under the terms of the Creative Commons Attribution licence (https://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Quantum projective planes finite over their centers

Ayako Itaba© and Izuru Mori

Abstract

For a three-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$, Artin, Tate, and Van den Bergh showed that A is finite over its center if and only if $|\sigma|<\infty$. Moreover, Artin showed that if A is finite over its center and $E \neq \mathbb{P}^{2}$, then A has a fat point module, which plays an important role in noncommutative algebraic geometry; however, the converse is not true in general. In this paper, we will show that if $E \neq \mathbb{P}^{2}$, then A has a fat point module if and only if the quantum projective plane $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center in the sense of this paper if and only if $\left|v^{*} \sigma^{3}\right|<\infty$ where v is the Nakayama automorphism of A. In particular, we will show that if the second Hessian of E is zero, then A has no fat point module.

1 Introduction

A quantum polynomial algebra is a noncommutative analogue of a commutative polynomial algebra, and a quantum projective space is the noncommutative projective scheme associated to a quantum polynomial algebra, so they are the most basic objects to study in noncommutative algebraic geometry. In fact, the starting point of the subject noncommutative algebraic geometry is the paper [3] by Artin, Tate, and Van den Bergh, showing that there exists a nice correspondence between three-dimensional quantum polynomial algebras A and geometric pairs (E, σ) where $E=\mathbb{P}^{2}$ or a cubic divisor in \mathbb{P}^{2}, and $\sigma \in \operatorname{Aut} E$, so the classification of three-dimensional quantum polynomial algebras reduces to the classification of "regular" geometric pairs. Write $A=\mathcal{A}(E, \sigma)$ for a three-dimensional quantum polynomial algebra corresponding to the geometric pair (E, σ). The geometric properties of the geometric pair (E, σ) provide some algebraic properties of $A=\mathcal{A}(E, \sigma)$. One of the most striking results of such is in the companion paper [4].

Theorem 1.1 [4, Theorem 7.1] Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra. Then $|\sigma|<\infty$ if and only if A is finite over its center.

[^0]Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra. To prove the above theorem, fat points of the quantum projective plane $\operatorname{Proj}_{\mathrm{nc}} A$ play an essential role. By Artin [2], if A is finite over its center and $E \neq \mathbb{P}^{2}$, then $\operatorname{Proj}_{\mathrm{nc}} A$ has a fat point; however, the converse is not true. To check the existence of a fat point, there is a more important notion than $|\sigma|$, namely,

$$
\|\sigma\|:=\inf \left\{i \in \mathbb{N}^{+}\left|\sigma^{i}=\phi\right|_{E} \text { for some } \phi \in \operatorname{Aut} \mathbb{P}^{2}\right\}
$$

In fact, $\operatorname{Proj}_{\text {nc }} A$ has a fat point if and only if $1<\|\sigma\|<\infty$ by [2].
In [13], the notion that $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center was introduced, and the following result was proved.

Theorem 1.2 [13, Theorem 4.17] Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra such that $E \subset \mathbb{P}^{2}$ is a triangle. Then $\|\sigma\|<\infty$ if and only if $\operatorname{Proj}_{n c} A$ is finite over its center.

The purpose of this paper is to extend the above theorem to all three-dimensional quantum polynomial algebras. In fact, the following is our main result.

Theorem 1.3 (Theorem 3.6 and Corollary 4.1) Let $A=\mathcal{A}(E, \sigma)$ be a threedimensional quantum polynomial algebra such that $E \neq \mathbb{P}^{2}$, and $v \in A$ utA the Nakayama automorphism of A. Then the following are equivalent:
(1) $\left|v^{*} \sigma^{3}\right|<\infty$.
(2) $\|\sigma\|<\infty$.
(3) $\operatorname{Proj}_{n c} A$ is finite over its center.
(4) $\operatorname{Proj}_{n c} A$ has a fat point.

Note that if $E=\mathbb{P}^{2}$, then $\|\sigma\|=1$, but $\operatorname{Proj}_{\mathrm{nc}} A$ has no fat point (see Lemma 2.14). As a biproduct, we have the following corollary.

Corollary 1.4 Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra. If the second Hessian of E is zero, then A is never finite over its center.

These results are important to study representation theory of the Beilinson algebra ∇A, which is a typical example of a 2-representation infinite algebra defined in [6]. This was the original motivation of the paper [13].

2 Preliminaries

Throughout this paper, we fix an algebraically closed field k of characteristic 0 . All algebras and (noncommutative) schemes are defined over k. We further assume that all (graded) algebras are finitely generated (in degree 1) over k, that is, algebras of the form $k\left\langle x_{1}, \ldots, x_{n}\right\rangle / I$ for some (homogeneous) ideal $I \triangleleft k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ (where $\operatorname{deg} x_{i}=$ 1 for every $i=1, \ldots, n$).

