) (since W (g,h) acts simply transitively on the set of such
choices). Given a pair of flags b1,b2, we say that they are in relative position
w ∈W if they lie in the G-orbit corresponding to w.

There are a number of equivalent expressions of this idea, known as the
Bruhat decomposition. For example if we fix a Borel subalgebra b with nor-
malizer B, then we can identify G-orbits in F`×F` with B orbits in F`∼= G/B
(or equivalently B-double cosets in G). If we further fix a Cartan h with corre-
sponding maximal torus H, then we obtain a locally closed decomposition:

G =
⊔

w∈W (g,h)

BẇB,

or equivalently

G/B =
⊔

w∈W (g,h)

BẇB/B,

where ẇ denotes any lift of w to NG(H). The subsets BẇB/B are called Bruhat
cells – they are affine spaces of dimension `(w). These Bruhat cells define a
basis for the homology of F`.

Example 5.10 Given a pair of flags U•,V• in Cn, the numbers:

ni j = dim
Å

Ui∩Vj

Ui−1∩Vj +Ui∩Vj−1

ã
define a permutation matrix and thus correspond to an element w of Sn. We say
that U•,V• are in relative position w.

The Characteristic Polynomial Map
An element x ∈ g is called semisimple if it is contained in some Cartan sub-
algebra h. It follows that the set c of semisimple conjugacy classes in g are in
bijection with W -orbits c= h/W for any given Cartan h (or better, in bijection
with the canonical H/W). It turns out that c carries the natural structure of an
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5 The Springer Correspondence 179

affine space: it is isomorphic to Cr where r := dimh is the rank of g. There is a
natural G-invariant map:

χ : g→ c,

which is defined by taking an element x∈ g to the unique semisimple conjugacy
class in the closure of G · x. This is called the characteristic polynomial map.

In the language of algebraic geometry, χ is equal to the composite of the
quotient map g → g//G := Spec(C[g]G) with the Chevalley isomorphism
g//G∼= h/W , induced by the inclusion of a Cartan h ↪→ g. In other words, the
coordinate ring of c is identified with the ring of G-invariant polynomial func-
tions on g (or alternatively, the ring of W-invariant functions on H). The fact
that c is an affine space corresponds to the statement that C[g]G ∼= C[H]W is a
polynomial ring, i.e. is isomorphic to C[a1, . . . ,an] for some elements a1, . . . ,an

(the analogues of the elementary symmetric functions). The degrees (minus 1)
of the generators ai are called the exponents of g.

Example 5.11 The characteristic polynomial map for sln takes a matrix A to
the collection of coefficients of its characteristic polynomial pA(t) (ignoring the
coefficient of tn−1, which is zero by definition) (thought of as an element of the
affine space Cn−1). Thus, the fibres of χ consist of matrices with a fixed charac-
teristic polynomial (or equivalently, a fixed (multi)set of eigenvalues, counted
with multiplicity). In each such fibre, the G-orbits are parameterized by the
possible minimal polynomials; if the minimal polynomial has distinct roots,
the element is semisimple (i.e. diagonalizable); if the minimal polynomial is
equal to the characteristic polynomial, the element is regular (i.e. has maximal
size Jordan blocks).

Each fibre of χ is a finite union of G-orbits in g, and each contains a unique
closed orbit (consisting of semisimple elements) and a unique open orbit (con-
sisting of so-called regular elements). In particular, the central fibre

N = χ
−1(0)

is called the nilpotent cone of g and its elements are called nilpotent.

Remark The multiplicative group C× naturally acts on g (as it does on any
vector space). There is a corresponding action on c (with certain weights) mak-
ing χ equivariant and with fixed point 0∈ c. It follows that N is a cone: it carries
an action of C× with a unique fixed point 0 ∈ g.

At the other extreme, the generic fibres of χ consist of a single G-orbit
which is both regular and semisimple. Such elements are naturally called regu-
lar semisimple. The open subset of regular semisimple elements in g is denoted
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Figure 5.4 A cartoon of the characteristic polynomial map for sl2.

grs. If h is a Cartan subalgebra, the intersection grs∩h is denoted hreg; it coin-
cides with the subset of h where W acts freely, or equivalently with the com-
plement of the root hyperplanes in h.

Example 5.12 Regular semisimple elements of sln are precisely those with
distinct eigenvalues. The nilpotent elements are nilpotent matrices in the usual
sense (which are characterized by the property that all their eigenvalues are
zero, or equivalently, their characteristic polynomial is equal to tn).

Example 5.13 For g= sl2 we can be more explicit. The map χ may be identi-
fied with

sl2→ C,

A =

Ç
a b
c −a

å
7→ −det(A) = a2−bc.

There are two possibilities: if d =−det(A) 6= 0, then the eigenvalues are distinct
and A is regular semisimple. In this case χ−1(d) is a smooth quadric consisting
of a single G-orbit. On the other hand χ−1(0) is a singular conic which is a
union of two orbits: the zero orbit {0} and the regular nilpotent orbit.

The Killing–Cartan–Dynkin Classification and Exceptional Types
Using the axiomatics of root systems, the simple Lie algebras were classified by
Killing and Cartan at the end of the 19th century, and later refined by Dynkin.
According to Wikipedia, “the classification is widely considered one of the
most elegant results in mathematics” – I would be inclined to agree! The clas-
sification consists of four infinite families which correspond to the classical Lie
algebras as follows:

• sln+1 is type An;
• so2n+1 is type Bn;
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Figure 5.5 The finite Dynkin diagrams. (Image: Wikipedia commons https://en.wikipedia
.org/wiki/File: Finite Dynkin diagrams.svg)

• sp2n is type Cn;
• so2n is type Dn.

It turns out there are precisely five more “exceptional” Lie algebras which are
denoted by E6,E7,E8,F4,G2 (the index always refers to the rank). With a bit of
work, one can fit the exceptional groups into the classical paradigm using the
octonions – see e.g. [2].

We can encode the isomorphism type of g in a certain graph called the
Dynkin diagram. The nodes of the Dynkin diagram correspond to the simple
roots, and the number of edges between two nodes is determined by their an-
gle (it is equal to m(α,β )− 2 from the above table). In the case of multiple
edges (types B,C,F,G) the two roots have different length, in which case one
also draws an arrow going from the long root to the short root.

Example 5.14 The Weyl group of type G2 is a dihedral group of order 12,
acting naturally on the 2-dimensional Cartan H as symmetries of a hexagon.

Example 5.15 The Weyl group of type E8 has order 696729600. It has the
unique finite simple group of order 174182400 as a composition factor.

5.1.3 The Springer Correspondence in General Type

The Grothendieck–Springer Simultaneous Resolution
Define the Grothendieck–Springer space as follows:

g̃= {(x,b) ∈ g×F` | x ∈ b}.

