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ABSTRACT

This paper is devoted to the study of the initial reserve, as a function of the
retention limit, needed to assure that the probability of ruin, at the end of a certain
period of time, is not higher than an agreed value, for an excess of loss treaty. To
assess the probability of ruin, the normal and the normal power approximation are
used. It is shown that the initial reserve is not in general an increasing function of
the retention, having a minimum under fair assumptions.
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1. INTRODUCTION

Consider a risk for which an excess of loss reinsurance treaty is sought. Let M
be the retention limit; S = 2f_0X;, with X0 = 0, the insurer's aggregate gross
(of reinsurance) claims, in some fixed time interval, where N is the number of
claims and {X,},= 1 _ >/v are the individual claims; P is the insurer's gross (of
reinsurance) premium income with respect to the same risk.

Assume that the following assumptions are fulfilled:

Hl: N is a mixed Poisson random variable, with

dH(q)Pr{N=k}= \
Jo k\

where A is the expected value of N and H{q) denotes the distribution function of a
random variable Q with expected value equal to one, standard deviation oQ and
skewness coefficient yQ, where oQ^0 and YQ — Q-
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H2: {Xi]i=\,...,N a r e i-i-d. non-negative random variables, independent of N, with
common distribution function G(.), absolutely continuous and such that

G(JC) = O

i < G (x) < 1 x > 0

//3 : The expected value of A", exists and is denoted by

H4: The excess of loss reinsurance premium is calculated according to the expected
value principle with loading coefficient a, i.e. the loading is

(1) C{M) = aX (x-M)dG(x),
JM

with a > 0 .

For an excess of loss reinsurance arrangement Beard, Pentikainen and Pesonen
(1984), p. 146, state the retention problem as the ascertainment of the maximum
value of M in such a way that it is granted, with probability 1 - e, that the retained
risk will not consume the initial reserve U during the period under consideration.
For the effect they have used the Normal Power approximation. An alternative
reference to this problem is chapter 6 of Daykin, Pentikainen and Pesonen
(1994).

In the example given by them, with the data used through their book, the initial
reserve is an increasing function with the retention limit.

It will be proved that this function is not always increasing, that under some fair
assumptions it will have a minimum, which rends feasible the formulation of the
problem as the determination of the retention limit in such a way that the initial
reserve necessary to assure with probability 1 - E that is not absorbed during the
period under consideration is reduced to a minimum.

2. THE INITIAL RESERVE AS A FUNCTION OF THE RETENTION LIMIT

Using the Normal Power approximation to the retained risk, with z> 1, one gets
(see, for instance, Beard, Pentikainen and Pesonen (1984), p. 129)

(2) U(M) = zos(M) + - (z2-\)os(M)ys(M) -
6

- (P-E[S]-C(M)), M>0

with <P(z) = 1 - e, where 0 is the distribution function of a standard normal
variable, and as(M) and ys(M) denote respectively the standard deviation and the
skewness coefficient of the retained risk S(M),

N

S(M) = V min(X,, M).

https://doi.org/10.2143/AST.25.1.563254 Published online by Cambridge University Press

https://doi.org/10.2143/AST.25.1.563254


THE EFFECT OF THE RETENTION LIMIT ON THE RISK RESERVE 69

Let ak(M) be the &-th moment with respect to the origin of the retained claim
amount, i.e.

(3) ak(M) = xkdG{x) + Mk(\-G(M)).
Jo

Then, having in mind that S(M) follows a mixed compound Poisson distribution,
the variance and the third central moment of S(M) can be easily calculated
(conditioning on N). They are

(4) a\(M) = Xa2(M) + X2a](M)a2
Q

and

(5) Vx Q

respectively, and hence the skewness coefficient ys(M) is,

ys(M) = ^

It is possible to prove the result that follows.

ol(M)

Result 1: If

• the loading coefficient a satisfies

oN 1 , oN

+ ( 2 \(6) a>z ( ) y N

A 6 X

where oN and yN denote the standard deviation and the skewness coefficient
of N,

• and the mixing distribution Q has a skewness coefficient which is at most three
times its variation coefficient, i.e. (having in mind that the mean of Q is 1)

(7) 3 a o > y o ,

then U(M) given by (2) has a minimum.

Proof: Differentiating as{M), os(M)ys(M) and C(M) one gets

(8) a's(M) = Os](M)(\-G(M))H(M),

(9) (os(M) ys (M))' - (1 - G (M)) <7.f 4 (M) P (M)

and

(10) C'(M) = -ak(\-G{M)),

where

(11) H(M) = 2 2
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and

(12) P(M) = X2(3M2a2(M) - 2Ma3(M)) +
+ X3o2

Q(3aj(M) + 3M2a2(M) - 2a}(M)a3(M)) +

+ X4o3
QyQa2(M)a2(M) + 3X4o4

Qa2(M)a2(M) + X5o5
QyQa\{M) +

+ (3oQ-yQ)o3
QX4(2Ma](M)-2a2(M)a2(M)).

Then,

(13) U'(M) = (\-G(M))D(M),

with

(14) D(M) = zos (M)H(M) + - (z2-l)Os (M)P(M) - aX.
6

Noting that (13) and (14) are of the same sign, then given H2, it can be concluded
that (13) takes the value zero, for finite M, if and only if (14) is zero.