2.1 Geometric quantum polynomial algebras

In this subsection, we define geometric algebras and quantum polynomial algebras.
Definition 2.1 [12, Definition 4.3] A geometric pair (E, σ) consists of a projective scheme $E \subset \mathbb{P}^{n-1}$ and $\sigma \in \operatorname{Aut}_{k} E$. For a quadratic algebra $A=k\left\langle x_{1}, \ldots, x_{n}\right\rangle / I$ where $I \triangleleft k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a homogeneous ideal generated by elements of degree 2 , we define

$$
\mathcal{V}\left(I_{2}\right):=\left\{(p, q) \in \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \mid f(p, q)=0 \text { for any } f \in I_{2}\right\} .
$$

(1) We say that A satisfies (G1) if there exists a geometric pair (E, σ) such that

$$
\mathcal{V}\left(I_{2}\right)=\left\{(p, \sigma(p)) \in \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \mid p \in E\right\} .
$$

In this case, we write $\mathcal{P}(A)=(E, \sigma)$, and call E the point scheme of A.
(2) We say that A satisfies (G 2) if there exists a geometric pair (E, σ) such that

$$
I_{2}=\left\{f \in k\left\langle x_{1}, \ldots, x_{n}\right\rangle_{2} \mid f(p, \sigma(p))=0 \text { for any } p \in E\right\} .
$$

In this case, we write $A=\mathcal{A}(E, \sigma)$.
(3) A quadratic algebra A is called geometric if A satisfies both (G1) and (G2) with $A=\mathcal{A}(\mathcal{P}(A))$.

Definition 2.2 A right Noetherian graded algebra A is called a d-dimensional quantum polynomial algebra if
(1) $\operatorname{gldim} A=d$,
(2) $\operatorname{Ext}_{A}^{i}(k, A) \cong\left\{\begin{array}{ll}k & \text { if } i=d, \\ 0 & \text { if } i \neq d,\end{array}\right.$ and
(3) $\quad H_{A}(t):=\sum_{i=0}^{\infty}\left(\operatorname{dim}_{k} A_{i}\right) t^{i}=(1-t)^{-d}$.

Note that a three-dimensional quantum polynomial algebra is exactly the same as a three-dimensional quadratic AS-regular algebra, so we have the following result.

Theorem 2.1 [3] Every three-dimensional quantum polynomial algebra is a geometric algebra where the point scheme is either \mathbb{P}^{2} or a cubic divisor in \mathbb{P}^{2}.

Remark 2.2 There exists a four-dimensional quantum polynomial algebra which is not a geometric algebra; however, as far as we know, there exists no example of a quantum polynomial algebra which does not satisfy (G1).

We define the type of a three-dimensional quantum polynomial algebra $A=$ $\mathcal{A}(E, \sigma)$ in terms of the point scheme $E \subset \mathbb{P}^{2}$.

Type $\mathbf{P} E$ is \mathbb{P}^{2}.
Type $S E$ is a triangle.
Type $S^{\prime} E$ is a union of a line and a conic meeting at two points.

Type T E is a union of three lines meeting at one point.
Type T' E is a union of a line and a conic meeting at one point.
Type NC E is a nodal cubic curve.
Type CC E is a cuspidal cubic curve.
Type TL E is a triple line.
Type WL E is a union of a double line and a line.
Type EC E is an elliptic curve.

2.2 Quantum projective spaces finite over their centers

Definition 2.3 A noncommutative scheme (over k) is a pair $X=\left(\bmod X, \mathcal{O}_{X}\right)$ consisting of a k-linear abelian category $\bmod X$ and an object $\mathcal{O}_{X} \in \bmod X$. We say that two noncommutative schemes $X=\left(\bmod X, \mathcal{O}_{X}\right)$ and $Y=\left(\bmod Y, \mathcal{O}_{Y}\right)$ are isomorphic, denoted by $X \cong Y$, if there exists an equivalence functor $F: \bmod X \rightarrow \bmod Y$ such that $F\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{Y}$.

If X is a commutative Noetherian scheme, then we view X as a noncommutative scheme by $\left(\bmod X, \mathcal{O}_{X}\right)$ where $\bmod X$ is the category of coherent sheaves on X and \mathcal{O}_{X} is the structure sheaf on X.

Noncommutative affine and projective schemes are defined in [5].
Definition 2.4 If R is a right Noetherian algebra, then we define the noncommutative affine scheme associated to R by $\operatorname{Spec}_{\mathrm{nc}} R=(\bmod R, R)$ where $\bmod R$ is the category of finitely generated right R-modules and $R \in \bmod R$ is the regular right module.

Note that if R is commutative, then $\operatorname{Spec}_{\mathrm{nc}} R \cong \operatorname{Spec} R$.
Definition 2.5 If A is a right Noetherian graded algebra, $\operatorname{grmod} A$ is the category of finitely generated graded right A-modules, and tors A is the full subcategory of $\operatorname{grmod} A$ consisting of finite-dimensional modules over k, then we define the noncommutative projective scheme associated to A by $\operatorname{Proj}_{\mathrm{nc}} A=(\operatorname{tails} A, \pi A)$ where tails $A:=\operatorname{grmod} A / \operatorname{tors} A$ is the quotient category, $\pi: \operatorname{grmod} A \rightarrow \operatorname{tails} A$ is the quotient functor, and $A \in \operatorname{grmod} A$ is the regular graded right module. If A is a d-dimensional quantum polynomial algebra, then we call $\operatorname{Proj}_{n c} A$ a quantum \mathbb{P}^{d-1}. In particular, if $d=3$, then we call $\operatorname{Proj}_{\mathrm{nc}} A$ a quantum projective plane.