There are natural maps as indicated below.

g̃

π

��
s

��

χ̃

��
g F` h
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The map s remembers the flag b and forgets the element x. This realizes g̃

as a kind of tautological vector bundle over F` (the fibre over the point corre-
sponding a Borel subalgebra b is b itself).

Remark If we fix a preferred Borel subgroup B⊆ G with corresponding sub-
algebra b⊆ g, then we can write:

g̃= G×B b.

In other words, g̃ is the associated adjoint vector bundle to the B-torsor G→
G/B∼= F`.

On the other hand, we can forget the flag and remember x to define the map
π . The fibres F`x := π−1(x) are called Springer fibres. Explicitly, we have:

F`x = {b ∈ F` | x ∈ b} ⊆ F`.

In other words F`x is the collection of Borel subalgebras which contain x. More
on this later.

Finally, the map χ̃ is defined as follows. Given a Borel b ⊆ g, recall that
b/[b,b] is identified with the canonical Cartan H. The map χ̃ is defined by
taking (x,b) ∈ g̃ to xmod[b,b] ∈ H.

Remark Fixing a preferred Borel B again, and writing n= [b,b] for the nilpo-
tent radical, we see that there is a short exact sequence of associated vector
bundles:

G×B n→ G×B b→ G×B H.

Note that B acts trivially on H, so the right-most term is canonically trivial (this
is one way to think about the well-definedness of the canonical Cartan):

G×B H∼= G/B×H.

The resulting morphism g̃→ G/B×H is precisely (s, χ̃).

We think of χ̃ as a lift of the characteristic polynomial map χ from c=H/W
to H, as indicated by the following diagram.

g̃
χ̃ //

π

��

H

��
g

χ
// c

(5.1.2)

Note that g̃ carries an action of G making the maps π and s equivariant, and χ̃

invariant.
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We have the following key property:

Proposition 5.16 The map χ̃ is a smooth morphism. In particular, the fibres
χ̃−1(t) are all smooth.

The reason this fact is cool is that the original map χ is not smooth – one
of the fibres is the nilpotent cone which is generally singular. The diagram
(5.1.2) above is referred to as the Grothendieck–Springer simultaneous resolu-
tion, because it simultaneously resolves the singularities of (the fibres of) the
morphism χ .

Regular semisimple Springer fibres If x is regular semisimple, it is not too
hard to show that it is contained in exactly |W|-many Borel subgroups (namely,
those Borels containing h = Cg(x)). In fact, the collection of such Borels is
naturally a torsor for W.

We have the following relative version of this fact:

Proposition 5.17 There is a free and properly discontinuous action of W on
the locus g̃rs such that the map

π
rs : g̃rs→ grs

is identified with the quotient. In other words πrs is a W-Galois covering.

The Springer Resolution
We have seen that the Springer fibres of regular semisimple elements are bor-
ing: just discrete sets. At the other end of the spectrum we have the nilpo-
tent cone.

Consider the space ‹N := χ̃
−1(0)⊆ g̃.

Note that for an element (x,b) we have χ̃(x,b) = 0 if and only if x ∈ N, or
equivalently x ∈ n := [b,b]. In particular, ‹N is a vector bundle over F` whose
fibre over b is n(b).

Restricting π to ‹N we get a map

ρ :‹N→N

called the Springer resolution. The following proposition establishes the basic
properties of the Springer resolution:

Proposition 5.18 The map ρ is a resolution of singularities. That is:

1 The variety ‹N is smooth (i.e. non-singular).
2 The map ρ is proper (i.e. has compact fibers).
3 There is a dense open subset U ⊆N such that ρ|ρ−1(U) is an isomorphism.
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Figure 5.6 A cartoon of the Springer resolution for sl2.

The first two statements are clear from what has already been established.
For the third, one must show that a regular nilpotent element is always con-
tained in a unique Borel subalgebra.

Remark The Springer resolution has a nice symplectic geometric interpreta-
tion. Namely there is a natural identification‹N ∼= T ∗F`

as G-spaces, giving ‹N the structure of a Hamiltonian G-space. The map ρ is
identified with the moment map

T ∗F`→ g∗ ∼= g.

Example 5.19 If g = sl2, then ‹N is the total space of the line bundle O(−2)
over F`(2) = P1. The map

ρ :‹N→N

just crushes the zero section P1 ⊆‹N to a point.

The following result establishes the key algebro-geometric properties of
nilpotent Springer fibres.

Theorem 5.20 (See e.g. [4], Corollary 3.3.24, Remark 3.3.26) The Springer
fibres F`x for x ∈N are connected and equidimensional (i.e. all the irreducible
components have the same dimension). The dimension d(x) is given by the
following formula:

d(x) =
1
2

dim(CG(x)− r) = dimF`− 1
2

dimG · x,

where CG(x) denotes the stabilizer and G · x denotes the orbit for the adjoint
G-action.
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Component Groups
There is one more ingredient required to precisely state the Springer corre-
spondence for arbitrary g. For each x ∈ g let AG(x) =CG(x)/CG(x)◦ denote the
component group of the centralizer of x in G. It is a finite group.

One shows that the natural action of CG(x) on F`x descends to an action of
AG(x) on H∗(F`x) (preserving the grading). If σ denotes an irreducible repre-
sentation of AG(x) and V is any other representation, we denote by

Vσ := HomAG(e)(σ ,V )

the corresponding multiplicity space.

Remark The group AG(x) really depends on the choice of group G, not just
the Lie algebra g. In practice, for the purposes of the Springer correspondence,
we can take G = Gad , the adjoint group, for which the group AG(x) is smallest.

Remark Recall that any finite dimensional representation of a finite group is
a direct sum of irreducible representations. The multiplicity space precisely
measures the multiplicity of the given irreducible σ in this decomposition.

The Statement of the Springer Correspondence for Semisimple Lie
Algebras

We may now finally state the following:

Theorem 5.21 (See e.g. [4], Theorem 3.5.7) Let x ∈ N be a nilpotent
element.

1 There is an action of W on H∗(F`x), preserving the grading, and
commuting with the action of AG(x).

2 For each irreducible representation σ of AG(x), the multiplicity space

H2d(F`x)σ

is (either zero, or is) an irreducible representation of W. Moreover, up to
isomorphism, every irreducible representation appears in this way for a
unique pair (x,σ) up to G-conjugation.

Remark Not every irreducible representation of AG(x) appears in this corre-
spondence. If we allow for G to be the simply connected form then the corre-
spondence is already not one-to-one for sl2. There is a beautiful generalization
of the Springer correspondence due to Lusztig [14] (called, surprisingly, the
generalized Springer correspondence), which accounts for these missing ele-
ments in terms of representations of certain other Weyl groups associated to
other root systems.
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Remark Assuming that all the representations of AG(x) are defined over Q
(which is the case if we take G to be the adjoint form) then we get that all the
representations of W are also defined over Q. This was not known for all Weyl
groups prior to Springer’s work.