Hence the result will be proved by showing that if (6) holds then

(15) lim D ( M ) < 0

and that (7) implies that

(16) lim D{M) = +oo.

Let

, k = 1, 2, 3.
Mk

Considering that

t xk

0< dG(x)<G(M), VM>0,

J k
tM xk

Jo Mk

then

(18)

which implies that

(19)

r x
k

lim dG (x) = 0,
«^o- Jo Mk

lim £k(M) = 1.
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Multiplying and dividing the first term of the right hand side of (14) by M and the
second by M4 and taking the limit using (19), one obtains

(20) lim D (M) = z V^ + X2 o2
Q + - (z2 - 1) Q- ^-Q - aX,

X X 2 2
( )

6 X + X2o2
Q

which shows that (6) implies (15).
On the other hand, it is obvious that, if G (x) has a finite second moment, the first

term of D(M), with D(M) given by (14), tends to +°° when M—> + °°. It will be
shown that this still happens when the second moment does not exist.

Indeed, given the assumptions about G(x) and using integration by parts

k
—
Mk

xk-\\-G{x))dx,
Jo

so,

2 [M ,
(21) 0<£2(M)< — (l-G(x))dx.

M Jo

As
lim (l-G(x))dx = E[X]

M-» + =c JQ

which exists by //3, then

lim <

and

lim £1 (M) = 0,

which proves that

(22) lim Os ' (M)H(M) — +°°.

As the first term on the right hand side of (14) tends to +°° when M—> + °c,
it is sufficient to show that, if (7) holds, the second term can not tend to - °o, to
prove (16). For that purpose, note that

(23) Mak(M)>ak+l(M), VM>0,

which proves that, if (7) is fulfilled, P(M) given by (12) is positive for all
M>0.

To finish the proof it is enough to remind that, by assumption, z > 1.
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Note that (7) holds when TV is Poisson (Q is degenerate), but also when A' is
Negative Binomial (Q is Gamma and yQlaq = 2) and even when Q is Inverse
Gaussian (then yQlaQ - 3). But condition (7) is far from being a necessary
condition. If, for instance, G has a finite third moment, the limit of (12) when
M—> + oo is +oo independently of the sign of 3oQ-yQ.

Result 2: Using the Normal approximation to the retained risk, U{M) with M>0,
has a global minimum if and only if

oN

(24) a > = z — .
X

The minimum is attained at the point M*, where M* is the unique solution to the
equation

(25) zOs

Proof of Result 2 :

If the approximation to the Normal distribution is used (2) simplifies to

(26) U(M) = zos(M)-(P-E[S]-C(M))

and (14) to

(2.7) D (M) = zos l (M)H(M) - aX,
with H(M) given by (11).

It will be shown that the second derivative of U(M) is positive whenever the first
derivative of U(M) is zero for 0 < M < +°°. Indeed,

(28) U"(M)\u.m = 0 = Los\M)\x2 I x2dG(x) + X'o2
Ql(M)]\(l-G(M))

where

(29) l(M) = a2(M) + a 2 ( M ) ( l - G ( M ) ) - 2a, (M)M(l -G(M))

To show that (28) is positive for 0 < M < +00, it is enough to show that (29) is
not negative.

As /(0) = 0 then

[M

(30) l(M) = l'(w)dw,

Jo

which is equivalent to

(31) l(M) = (2wal(w)-a2(w))dG(w)
Jo
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As (31) is non-negative for all w > 0 the same happens to (30), which shows
that

(32) U"(M)\wm = 0>0, VM>0

which implies that there exists at most one finite root of

(33) U'(M) = 0,

and that when it exists it is an absolute minimum of U(M).
It is a consequence of the proof of Result 1 that such a root exists if and only if

(24) holds (note that (7) was only used to show that the second term on the right
hand side of (14) can not be negative).

Note that if N is Poisson distributed, (6) and (24) are equivalent respectively to

z2-\
(34)

and

a > — +

(35) a>

1E+08

1E+07:

1E+06:

1E+05:

1E+044-r
1E-02 1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

M

FIGURE I. The initial reserve as a function of M. Mon. Unit: 1000 Pounds.
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3. AN EXAMPLE

Figure 1 shows U{M) when the Normal Power and the Normal approximation are
used, for the data used by Beard, Pentikainen and Pesonen (1984), with the
exception of the loading coefficient, which is here taking the value 0.25, i.e. for

e =0.001
X =10 000
P =1.04AE[X]
aQ = 0.038
yG = 0.25
a =0.25

and G according to Table 3.5.1. of Beard, Pentikainen and Pesonen (1984),
pp. 62-63 (columns 2 and 4). The minimum of U(M) when the NP approximation
is used is attained at M* = 100 thousand pounds, and it is slightly higher when the
Normal approximation is used.

Note that one does not expect big changes on the behaviour of the function U(M)
when each of the approximations is used, since for reasonable values of M, the
second term on the right hand side of equation (2) is relatively small, becoming
significant only for large values of M.

Having in mind the results obtained one can conclude that the formulation of the
retention problem in such a way that the initial reserve necessary to assure with
probability 1 - £ that it is not absorbed during the period under consideration is
reduced to a minimum, makes sense.

Conditions (6) and (24) are not fulfilled only when the loading coefficient used
by the reinsurer is very small or when the required probability is very high.

As M* is a function of the required probability, it would be advisable, in a
practical situation, to study M* as a function of z.
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