Note that if A is commutative, then $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj} A$. It is known that if A is a twodimensional quantum polynomial algebra, then $\operatorname{Proj}_{\mathrm{nc}} A \cong \mathbb{P}^{1}$.

For a three-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$, we have the following geometric characterization when A is finite over its center.

Theorem 2.3 [4, Theorem 7.1] Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra. Then the following are equivalent:
(1) $|\sigma|<\infty$.
(2) A is finite over its center.

Since the property that A is finite over its center is not preserved under isomorphisms of noncommutative projective schemes $\operatorname{Proj}_{\mathrm{nc}} A$, we will make the following rather ad hoc definition.

Definition 2.6 Let A be a d-dimensional quantum polynomial algebra. We say that $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center if there exists a d-dimensional quantum polynomial algebra A^{\prime} finite over its center such that $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj}_{\mathrm{nc}} A^{\prime}$.

For a three-dimensional quantum polynomial algebra, the above definition coincides with [13, Definition 4.14] by the following result.

Lemma 2.4 [1, Corollary A.10] Let A and A^{\prime} be three-dimensional quantum polynomial algebras. Then $\operatorname{grmod} A \cong \operatorname{grmod} A^{\prime}$ if and only if $\operatorname{Proj}_{n c} A \cong \operatorname{Proj}_{n c} A^{\prime}$.

To characterize "geometric" quantum projective spaces finite over their centers, we will introduce the following notion.

Definition 2.7 [13, Definition 4.6] For a geometric pair (E, σ) where $E \subset \mathbb{P}^{n-1}$ and $\sigma \in \operatorname{Aut}_{k} E$, we define

$$
\begin{gathered}
\operatorname{Aut}_{k}\left(\mathbb{P}^{n-1}, E\right):=\left\{\left.\phi\right|_{E} \in \operatorname{Aut}_{k} E \mid \phi \in \operatorname{Aut}_{k} \mathbb{P}^{n-1}\right\}, \text { and } \\
\|\sigma\|:=\inf \left\{i \in \mathbb{N}^{+} \mid \sigma^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{n-1}, E\right)\right\} .
\end{gathered}
$$

For a geometric pair (E, σ), clearly $\|\sigma\| \leq|\sigma|$. The following are the basic properties of $\|\sigma\|$.

Lemma 2.5 [13, Lemma 4.16(1)], [14, Lemma 2.5] Let A and A^{\prime} be d-dimensional quantum polynomial algebras satisfying (G1) with $\mathcal{P}(A)=(E, \sigma)$ and $\mathcal{P}\left(A^{\prime}\right)=$ $\left(E^{\prime}, \sigma^{\prime}\right)$.
(1) If $A \cong A^{\prime}$, then $E \cong E^{\prime}$ and $|\sigma|=\left|\sigma^{\prime}\right|$.
(2) If $\operatorname{grmod} A \cong \operatorname{grmod} A^{\prime}$, then $E \cong E^{\prime}$ and $\|\sigma\|=\left\|\sigma^{\prime}\right\|$.

In particular, if A and A^{\prime} are three-dimensional quantum polynomial algebras such that $\operatorname{Proj}_{n c} A \cong \operatorname{Proj}_{n c} A^{\prime}$, then $E \cong E^{\prime}$ (that is, A and A^{\prime} are of the same type) and $\|\sigma\|=\left\|\sigma^{\prime}\right\|$.

For a three-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$ of Type S , we have the following geometric characterization when a quantum projective plane $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center.

Theorem 2.6 [13, Theorem 4.17] Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra of Type S. Then the following are equivalent:
(1) $\|\sigma\|<\infty$.
(2) $\operatorname{Proj}_{n c} A$ is finite over its center.

The purpose of this paper is to extend the above theorem to all types.

2.3 Points of a noncommutative scheme

Definition 2.8 Let R be an algebra. A point of $\operatorname{Spec}_{\mathrm{nc}} R$ is an isomorphism class of a simple right R-module $M \in \bmod R$ such that $\operatorname{dim}_{k} M<\infty$. A point M is called fat if $\operatorname{dim}_{k} M>1$.

Remark 2.7 If R is a commutative algebra and $p \in \operatorname{Spec} A$ is a closed point, then $A / \mathfrak{m}_{p} \in \bmod R$ is a point where \mathfrak{m}_{p} is the maximal ideal of R corresponding to p. In fact, this gives a bijection between the set of closed points of Spec R and the set of points of $\mathrm{Spec}_{\mathrm{nc}} R$. In this commutative case, there exists no fat point.

Remark 2.8 Fat points are not preserved under Morita equivalences. For example, $\bmod k \cong \bmod M_{2}(k)$, but it is easy to see that $\operatorname{Spec}_{\mathrm{nc}} k$ has no fat point while $\operatorname{Spec}_{\mathrm{nc}} M_{2}(k)$ has a fat point. However, since $\operatorname{Spec}_{\mathrm{nc}} R \cong \operatorname{Spec}_{\mathrm{nc}} R^{\prime}$ if and only if $R \cong R^{\prime}$, fat points are preserved under isomorphisms of $\operatorname{Spec}_{\mathrm{nc}} R$.