Example 5.22 (The zero orbit) If x = 0 ∈ g then the Springer fibre F`0 is the
entire flag variety F`. In this case, the action of W on H∗(F`) can be described
more explicitly as follows. Let H be a maximal torus in G and B a Borel sub-
group containing H. There is a map

p : G/H→ G/B∼= F`.

On the one hand G/H is naturally acted on by W ∼= W (g,h) = NG(H)/H. On
the other hand the map p is a fibration with contractible fibres so induces an
isomorphism H∗(G/H)∼= H∗(G/B).

Remark Another way to see this fact is to identify G/B with Gcpt/Hcpt where
Gcpt is a maximal compact subgroup of G and Hcpt =H∩Gcpt a maximal torus.
Then we have W = NGcpt (Hcpt)/Hcpt acts directly on F`∼= Gcpt/Hcpt ; the catch
is that this action is not holomorphic – it does not respect the complex structure!
For example, in the case sl2, this action is the antipodal action on P1 ∼= S2.

It is relatively easy to see that H∗(G/B) has a basis indexed by w ∈ W,
where the degree is given by the length `(w). In fact, there is a graded ring
isomorphism to the coinvariant algebra

H∗(G/B)∼= C[h]/
(
C[H]W+

)
.

One verifies that H∗(G/B) is isomorphic to the regular representation of W.
The top degree part H2m(G/B) carries the sign character of W.

Example 5.23 (The regular orbit) At the other extreme if x ∈N is regular, then
F`x ∼= pt. In this case H0(F`x) carries the trivial representation.

Example 5.24 (The subregular orbit) One can show that there is a unique G-
orbit in N of dimension 2m− 2. This is called the subregular orbit. For x ∈ N

subregular, the Springer fibre F`x is 1-dimensional, i.e. a (complex) curve. It
turns out that it is always a union of P1’s intersecting according to a certain
graph. In the simply laced case (that is g is one of the types A, D, or E in the
Cartan–Killing–Dynkin classification) this graph is precisely the Dynkin dia-
gram of g. In the non-simply laced case, one can associate another semisimple
Lie algebra g′ which is simply laced, such that the Dynkin diagram of g is
obtained from that of g′ by “folding”. Then the graph associated to F`x is pre-
cisely the Dynkin diagram of g′. Moreover, the diagram automorphism giving
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rise to the folding is precisely implemented by the action of AG(x). In general,
one can show that the Springer representation H2(F`x)AG(x) associated to sub-
regular x and the trivial representation of AG(x) is isomorphic to the reflection
representation h.

5.2 Springer Theory via Convolution

The goal for this lecture Last time, we claimed that there is a natural action
of the Weyl group on the cohomology of Springer fibres even though the Weyl
group does not act on the Springer fibres themselves. So where does this action
come from?

In this lecture we will discuss one approach to this problem using convolu-
tion in Borel–Moore homology. We will divide the problem into two steps:

1 Construct an algebra A which naturally acts on the cohomology of
Springer fibres.

2 Find an algebra isomorphism Q[W ]∼= A.

The first part of the lecture will be spent discussing the general properties of
Borel–Moore homology. For further details, see [4] Chapter 2.6.

5.2.1 Generalities on Borel–Moore Homology

The Definition
Borel–Moore homology is a certain homology theory for topological spaces.
For simplicity, in this section the word space shall refer to a suitably nice topo-
logical space, say homeomorphic to the complement of a sub CW-complex in
a CW complex. Most of the spaces we will consider will be complex algebraic
varieties, which all satisfy this condition. If X is a space, H∗(X) (respectively
H∗(X)) will always denote the singular cohomology (respectively homology)
with rational coefficients.

Informally, one can think of a Borel–Moore k-chain on a space X as a possi-
bly non-compact version of an ordinary k-chain. If X is compact then a Borel–
Moore chain is just an ordinary chain (and thus Borel–Moore homology agrees
with ordinary homology). Borel–Moore homology arises naturally in the study
of Poincaré duality in the following form:

Theorem 5.25 (Poincaré duality for Borel–Moore homology) If X is a smooth
oriented manifold of dimension d (not necessarily compact), there is an iso-
morphism
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HBM
k (X)∼= Hd−k(X).

Equivalently, there is a perfect pairing (called the intersection pairing)

HBM
k (X)⊗Hd−k(X)→ Q.

There are a few different approaches towards giving a precise definition of
Borel–Moore homology. We list some of these below:

1 A singular Borel–Moore chain may be defined as a locally finite sum of
singular simplices (i.e. possibly infinite sums which are finite when
intersected with any compact subset).

2 If X ↪→M is an embedding into a closed oriented n-manifold, then

HBM
k (X) = Hn−k(M,M−X).

3 We have

HBM
k (X) = Hk(X+,{∞}),

where X+ = X ∪{∞} is the one-point compactification.
4 HBM

∗ (X) is the sheaf (hyper)cohomology of the Verdier dualizing complex
ωX (more on this in the next lecture).

Example 5.26 Using any of the above as a definition, we may compute

HBM
k (Rn) =

{
Q if k = n;

0 otherwise.

In particular, Borel–Moore homology (like its dual notion, compactly sup-
ported cohomology) is not a homotopy invariant (though it is of course a home-
omorphism invariant).

Example 5.27 Let us consider the space

X = S1×R.

We have:
∗ HBM

∗ (X) H∗(X)

0 0 Q
1 Q Q
2 Q 0

One can represent the generators of these groups as (locally finite) cycles.
Namely, the generator for HBM

2 is the entire space X and the generator for HBM
1

is the vertical line {∗}×R. Note that this 1-cycle is transverse to the generator
for H1(X). This reflects the perfection of the intersection pairing in the Poincaré
duality theorem. See Figure 5.7.
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Figure 5.7 The cylinder.

Figure 5.8 The cone.

Example 5.28 Now let Y = S1×R/S1×{0} be a cone. Then we have:

∗ HBM
∗ (Y ) H∗(Y )

0 0 Q
1 Q 0
2 Q2 0

This time there are two generators in HBM
2 represented by the two components

of the cone. Note that HBM
∗ (Y ) is quite large even though Y is contractible! See

Figure 5.8.

Functoriality
Recall that for a map f : X →Y of topological spaces, we get an induced push-
forward map on homology and an induced pullback map on cohomology. In
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more categorical terms, homology is covariantly functorial and cohomology is
contravariantly functorial. For Borel–Moore homology (as for compactly sup-
ported cohomology) the functoriality is slightly more complicated: sometimes
there is a pullback, sometimes there is a pushforward according to the nature
of the map f .

Here are the key examples of this functoriality. Most of these can be proved
using either definition 2 or 3 below – see Chriss–Ginzburg [4], Chapter 2.6. Al-
ternatively, one can use definition 4 together with the six operations formalism
to be discussed later.

Proposition 5.29 Suppose f : X → Y is a map of spaces.

1 If f : X → Y is a proper map (i.e. the preimage of a compact set is
compact), there is a pushforward map:

f∗ : HBM(X)→ HBM(Y ).

2 If f : X → Y is an open embedding there is a restriction map:

f ! : HBM(Y )→ HBM(X).

3 If f : X → Y is an oriented fibration of relative complex dimension d (that
is, a locally trivial fibration, whose fibres are oriented d-manifolds, and the
transition maps preserve the orientation), there is a pullback map:

f ! : HBM
k (Y )→ HBM

k+d(X).

4 If f : X → Y is an oriented embedding of a manifold of codimension d (i.e.
the normal bundle is oriented), then there is a pullback map:

f ! : HBM
k (Y )→ HBM

k−d(X).

Remark We will need something a little bit stronger than the last point. Sup-
pose we have a cartesian diagram of spaces (this means that X̃ is isomorphic to
the fibre product X×Y Ỹ such that the maps f̃ and g̃ become identified with the
projections):

X̃

g̃

��

f̃ // Ỹ

g

��
X

f
// Y

Suppose also that f is an oriented embedding of a submanifold of codimension
d, so that f ! makes sense. Then there is a pullback map for the base change:

f̃ ! : HBM
k (Ỹ )→ HBM

k−d(X̃).
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Properties and Structures in Borel–Moore Homology
This kind of functoriality may seem strange at first, but it manifests quite natu-
rally in certain situations.

Long exact sequence of an open-closed decomposition For example, sup-
pose i : Z ↪→ X is the inclusion of a closed subset and j : U = X−Z ↪→ X is the
inclusion of its open complement. Then i is proper and j is an open embedding.
Thus we get a sequence of maps as follows.

HBM
∗ (Z)

i∗−→ HBM
∗ (X)

j!−→ HBM
∗ (U)

In fact, one can further show that these maps come from a short exact sequence
of complexes at the chain level. Thus there is an associated long exact sequence
at the level of homology:

. . .HBM
k+1(U)

∂−→ HBM
k (Z)

i∗−→ HBM
k (X)

j!−→ HBM
k (U)

∂−→ HBM
k+1(Z)→ . . .

Remark Suppose we can partition X as a union

X =
⊔
α

Xα

of locally closed subsets Xα , with the property that the closure of each Xα

is a union of Xβ . Suppose also that HBM
∗ (X) is concentrated in entirely even

degrees. Then repeatedly applying the long exact sequence of an open-closed
decomposition, and noting that all the boundary maps must vanish, we obtain:

HBM
∗ (X) =

⊕
α

HBM
∗ (Xα).

In particular, this works when Xα is an affine paving, i.e. each Xα is isomorphic
to an affine space Ck. This is the case for flag varieties – the affine paving is
given by Schubert cells. Less obviously, this is also true for Springer fibres –
see [5].

Fundamental classes Suppose U is an oriented d-manifold. Then item 3 of
Proposition 5.29 gives us a map:

p! : Q = HBM
0 (pt)→ HBM

d (U).

The element [U ] := p!(Q) ∈ HBM
d (U) is called the fundamental class of the

manifold U .
Now suppose that U ⊆ X is embedded as an open dense subset such that

the complement X −U has (real) codimension 2 in X (for example U could
be the smooth locus of an irreducible complex algebraic variety). Then, by the
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long exact sequence associated to the open closed decomposition, the restric-
tion map

HBM
d (X)→ HBM

d (U)

is an isomorphism. It follows that there is a unique element [X ] ∈ HBM
d (X)

which maps to [U ]. We will also refer to this as the fundamental class of X .

Example 5.30 Suppose Z is an algebraic variety of pure complex dimension n,
that is, all the irreducible components Z1, . . . ,Zk of Z have dimension n. Then
the fundamental classes [Z1], . . . , [Zk] form a basis for HBM

2n (Z).

Specialization Given a suitable family of spaces Xt , it is possible to specialize
Borel–Moore classes from the generic fibre to the special fibre. More precisely,
let us fix a manifold S with basepoint s0. Suppose we have a map of spaces
f : X → S such that it is a locally trivial fibration over S∗ = S−{s0}. Thus we
have a commutative diagram:

X0

��

� � // X

f

��

X∗? _oo

��
{s0} �

� // S S∗? _oo

Then there is a natural map:

Sps→0 : HBM
k (X∗)→ HBM

k−d(X0).

Let us explain how this works in the case S = [0,∞), s0 = 0 (in fact the
general map is constructed by reducing to this case). We assume X∗ ∼= X1×
(0,∞) is trivialized. In this setting the specialization map is just the boundary
map in the long exact sequence associated to the open-closed decomposition
X = X∗∪X0:

HBM
k (X∗)→ HBM

k−1(X
0).

Remark If we assume that X∗ ∼= X1×(0,∞) is trivialized then we can interpret
specialization as the map

HBM
k−1(X1)→ HBM

k (X1× (0,∞))∼= HBM
k (X∗)→ HBM(X0).

Thus we are “specializing” a cycle in a generic fibre X1 to the special fibre X0.
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5.2.2 Convolution Algebras

The set-up Suppose X is a smooth manifold of dimension d with a proper map
f : X → Y . We define Z = X×Y X . Then we have a commutative diagram:

Z×Z Z×X Z
soo r // Z

(X×Y X)× (X×Y X) X×Y X×Y X
(p12,p23)

oo
p13

// X×Y X

Here s is the base change of the diagonal embedding X → X × X (of codi-
mension d) and r is proper. Thus the functoriality of Borel–Moore homology
defines for us a linear map called convolution:

∗= r∗s
! : HBM

∗ (Z)⊗HBM
∗ (Z)∼= HBM

∗ (Z×Z)→ HBM
∗−d(Z).

We denote by HBM
∗ (X)[−d] the graded vector space where we shift the grading

so that HBM
d (Z) lies in degree 0.

The following result can be proved by hand in an elementary fashion, but
it also falls out once enough functoriality machinery has been developed (the
object Z itself is a monoid object in a suitable category of correspondences,
which is a source category for the Borel–Moore homology functor).

Proposition 5.31 The convolution product ∗ gives HBM(Z)[−d] the structure
of a graded associative algebra.

Semismall Morphisms
Let us assume for the moment that f : X → Y is a morphism of algebraic va-
rieties. In general, Z = X ×Y X may be singular and reducible (in the algebro-
geometric sense), with components of various dimensions d = dimR(X)6 n6
2d = dimR(X ×X). In particular the graded algebra HBM

∗ (X)[−d] may have
graded components of positive and negative degrees.