Example 2.9 If $R=k\langle u, v\rangle /(u v-v u-1)$ is the first Weyl algebra, then it is well known that there exists no finite-dimensional right R-module, so $\operatorname{Spec}_{\mathrm{nc}} R$ has no point at all.

Example 2.10 (cf. [15]) If $R=k\langle u, v\rangle /(v u-u v-u)$ is the enveloping algebra of a two-dimensional nonabelian Lie algebra, then the set of points of Spec ${ }_{\mathrm{nc}} R$ is given by $\{R / u R+(v-\mu) R\}_{\mu \in k}$, so $\operatorname{Spec}_{\mathrm{nc}} R$ has no fat point. In fact, the linear map $\delta: k[u] \rightarrow k[u]$ defined by $\delta(f(u))=u f^{\prime}(u)$ is a derivation of $k[u]$ such that $R=k[u][v ; \delta]$ is the Ore extension, so that $v f(u)=f(u) v+u f^{\prime}(u)$. If M is a finite-dimensional right R-module, then there exists $f(u)=a_{d} u^{d}+\cdots+a_{1} u+$ $a_{0} \in k[u] \subset R$ of the minimal degree $\operatorname{deg} f(u)=d \geq 1$ such that $M f(u)=0$. Since $u f^{\prime}(u)=v f(u)-f(u) v, M\left(d f(u)-u f^{\prime}(u)\right)=0$ such that $\operatorname{deg}\left(d f(u)-u f^{\prime}(u)\right)<$ $\operatorname{deg} f(u), d f(u)=u f^{\prime}(u)$ by minimality of $\operatorname{deg} f(u)=d \geq 1$, but this is possible only if $f(u)=a_{1} u$, so $M u=0$. It follows that M can be viewed as an $R /(u)$-module, a point of $\operatorname{Spec}_{\mathrm{nc}}(R /(u)) \cong \operatorname{Spec}_{\mathrm{nc}} k[v]$, so $M \cong R / u R+(v-\mu) R$ for some $\mu \in k$. Since $\operatorname{Spec}_{\mathrm{nc}}(R /(u)) \cong \operatorname{Spec}_{\mathrm{nc}} k[v]$ is a commutative scheme, $\operatorname{Spec}_{\mathrm{nc}} R$ has no fat point.

Example 2.11 [13, Lemma 4.19] If $R=k\langle u, v\rangle /(u v+v u)$ is a two-dimensional (ungraded) quantum polynomial algebra, then the set of points of $\operatorname{Spec}_{\mathrm{nc}} R$ is given by

$$
\begin{aligned}
\{R /(u-\lambda) R+v R\}_{\lambda \in k} & \cup\{R / u R+(v-\mu) R\}_{\mu \in k} \\
& \cup\left\{R /\left(x^{2}-\lambda\right) R+(\sqrt{\mu} x+\sqrt{-\lambda} y) R+\left(y^{2}-\mu\right) R\right\}_{0 \neq \lambda, \mu \in k}
\end{aligned}
$$

Among them, $\left\{R /\left(x^{2}-\lambda\right) R+(\sqrt{\mu} x+\sqrt{-\lambda} y) R+\left(y^{2}-\mu\right) R\right\}_{0 \neq \lambda, \mu \in k}$ is the set of fat points of Spec $\mathrm{nc} R$.

Definition 2.9 Let A be a graded algebra. A point of $\operatorname{Proj}_{\mathrm{nc}} A$ is an isomorphism class of a simple object of the form $\pi M \in \operatorname{tails} A$ where $M \in \operatorname{grmod} A$ is a graded right

A-module such that $\lim _{i \rightarrow \infty} \operatorname{dim}_{k} M_{i}<\infty$. A point πM is called fat if $\lim _{i \rightarrow \infty}$ $\operatorname{dim}_{k} M_{i}>1$, and, in this case, M is called a fat point module over A.

Remark 2.12 If A is a graded commutative algebra and $p \in \operatorname{Proj} A$ is a closed point, then $\pi\left(A / \mathfrak{m}_{p}\right) \in \operatorname{tails} A$ is a point where \mathfrak{m}_{p} is the homogeneous maximal ideal of A corresponding to p. In fact, this gives a bijection between the set of closed points of $\operatorname{Proj} A$ and the set of points of $\operatorname{Proj}_{\mathrm{nc}} A$. In this commutative case, there exists no fat point.

Remark 2.13 It is unclear that fat points are preserved under isomorphisms of $\operatorname{Proj}_{\mathrm{nc}} A$ in general. However, fat point modules are preserved under graded Morita equivalences, so if A and A^{\prime} are both three-dimensional quantum polynomial algebras such that $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj}_{\mathrm{nc}} A^{\prime}$, then there exists a natural bijection between the set of fat points of $\operatorname{Proj}_{\mathrm{nc}} A$ and that of $\operatorname{Proj}_{\mathrm{nc}} A^{\prime}$ by Lemma 2.4.