If it happens that the dimension of Z is equal to the dimension of X (the min-
imal possible), we say that the map f : X→Y is semismall. In that case, we see
that HBM

∗ (Z)[−d] is supported in positive degrees. Moreover, the degree zero
component HBM

d (Z) has a basis given by the fundamental classes of irreducible
components of Z. This will be the case in the example of interest to us.

Examples of Convolution
Example 5.32 (The double of a closed oriented manifold) Consider the case
when Y = pt and thus X is a compact d-manifold. In this case Z = X ×X and
we have
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HBM
∗ (Z)[−d]∼= H∗(X)⊗H∗(X)[−d]∼= H∗(X)⊗H∗(X)∼= End(H∗(X)).

Here the first isomorphism is by the Künneth theorem and the fact that the
Borel–Moore homology agrees with ordinary homology for compact spaces.
The second isomorphism is by Poincaré duality. One can check that the convo-
lution structure on HBM

∗ (X ×X)[−d] corresponds to composition of endomor-
phisms.

The following example will be useful for our study of the Springer corre-
spondence.

Example 5.33 (Galois covers) Suppose a finite group W acts freely and prop-
erly discontinuously on an oriented d-manifold X and let f : X →Y = X/W be
the quotient map. Then there is an identification:

Z = X×X/W X ∼=W ×X .

In this case the convolution algebra gets identified with the smash product:

HBM
∗ (Z)[−d]∼= H∗(X)]Q[W ].

Here, the smash product means the algebra whose underlying vector space is
H∗(X)⊗Q[W ] and the multiplication follows the rule as for semidirect prod-
ucts, that when you commute an element of w past a class in H∗(X) you act by
w on that class.

The Convolution Action on the Fibre Homology
Recall that f : X→Y is a proper map of spaces with X an oriented d-manifold.
Now let us fix a point y ∈ Y and consider the fibre Xy = f−1(y), a compact
space. Consider the diagram

Z×Xy Z×X Xy
s′oo r′ // Xy

(X×Y X)× (X×Y {y}) X×Y X×Y {y}
(p12,p23)oo p13 // X×Y {y}

Again we have that r′ is proper and s′ is a base-change of the diagonal embed-
ding of X . As above, we obtain a map:

HBM
∗ (Z)[−d]⊗H∗(Xy)→ H∗(Xy).

Again, this can be upgraded to the following statement.

Proposition 5.34 The map defined above equips H∗(Xy) with the structure of
a graded H∗(Z)[−d]-module.
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5.2.3 The Steinberg Variety

Big vs Small
Recall from Section 5.1.3 the diagram:‹N � � //

ρ

��

g̃

π

��
N
� � // g

The maps π,ρ are proper, g̃ is smooth of (complex) dimension d = dimg =

2m+ r and ‹N is smooth of (complex) dimension 2m = dimN.
We define the big Steinberg variety

St(g) := g̃×g g̃= {(x,b1,b2) ∈ g×F`×F` | x ∈ b1∩b2},

and the small (or nilpotent) Steinberg variety

St(N) :=‹N×N
‹N = {(x,b1,b2) ∈N×F`×F` | x ∈ b1∩b2}.

According to the results of 5.2.2 we have:

Proposition 5.35 Convolution equips HBM
∗ (St)[−2d] and HBM

∗ (St(N))[−4m]

with a graded algebra structure. Moreover both algebras act canonically on
the homology of Springer fibres H∗(F`x) for x ∈ g.

Let

A(g) = HBM
2d (St(g)),

and

A(N) = HBM
4m (St(N)).

These are algebras with respect to convolution. Each one naturally acts on the
homology of Springer fibres. We will see that both of these algebras are in fact
isomorphic to Q[W], giving the desired action on the homology of Springer
fibres.

Remark The way we will present things in this lecture, the isomorphisms are
compatible and thus the actions of W defined using either A(g) or A(N) are
the same. However, we will see in the next lecture that there is another choice
for the second isomorphism which causes the two actions to differ by the sign
representation of W.
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The Components of the Steinberg Variety
Recall that we have a G-equivariant map:

s = (s1,s2) : St(g)→ F`×F`,

which takes a triple (x,b1,b2) to the pair of flags (b1,b2). Thus St(g) is par-
titioned according to the relative position of b1 and b2. Accordingly, for each
w ∈W, we define

Stw(g) = s−1((F`×F`)w) = {(x,b1,b2) | b1 and b2 are in relative position w}

and similarly, define Stw(N).
Stratum by stratum, the Steinberg varieties are relatively easy to understand:

Proposition 5.36 The projection morphisms

sw(g) : Stw(g)→ (F`×F`)w

and

sw(N) : Stw(N)→ (F`×F`)w

naturally carry the structure of a vector bundle. The fibre of sw(g) (respectively,
sw(N)) over a pair (b1,b2) is b1∩b2 (respectively, n(b1)∩n(b2)).

In particular, Stw(g) (respectively, Stw(N)) is a smooth connected variety of
dimension d = dim(g) (respectively, of dimension dim(N) = 2m) for each w.

Remark Recall that there is an isomorphism ‹N∼=T ∗F`. Thus St(N)=‹N×N
‹N

sits inside T ∗(F`×F`). As such the strata Stw(N) are identified with the conor-
mal bundles to the orbits (F`×F`)w.

It follows from the proposition that St(g) (respectively, St(N)) itself is equidi-
mensional of dimension d (respectively, 2m) and the irreducible components
are given by the stratum closures. In the terminology introduced in 5.2.2, the
Springer resolution is semismall.

In particular, the algebras A(g) and A(N) have bases given by fundamental
classes of their components. We denote these bases by

Λw ∈ A(g)

and

Tw ∈ A(N),

as w ranges over the Weyl group W.
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Convolution on the Big Steinberg
Theorem 5.37 The fundamental classes Λw define an isomorphism of algebras
Q[W]∼= A(g). In other words, we have

Λv ∗Λw = Λvw,

for all v,w ∈W.

Theorem 5.37 is proved by looking at the open subset

St(grs) := g̃rs×grs g̃rs.

Recall from Proposition 5.17 that the morphism

π
rs : g̃rs→ grs

is a W-Galois cover. Following Example 5.33 we see that there is a natural
algebra isomorphism:

Q[W]∼= A(grs) := HBM
2d (St(grs)).

On the other hand, one observes that the restriction map A(grs)→ A(g) is an
isomorphism of algebras, respecting the fundamental classes of the compo-
nents, which completes the argument.

Convolution on the Nilpotent Steinberg
While Theorem 5.37 gives an action of W on the homology of Springer fibres,
in order to say something about the nilpotent Springer fibres, we need to under-
stand how this action restricts over the nilpotent cone.

One might first hope then that the linear isomorphism

Q[W]→ A(N)

w 7→ Tw

given by the basis Tw induces an algebra isomorphism. Unfortunately (or per-
haps fortunately, as this fact underlies a lot of interesting mathematics!) this
map is not an algebra isomorphism. That is,

Tv ∗Tw 6= Tvw

in general.
To obtain a basis that is compatible with convolution, one must specialize

the basis Λw from the regular semisimple locus to the nilpotent Steinberg. This
procedure is explained in detail in Chriss-Ginzburg [4], Chapter 3.4; we sketch
some of the main ideas below.
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We let Λ0
w denote the elements of A(N) obtained by specializing Λw from

the big Steinberg. General properties of convolution in Borel–Moore homology
can be applied to show that these elements respect the group multiplication in
the desired manner. It remains to show that they form a basis. For this, we must
compare them to the known basis given by the Tw.

Lemma 5.38 For each w,v ∈W, let nvw be defined by

Λ
0
w = ∑

v∈W

nvwTv.

Then

1 nvw = 0 if v> w.
2 nww = 1 for all w ∈W.

Remark Though it is not obvious from the definitions, the numbers nvw are in
fact all non-negative integers.

The first claim in the lemma is easy to check: the specialization construction
of Λ0

w takes place entirely in the closure Stw(g). The second claim is less clear,
and requires a more careful analysis (see [4], Lemma 3.4.14).

The lemma implies that the matrix (nvw) is upper triangular with 1’s along
the diagonal. In particular it is invertible. It follows that Λ0

w is a basis as re-
quired.

This leads to a proof of the following:

Theorem 5.39 There is an algebra isomorphism:

Q[W]∼= A(N).

Once we have this, it is possible to directly prove the Springer correspon-
dence, Theorem 5.20, using a similar kind of geometric analysis – see [4], Sec-
tion 3.5. Alternatively, we will present another point of view next time using
perverse sheaves.

5.3 Springer Theory via Perverse Sheaves

The goal for this lecture We would like to combine the homology of Springer
fibres together with their W-action into a single package. This package will
be called the Springer sheaf Spr and it will live inside a certain category of
perverse sheaves on N.

This lecture may require you to take a bit more on faith. If you haven’t had
much exposure to things like sheaves and the derived category, I recommend
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you take these things as a black box to begin with (you can enjoy opening up
the box and tinkering at a later point).

5.3.1 The Constructible Derived Category

The Constructible Derived Category
In the previous lecture, our main tool was the Borel–Moore homology of a
space

HBM
∗ (X).

In this lecture our principal player is a certain category

D(X)

called the constructible derived category of sheaves.
We will not have time to discuss the precise definition of this category (see

e.g. the books [6],[12] for details). Rather we will attempt to understand this by
considering some natural classes of objects and some natural functors out of it.

Remark Very briefly, one can define D(X) as the subcategory of the bounded
derived category of sheaves of Q-vector spaces on X whose cohomology sheaves
are constructible. Here a sheaf is said to be constructible if there is a stratifica-
tion X =

⊔
α Xα such that each cohomology sheaf restricted to Xα is a locally

constant sheaf of finite rank.

The Case X = pt
One can identify the category D(pt) with the category of finite dimensional
graded vector spaces. (This is slightly cheating: really D(pt) is the bounded
derived category of complexes of vector spaces with finite dimensional coho-
mology. The identification with graded vector spaces is given by taking a com-
plex to its cohomology.) We think of D(pt) as the home for the (co)homology
of a space X . So we have objects H∗(X) ∈ D(pt) and H∗c (X) for each X . We
can also consider the homology H∗(X) and Borel–Moore homology HBM

∗ (X)

as objects of D(pt) by taking the negative grading (so, e.g. Hi(X) is in
degree −i).

Measurements: Sections, Stalks, Costalks
Now, given a general space X , there are a bunch of canonical functors to D(pt).
These come in two flavours.
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Sections We have the functors of (derived) global sections and compactly sup-
ported (derived) global sections:

RΓX ,RΓX ,c : D(X)→ D(pt).

More generally, if U is an open subset of X , there is a canonical restriction
functor

(−)|U : D(X)→ D(U),

and we can compose with the sections on U to get functors:

RΓU ,RΓU,c : D(X)→ D(pt).

Stalks On the other hand, for any point x ∈ X , we have two functors called the
stalk and costalk, respectively:

i∗x , i
!
x : D(X)→ D(pt).

Given any object F ∈ D(X) we can attempt to understand it by analyzing its
global sections, stalks and costalks.

Objects
Constant and dualizing sheaves Given a space X we have two basic objects:

• the constant sheaf QX and

• the dualizing complex ωX .

Both are preserved under restriction to an open subset U ⊆ X . One can think
that QX is representing local cochains on X and ωX is representing local Borel–
Moore chains. More precisely, we have the following isomorphisms (in fact,
the left-hand side could be taken as a definition of the right-hand side).

RΓU (QX )∼= H∗(U),

RΓU (ωX )∼= HBM
∗ (U),

RΓU,c(QX )∼= H∗c (U),

RΓU,c(ωX )∼= H∗(U).

The constant sheaf (respectively, dualizing complex) has the property that its
stalks i∗x(QX ) (respectively, costalks i!x(ωX )) are isomorphic to the 1-dimensional
vector space Q ∈ D(pt).
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Local systems A local system L on X (also known as a locally constant sheaf)
is an object of D(X) which is a twisted form of the constant sheaf. The sections
RΓU and RΓU,c measure the cohomology and compactly supported cohomol-
ogy with local coefficients in L.

For each x ∈ X , the stalk i∗x(L) is a single vector space Lx in degree 0, and
it carries an action of the fundamental group π1(X ,x). In fact, the category of
local systems on a connected space X is equivalent to the category of represen-
tations of the fundamental group.

The objects of geometric origin Now, given a map of spaces

f : X → Y,

we have certain objects f!(QX ) and f∗(ωX ) of D(Y ). These objects are designed
to measure the various (co)homology theories on the fibres Xy of f . More pre-
cisely, for each y ∈ Y we have the following isomorphisms.

i∗y f!(QX )∼= H∗c (Xy),

i!y f∗(ωX )∼= HBM
∗ (Xy).

Example 5.40 Consider the case where X is a cylinder S1×R, and f : X → Y
is obtained by pinching the subspace S1×{0} to a point y0 ∈Y , making a cone.
Then F := f!(QX ) can be thought of in the following way. Over the open subset
Y −{y0} we get a copy of the constant sheaf QY . But over the special point y0,
the stalk of F is equivalent to H∗(S1).

The Formalism of the Six Operations
A neat way to package this stuff is via the so-called six operations. In general,
if f : X→Y is a map of spaces, we have the following four functors (one should
add to these the functors of internal Hom and tensor product to make six).

f∗, f! : D(X)� D(Y ) : f !, f ∗.

We gather the fundamental properties of these functors here:

Proposition 5.41 Suppose f : X → Y is a map of spaces.