The following facts will be used to prove our main results.
Lemma $2.14[2,13]$ Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra.
(1) $\|\sigma\|=1$ if and only if $E=\mathbb{P}^{2}$.
(2) $1<\|\sigma\|<\infty$ if and only if $\operatorname{Proj}_{n c} A$ has a fat point.

Theorem 2.15 [13, Theorem 4.20] If A is a quantum polynomial algebra and $x \in A$ is a homogeneous normal element of positive degree, then there exists a bijection between the set of points of $\operatorname{Proj}_{n c} A$ and the disjoint union of the set of points of $\operatorname{Proj}_{n c} A /(x)$ and the set of points of $\operatorname{Spec}_{n c} A\left[x^{-1}\right]_{0}$. In this bijection, fat points correspond to fat points.

3 Main results

In this section, we will state and prove our main results.
Let A be a graded algebra and $v \in \operatorname{Aut} A$ a graded algebra automorphism. For a graded $A-A$-bimodule M, we define a new graded $A-A$ bimodule $M_{v}=M$ as a graded vector space with the new actions $a * m * b:=a m v(b)$ for $a, b \in A, m \in M$. Let A be a d-dimensional quantum polynomial algebra. The canonical module of A is defined by $\omega_{A}:=\lim _{i \rightarrow \infty} \operatorname{Ext}_{A}^{d}\left(A / A_{\geq i}, A\right)$, which has a natural graded $A-A$ bimodule structure. It is known that there exists $v \in \operatorname{Aut} A$ such that $\omega_{A} \cong A_{v^{-1}}(-d)$ as graded $A-A$ bimodules. We call v the Nakayama automorphism of A. Since $A_{0}=k$, the Nakayama automorphism v is uniquely determined by A. Among quantum polynomial algebras, Calabi-Yau quantum polynomial algebras defined below are easier to handle.

Definition 3.1 A quantum polynomial algebra A is called Calabi-Yau if the Nakayama automorphism of A is the identity.

The following theorem plays an essential role to prove our main results, claiming that every quantum projective plane has a three-dimensional Calabi-Yau quantum polynomial algebra as a homogeneous coordinate ring.

Theorem 3.1 [8, Theorem 4.4] For every three-dimensional quantum polynomial algebra A, there exists a three-dimensional Calabi-Yau quantum polynomial algebra A^{\prime} such that $\operatorname{grmod} A \cong \operatorname{grmod} A^{\prime}$, so that $\operatorname{Proj}_{n c} A \cong \operatorname{Proj}_{n c} A^{\prime}$.

By the above theorem, the proofs of our main results reduce to the Calabi-Yau case.

3.1 Calabi-Yau case

Let $E=\mathcal{V}\left(x^{3}+y^{3}+z^{3}-\lambda x y z\right) \subset \mathbb{P}^{2}, \lambda \in k, \lambda^{3} \neq 27$ be an elliptic curve in the Hesse form. We fix a group structure with the identity element $o:=(1,-1,0) \in E$, and write $E[n]:=\{p \in E \mid n p=o\}$ the set of n-torsion points. We also denote by $\sigma_{p} \in \operatorname{Aut}_{k} E$ the translation automorphism by a point $p \in E$. It is known that $\sigma_{p} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ if and only if $p \in E[3]$ (cf. [12, Lemma 5.3]).

Lemma 3.2 Denote a three-dimensional Calabi-Yau quantum polynomial algebra as

$$
A=k\langle x, y, z\rangle /\left(f_{1}, f_{2}, f_{3}\right)=\mathcal{A}(E, \sigma) .
$$

Then Table 1 gives a list of defining relations f_{1}, f_{2}, f_{3} and the corresponding geometric pairs (E, σ) for such algebras up to isomorphism. In Table 1, we remark that:
(1) Type S and Type T are further divided into Type S_{1} and Type S_{3}, and Type T_{1} and Type T_{3}, respectively, in terms of the form of σ.
(2) The point scheme E may consist of several irreducible components, and, in this case, σ is described on each component.
(3) For Type NC and Type CC, σ in Table 1 is defined except for the unique singular point $(0,0,1) \in E$, which is preserved by σ.
(4) For Type TL and Type WL, E is nonreduced, and the description of σ is omitted.

Proof The list of the defining relations f_{1}, f_{2}, f_{3} is given in [7, Theorem 3.3] and [9 , Corollary 4.3]. It is not difficult to calculate their corresponding geometric pairs (E, σ) using the condition (G1) (see, for example, [16, proof of Theorem 3.1] for Type P, S_{1}, S_{3}, S, and [14, proof of Theorem 3.6] for Type $\left.T_{1}, T^{\prime}\right)$. We only give some calculations to check that (E, σ) in Table 1 is correct for Type CC.