1 The functor f ∗ is left adjoint to f∗ and f ! is right adjoint to f!.

2 If f is proper, then we have a natural isomorphism f∗ ∼= f!.
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3 Suppose we have a Cartesian diagram:

X̃

g̃
��

f̃ // Ỹ

g

��
X

f
// Y

Then there are natural isomorphisms:

g! f∗ ∼= f̃∗g̃
!,

g∗ f!
∼= f̃!g̃

∗.

Remark These functors subsume all the objects and functors already defined.
For example, if p : X → pt is the unique map, we have

QX = p∗(Q), ωX = p!(Q),

and

RΓX = p∗, RΓX ,c = p!.

If j : U ↪→ X is the inclusion of an open subset, we have j∗ = j! = (−)|U .

Grading shift For each integer n we get an autoequivalence of D(X),

F 7→ F[n]

called shifting degree by n. All the functors we will consider will intertwine the
operations of shifting degree.

In the case of X = pt, the functor [n] has the effect of shifting the grading
degree so that if V =

⊕
Vk is a graded vector space, the degree k part of V [n]

is Vk+n.

Verdier and Poincaré Duality
The six operation formalism offers a nice way of packaging the idea of Poincaré
duality. Namely we have the following:

Theorem 5.42 (Poincaré duality) Suppose X is a smooth oriented d-manifold.
Then there is a canonical isomorphism ωX

∼= QX [d].

The more traditional forms of Poincaré duality can essentially be recovered
from this fact, together with the properties of the six operations.

One advantage of this setting is that we can formulate a relative version of
the above statement:
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Theorem 5.43 (Relative Poincaré duality) Suppose f : X →Y is a smooth ori-
ented fibration of relative dimension d. Then there is a canonical isomorphism

f ! ∼= f ∗[d].

The reader may have noticed a certain symmetry in this subject, between
constant and dualizing, or ! and ∗. This symmetry is realized by a contravariant
duality functor called the Verdier duality functor

DX : D(X)→ D(X)op,

such that D2 ∼= Id. The basic property of this functor is that it exchanges the
constant sheaf QX with the dualizing sheaf ωX . More generally, given a map
f : X → Y we have

DY f∗ ∼= f!DX ,

DX f ∗ ∼= f !DY .

The functor Dpt is just the usual duality for graded vector spaces.

5.3.2 Perverse Sheaves and Intersection Homology

Motivation
Now suppose X is a smooth algebraic variety of (pure, complex) dimension d
(thus it is a smooth 2d-manifold). Then we have seen that there is a Poincaré
duality isomorphism

ωX ' QX [2d].

To put it more symmetrically, we have:

ωX [−d]' QX [d].

Note that this grading shift is only possible on an even real dimensional mani-
fold (e.g. a complex manifold).

Yet another way to express this fact is to say that for a smooth d-dimensional
variety X the object QX [d] is canonically Verdier self-dual.

More generally, if L is a local system on a smooth variety X of dimension
d, then we have

D(L[d])∼= L∨[d],

where L∨ is the dual local system (corresponding to the dual representation of
the fundamental group).

If X is singular, then this of course fails in general. However, one can still
ask the following:
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Question 1 Is there an object ICX ∈ D(X) such that:

1 ICX is Verdier self-dual, i.e. D(ICX )' ICX ?

2 If U ⊆ X is a smooth, open, dense subvariety of X (e.g. the entire smooth
locus), then ICX |U ' QU [d]?

Moreover, can one make this construction suitably canonical and functorial?

It turns out the answer is: yes, there is a such an object. It is called the inter-
section complex (more precisely, we are using the so-called middle perversity,
and shifting the grading so that all our complexes are perverse sheaves). We
will present a characterization below.

Remark Historically, the complex RΓ(ICX ), called the intersection complex,
was defined by Goresky and MacPherson [8] using the concept of perversity
and allowable cycles, where the manner in which the cycles intersect with the
singularities is restricted in a particular fashion.

Characterization of Intersection Cohomology
Suppose U ⊆ X is an open subvariety of X which is smooth of pure dimension
d. Suppose we fix a local system L on U .

Theorem 5.44 ([9]) There is an object ICX (L) together with an isomorphism:

ICX (L)|U ∼= L[d],

and such that:

1

dim{x ∈ X−U | Hk(i∗xICX ) 6= 0}<−k,

2

dim{x ∈ X−U | Hk(i!xICX ) 6= 0}< k.

Moreover, the object ICX (L) is uniquely characterized by these properties (up
to unique isomorphism in D(X)).

The object ICX (L) defined by the above theorem satisfies the desired Verdier
duality property.

Theorem 5.45 ([9]) Given X ,U,L as above, we have

D(ICX (L))∼= ICX (L
∨).
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We define

IH∗(X ;L) = RΓX ,cICX (L)[d]

and

IHBM
∗ (X ;L) = RΓX ICX (L)[d].

Note that here we have shifted the grading back to lie in the traditional (rather
than perverse) degrees.

Corollary 5.46 (Poincaré duality for intersection homology) There is a perfect
pairing:

IHBM
k (X ;L)⊗ IH2d−k(X ;L∨)→ Q.

In particular, if X is proper and we take L to be trivial we get a perfect pairing:

IHk(X)⊗ IH2d−k(X)→ Q.

Example 5.47 (The cone revisited) Let Y = S1×R/S1×{0}, the cone. We
have:

∗ HBM
∗ (Y ) H∗(Y ) IHBM

∗ (Y ) IH∗(Y )
0 0 Q 0 Q2

1 Q 0 0 0
2 Q2 0 Q2 0

The chain generating HBM
1 is no longer “allowable” in intersection homology.

Thus we are left with either the two fundamental classes in IHBM
2 or the classes

of two points in IH2 – see Figure 5.9.

Figure 5.9 IHBM
∗ and IH∗ for the cone.
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Definition of Perverse Sheaf
If one relaxes slightly the dimension bounds in the definition of the IC complex,
one obtains the definition of a perverse sheaf:

Definition 5.48 An object F in D(X) is called a perverse sheaf if:

1 dim{x ∈ X | Hk(i∗xF) 6= 0}6−k and
2 dim{x ∈ X | Hk(i!xF) 6= 0}6 k.

We denote by Perv(X) the full subcategory of D(X) whose objects are per-
verse sheaves.

Examples of perverse sheaves on X include the objects ICZ(L) for any
closed subvariety Z of X and local system L on an open dense subset of Z.

Theorem 5.49 The category Perv(X) is abelian and every object has finite
length. The simple objects are given by ICZ(L), where Z is a closed subvariety,
and L is an irreducible local system defined on a dense open subset of Z.

Small and Semismall Maps
Recall from last time that we said a morphism f : X → Y of algebraic varieties
was said to be semismall if the dimension of X×Y X was equal to the dimension
of X . This can be reformulated as follows:

Definition 5.50 Let X be a smooth variety of dimension d. A morphism f :
X → Y of algebraic varieties is said to be semismall if

dim{y ∈ Y | dim f−1(y)> k}6 d− k,

for all k > 0, and small if

dim{y ∈ Y | dim f−1(y)> k}6 d− k,

for k > 0.