Let $A=k\langle x, y, z\rangle /\left(f_{1}, f_{2}, f_{3}\right)$ be a three-dimensional Calabi-Yau quantum polynomial algebra of Type CC where

$$
f_{1}=y z-z y+y^{2}+3 x^{2}, f_{2}=z x-x z+y x+x y-y z-z y, f_{3}=x y-y x-y^{2}
$$

and let $E=\mathcal{V}\left(x^{3}-y^{2} z\right)$, and

$$
\sigma(a, b, c)= \begin{cases}\left(a-b, b,-3 \frac{a^{2}}{b}+3 a-b+c\right) & \text { if }(a, b, c) \neq(0,0,1) \\ (0,0,1) & \text { if }(a, b, c)=(0,0,1)\end{cases}
$$

Table 1: List of defining relations and the corresponding geometric pairs.

Type	f_{1}, f_{2}, f_{3}	E	σ
P	$\left\{\begin{array}{l}y z-\alpha z y \\ z x-\alpha x z \\ x y-\alpha y x\end{array}\right.$	\mathbb{P}^{2}	$\sigma(a, b, c)=\left(a, \alpha b, \alpha^{2} c\right)$
S_{1}	$\left\{\begin{array}{l} y z-\alpha z y \\ z x-\alpha x z \\ x y-\alpha y x \end{array} \quad \alpha^{3} \neq 0,1\right.$	$\begin{aligned} & \mathcal{V}(x) \\ & \cup \mathcal{V}(y)\end{aligned}$ $\cup \mathcal{V}(z)$	$\left\{\begin{array}{l} \sigma(0, b, c)=(0, b, \alpha c) \\ \sigma(a, 0, c)=(\alpha a, 0, c) \\ \sigma(a, b, 0)=(a, \alpha b, 0) \end{array}\right.$
S_{3}	$\left\{\begin{array}{l}z y-\alpha x^{2} \\ x z-\alpha y^{2} \\ y x-\alpha z^{2}\end{array} \quad \alpha^{3} \neq 0,1\right.$	$\nu(x)$ $\cup \mathcal{V}(y)$ $\cup \mathcal{V}(z)$	$\left\{\begin{array}{l} \sigma(0, b, c)=(\alpha c, 0, b) \\ \sigma(a, 0, c)=(c, \alpha a, 0) \\ \sigma(a, b, 0)=(0, a, \alpha b) \end{array}\right.$
S'	$\left\{\begin{array}{l}y z-\alpha z y+x^{2} \\ z x-\alpha x z \\ x y-\alpha y x\end{array} \quad \alpha^{3} \neq 0,1\right.$	$\begin{aligned} & \mathcal{V}(x) \\ & \cup \mathcal{V}\left(x^{2}-\lambda y z\right) \\ & \lambda=\frac{\alpha^{3}-1}{\alpha} \end{aligned}$	$\left\{\begin{array}{l}\sigma(0, b, c)=(0, b, \alpha c) \\ \sigma(a, b, c)=\left(a, \alpha b, \alpha^{-1} c\right)\end{array}\right.$
T_{1}	$\left\{\begin{array}{l}y z-z y+x y+y x-y^{2} \\ z x-x z+x^{2}-y x-x y \\ x y-y x\end{array}\right.$	$\begin{array}{ll} & \mathcal{V}(x) \\ \cup \mathcal{V}(y) \\ \cup \mathcal{V}(x-y) \end{array}$	$\left\{\begin{array}{l}\sigma(0, b, c)=(0, b, b+c) \\ \sigma(a, 0, c)=(a, 0, a+c) \\ \sigma(a, a, c)=(a, a,-a+c)\end{array}\right.$
T_{3}	$\left\{\begin{array}{c}y z-x y-y x+y^{2} \\ -x z-z x+x^{2} \\ z x-x^{2}+x y+y x \\ -z y-y z-y^{2} \\ x y-x^{2}-y^{2}\end{array}\right.$	$\begin{array}{ll} & \mathcal{V}(x) \\ \cup \mathcal{V}(y) \\ \cup \mathcal{V}(x-y) \end{array}$	$\left\{\begin{array}{l} \sigma(0, b, c)=(b, 0, b+c) \\ \sigma(a, 0, c)=(a, a,-c) \\ \sigma(a, a, c)=(0, a,-c) \end{array}\right.$
T'	$\left\{\begin{array}{c}y z-z y+x y+y x \\ z x-x z+x^{2} \\ -y z-z y+y^{2} \\ x y-y x-y^{2}\end{array}\right.$	$\begin{aligned} & \mathcal{V}(y) \\ & \cup \mathcal{V}\left(x^{2}-y z\right) \end{aligned}$	$\left\{\begin{array}{l} \sigma(a, 0, c)=(a, 0, a+c) \\ \sigma(a, b, c) \\ \quad=(a-b, b,-2 a+b+c) \end{array}\right.$
NC	$\left\{\begin{array}{l} y z-\alpha z y+x^{2} \\ z x-\alpha x z+y^{2} \quad \alpha^{3} \neq 0,1 \\ x y-\alpha y x \end{array}\right.$	$\left\{\begin{array}{c} \mathcal{V}\left(x^{3}+y^{3}\right. \\ \quad-\lambda x y z) \\ \lambda=\frac{\alpha^{3}-1}{\alpha} \end{array}\right.$	$\begin{aligned} & \sigma(a, b, c) \\ & =\left(a, \alpha b,-\frac{a^{2}}{b}+\alpha^{2} c\right) \end{aligned}$
CC	$\left\{\begin{array}{c}y z-z y+y^{2}+3 x^{2} \\ z x-x z+y x+x y \\ -y z-z y \\ x y-y x-y^{2}\end{array}\right.$	$\mathcal{V}\left(x^{3}-y^{2} z\right)$	$\begin{aligned} & \sigma(a, b, c) \\ & =\left(a-b, b,-3 \frac{a^{2}}{b}+3 a-b+c\right) \end{aligned}$
TL	$\left\{\begin{array}{l} y z-\alpha z y-x^{2} \\ z x-\alpha x z \\ x y-\alpha y x \end{array} \quad \alpha^{3}=1\right.$	$\mathcal{V}\left(x^{3}\right)$	omitted

Table 1: (Continued)

Type	f_{1}, f_{2}, f_{3}	E	σ
WL	$\left\{\begin{array}{l} y z-z y-\frac{1}{3} y^{2} \\ z x-x z-\frac{1}{3}(y x+x y) \\ x y-y x \end{array}\right.$	$\mathcal{V}\left(x^{2} y\right)$	omitted
EC	$\left\{\begin{array}{l} \alpha y z+\beta z y+\gamma x^{2} \\ \alpha z x+\beta x z+\gamma y^{2} \\ \alpha x y+\beta y x+\gamma z^{2} \end{array}\right\}$	$\begin{array}{r} \mathcal{V}\left(x^{3}+y^{3}+z^{3}\right. \\ -\lambda x y z), \\ \lambda=\frac{\alpha^{3}+\beta^{3}+\gamma^{3}}{\alpha \beta \gamma} \end{array}$	$\begin{aligned} & \sigma_{p} \text { where } p=(\alpha, \beta, \gamma) \\ & \epsilon E \backslash E[3] \end{aligned}$

as in Table 1. If $p=(a, b, c) \in E$, then $a^{3}-b^{2} c=0$, so

$$
\begin{aligned}
f_{1}(p, \sigma(p))= & f_{1}\left((a, b, c),\left(a-b, b,-3 \frac{a^{2}}{b}+3 a-b+c\right)\right) \\
= & b\left(-3 \frac{a^{2}}{b}+3 a-b+c\right)-c b+b^{2}+3 a(a-b) \\
= & -3 a^{2}+3 a b-b^{2}+b c-b c+b^{2}+3 a^{2}-3 a b=0, \\
f_{2}(p, \sigma(p))= & f_{2}\left((a, b, c),\left(a-b, b,-3 \frac{a^{2}}{b}+3 a-b+c\right)\right) \\
= & c(a-b)-a\left(-3 \frac{a^{2}}{b}+3 a-b+c\right)+b(a-b) \\
& +a b-b\left(-3 \frac{a^{2}}{b}+3 a-b+c\right)-c b \\
= & a c-b c+3 \frac{a^{3}}{b}-3 a^{2}+a b-a c+a b-b^{2} \\
& +a b+3 a^{2}-3 a b+b^{2}-b c-b c \\
= & \frac{3}{b}\left(a^{3}-b^{2} c\right)=0, \\
f_{3}(p, \sigma(p))= & f_{3}\left((a, b, c),\left(a-b, b,-3 \frac{a^{2}}{b}+3 a-b+c\right)\right) \\
= & a b-b(a-b)-b^{2}=a b-a b+b^{2}-b^{2}=0,
\end{aligned}
$$

hence $\left\{(p, \sigma(p)) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \mid p \in E\right\} \subset \mathcal{V}\left(f_{1}, f_{2}, f_{3}\right)$. Since $E \subset \mathbb{P}^{2}$ is a cuspidal cubic curve (and we know that the point scheme of A is not \mathbb{P}^{2}), E is the point scheme of A, so $\mathcal{P}(A)=(E, \sigma)$.

Theorem 3.3 If $A=\mathcal{A}(E, \sigma)$ is a three-dimensional Calabi-Yau quantum polynomial algebra, then $\|\sigma\|=\left|\sigma^{3}\right|$, so the following are equivalent:
(1) $|\sigma|<\infty$.
(2) $\|\sigma\|<\infty$.
(3) A is finite over its center.
(4) $\operatorname{Proj}_{n c} A$ is finite over its center.

Proof First, we will show that $\|\sigma\|=\left|\sigma^{3}\right|$ for each type using the defining relations f_{1}, f_{2}, f_{3} and geometric pairs (E, σ) given in Lemma 3.2. Recall that $\sigma^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ if and only if it is represented by a matrix in $\operatorname{PGL}_{3}(k) \cong \operatorname{Aut}_{k} \mathbb{P}^{2}$.
Type P Since $\sigma^{3}=\mathrm{id},\|\sigma\|=1=\left|\sigma^{3}\right|$.
$\underline{\text { Type } S_{1}}$ Since

$$
\left\{\begin{array}{l}
\sigma^{i}(0, b, c)=\left(0, b, \alpha^{i} c\right) \\
\sigma^{i}(a, 0, c)=\left(\alpha^{i} a, 0, c\right)=\left(\alpha^{2 i} a, 0, \alpha^{i} c\right) \\
\sigma^{i}(a, b, 0)=\left(a, \alpha^{i} b, 0\right)=\left(\alpha^{2 i} a, \alpha^{3 i} b, 0\right)
\end{array}\right.
$$