Notice the similarities between the definition of small (respectively, semis-
mall) and IC complexes (respectively, perverse sheaves). This observation leads
to the following key result.

Proposition 5.51 (See e.g. [11], Proposition 8.2.30) Suppose f : X → Y is a
proper morphism of algebraic varieties and that X is smooth of dimension d.

1 If f is small, then

f∗QX [d]∼= ICY (L),

where L= ( f |U )∗QU [d], and U ⊆ X is an open dense subset such that f |U
is a covering map.
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2 If f is semismall then there is an isomorphism:

f∗QX [d]∼=
n⊕

α=1

ICYα
(Lα),

where Yα ⊆ Y are closed subvarieties together with irreducible local
systems Lα on the smooth locus Y sm

α for each α = 1, . . . ,n.

5.3.3 The Springer Sheaf

Let us return again to the Lie theoretic setting of Section 5.1.2.

Big vs Small
We define the big Springer sheaf

Sg := π∗Qg̃[d]

and the small or nilpotent Springer sheaf

SN := ρ∗Q‹N[2m].

The stalks of Sg and of SN at nilpotent elements x ∈N both record the homol-
ogy of Springer fibres. In particular, by restriction, any endomorphism of Sg or
SN defines an endomorphism of the homology of Springer fibres.

The basic properties of the six operations allow us to relate the endomor-
phism algebras of these objects to the convolution algebras considered in the
previous lecture.

Proposition 5.52 There are isomorphisms of graded algebras:

HBM
∗ (St(g))[−2d]∼= RHomD(g)(Sg,Sg),

HBM
∗ (St(N))[−4m]∼= RHomD(N)(SN,SN).

In particular we get isomorphisms of algebras:

A(g)∼= HomD(g)(Sg,Sg),

A(N)∼= HomD(N)(SN,SN).

Thus we can rephrase Theorem 5.37 and Theorem 5.39 as statements about
the endomorphism algebra of Springer sheaves.

The (Semi) smallness of the Springer Maps
The dimension formula for Springer fibres directly implies the following cru-
cial result:
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Proposition 5.53 1 The morphism

π : g̃→ g

is small and its restriction πrs to the regular semisimple locus is a W-Galois
covering.

2 The morphism

ρ :‹N→N

is semismall and birational (i.e. an isomorphism over an open set).

In particular, it follows that both Sg and SN are perverse sheaves.

The Structure of the Big Springer Sheaf
Let

K= π
rs
∗ Qg̃rs ∼= Sg|grs .

As πrs is a W-Galois cover, it follows that K is a local system on grs of rank
|W|, and the endomorphisms of K are precisely the group algebra Q[W]. More
or less equivalently, we have a decomposition

K∼=
⊕

L∈Irrep(W)

L⊗KL,

where KL is an irreducible local system on grs (of rank dimL). The small-
ness of the map π then implies that endomorphisms extend uniquely from the
regular semisimple locus, giving the following sheaf-theoretic version of The-
orem 5.37:

Theorem 5.54 We have a canonical isomorphism

EndPerv(g)(Sg)∼= Q[W]

and the perverse sheaf Sg decomposes as a direct sum:

Sg ∼=
⊕

L∈Irrep(W)

L⊗ ICg(KL).

The Structure of the Small Springer Sheaf
The semismallness of the map ρ implies that there is some decomposition

SN =
⊕

i

Mi⊗ ICZi(Ei)

as a direct sum of IC sheaves ICZi(Ei), where the Zi are closed subsets of N, Mi

are multiplicity vector spaces and Ei local systems on some open dense subset
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of Zi. Moreover (by absorbing repeating factors into Mi), we may assume that
the ICZi(Ei) are pairwise non-isomorphic.

As ρ is G-equivariant, the closed subset Z = O must be the closure of some
G-orbit O and E must be a G-equivariant local system on O. Note that G-
equivariant local systems on an orbit G ·x are precisely given by representations
σ of AG(x). Thus, each of the factors ICZi(Ei) above are of the form ICG·x(σ)

for some pair (x,σ).

Reinterpreting the Springer Correspondence
Now suppose, for a moment, we assume Theorem 5.39, i.e. that there is an
isomorphism

Q[W]∼= EndPerv(N)(SN). (5.3.1)

This then gives a precise enumeration of the decomposition of SN into simple
objects: namely, there are pairwise non-isomorphic simple summands for each
irreducible representation L, and the multiplicity space of each such summand
is again given by L. In other words, there is an injective map of sets

L 7→ (OL,σL)

from Irrep(W) to the set of pairs (O,σ) of a nilpotent orbit O = G · x and an
irreducible representation σ of AG(x). This is the Springer correspondence,
reinterpreted in the language of perverse sheaves!

From here, it is not too hard to show (using the dimension formula) the
traditional statement of the Springer correspondence, that L matches up with
the σL-multiplicity space of H2d(x)(F`x) where G ·x = OL (see e.g. Section 4.1
in Clausen’s notes).

Two Parameterizations of the Springer Correspondence
Let iN : N ↪→ g denote the inclusion. We have an isomorphism:

SN ∼= i!N[r]Sg,

where r is the rank of the Lie algebra g (i.e. the dimension of a Cartan subalge-
bra). Thus the functor i!N[r] induces an algebra homomorphism:

EndPerv(g)(Sg)→ EndPerv(N)(SN). (5.3.2)

It is possible to prove directly that this is an isomorphism; it is equivalent
to proving that the simple objects IC(g,KL) appearing in Theorem 5.54 re-
strict to pairwise non-isomorphic simple objects in Perv(N) via i!N[r] (namely,
the objects ICOL

(σL) appearing above). This leads to the same isomorphism
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A(g) ∼= A(N) as in Theorem 5.39, and thus the same Springer correspondence
as in the previous lecture.

However, there is also another approach. The Fourier transform (or Fourier–
Deligne transform) is a certain involutive endofunctor (the superscript mon de-
notes that we only consider the full subcategory of objects which are equivari-
ant for the action of the scaling torus C×):

F : Pervmon(g)→ Pervmon(g).

It turns out that we have F(Sg) ∼= (SN) (where the latter is considered a per-
verse sheaf on g via pushforward under the closed embedding). This leads
to another isomorphism as in (5.3.2) and thus another identification Q[W] ∼=
EndPerv(N)(SN) and finally to another Springer correspondence! It is possible
to show that the two parameterizations of the Springer correspondence differ
by the sign character of W.
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1981). Astérisque, vol. 101. Paris: Soc. Math. France.

[4] Chriss, Neil, and Ginzburg, Victor. 1997. Representation theory and complex ge-
ometry. Boston, MA: Birkhäuser Boston Inc.
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