$\sigma^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ if and only if $\alpha^{3 i}=1$, so $\|\sigma\|=\left|\alpha^{3}\right|=\left|\sigma^{3}\right|$.
Type S_{3} Since

$$
\left\{\begin{array}{l}
\sigma^{i}(0, b, c)=\left(0, b, \alpha^{i} c\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)^{i} \\
\sigma^{i}(a, 0, c)=\left(\alpha^{i} a, 0, c\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)^{i} \\
\sigma^{i}(a, b, 0)=\left(a, \alpha^{i} b, 0\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)^{i}
\end{array}\right.
$$

and $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right), \sigma^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ if and only if $\alpha^{3 i}=1$, so $\|\sigma\|=\left|\alpha^{3}\right|=$ $\left|\sigma^{3}\right|$.
Type S’ Since

$$
\left\{\begin{array}{l}
\sigma^{i}(0, b, c)=\left(0, b, \alpha^{i} c\right) \\
\sigma^{i}(a, b, c)=\left(a, \alpha^{i} b, \alpha^{-i} c\right)=\left(\alpha^{-i} a, b, \alpha^{-2 i} c\right)
\end{array}\right.
$$

$\sigma^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ if and only if $\alpha^{3 i}=1$, so $\|\sigma\|=\left|\alpha^{3}\right|=\left|\sigma^{3}\right|$.
Type T_{1} Since

$$
\left\{\begin{array}{l}
\sigma^{i}(0, b, c)=(0, b, i b+c) \\
\sigma^{i}(a, 0, c)=(a, 0, i a+c) \\
\sigma^{i}(a, a, c)=(a, a,-i a+c)
\end{array}\right.
$$

$\sigma^{i} \notin \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ for every $i \geq 1$, so $\|\sigma\|=\infty=\left|\sigma^{3}\right|$.

Type T_{3} Since

$$
\left\{\begin{array}{l}
\sigma^{3 i}(0, b, c)=(0, b, i b+c), \\
\sigma^{3 i}(a, 0, c)=(a, 0, i a+c), \\
\sigma^{3 i}(a, a, c)=(a, a,-i a+c),
\end{array}\right.
$$

$\sigma^{3 i} \notin \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ for every $i \geq 1$, so $\|\sigma\|=\infty=\left|\sigma^{3}\right|$.
Type T' Since

$$
\left\{\begin{array}{l}
\sigma^{i}(a, 0, c)=(a, 0, i a+c) \\
\sigma^{i}(a, b, c)=\left(a-i b, b,-2 i a+i^{2} b+c\right)
\end{array}\right.
$$

$\sigma^{i} \notin \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ for every $i \geq 1$, so $\|\sigma\|=\infty=\left|\sigma^{3}\right|$.
Type NC Since

$$
\sigma^{i}(a, b, c)=\left(a, \alpha^{i} b,-\frac{\alpha^{3 i}-1}{\alpha^{i-1}\left(\alpha^{3}-1\right)} \frac{a^{2}}{b}+\alpha^{2 i} c\right)
$$

$\sigma^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ if and only if $\alpha^{3 i}=1$, so $\|\sigma\|=\left|\alpha^{3}\right|=\left|\sigma^{3}\right|$.
Type CC Since

$$
\sigma^{i}(a, b, c)=\left(a-i b, b,-3 i \frac{a^{2}}{b}+3 i^{2} a-i^{3} b+c\right)
$$

$\sigma^{i} \notin \operatorname{Aut}\left(\mathbb{P}^{2}, E\right)$ for every $i \geq 1$, so $\|\sigma\|=\infty=\left|\sigma^{3}\right|$.
Type TL Since $A=k\langle x, y, z\rangle /\left(y z-\alpha z y-x^{2}, z x-\alpha x z, x y-\alpha y x\right), \alpha^{3}=1$, we see that $x \in A_{1}$ is a regular normal element. Since $A /(x) \cong k\langle y, z\rangle /(y z-\alpha z y)$ is a twodimensional quantum polynomial algebra, $\operatorname{Proj}_{\text {nc }} A /(x) \cong \mathbb{P}^{1}$ has no fat point. Since $A\left[x^{-1}\right]_{0} \cong k\langle u, v\rangle /(u v-v u-\alpha)$ where $u=y x^{-1}, v=z x^{-1}$ is isomorphic to the first Weyl algebra, $\mathrm{Spec}_{\mathrm{nc}} A\left[x^{-1}\right]_{0}$ has no (fat) point by Example 2.9. By Theorem 2.15, $\operatorname{Proj}_{\mathrm{nc}} A$ has no fat point. Since $E \neq \mathbb{P}^{2},\|\sigma\|=\infty=\left|\sigma^{3}\right|$ by Lemma 2.14.
Type WL Since $A=k\langle x, y, z\rangle /\left(y z-z y-(1 / 3) y^{2}, z x-x z-(1 / 3)(y x+x y), x y-\right.$
 dimensional (quantum) polynomial algebra, $\operatorname{Proj}_{\mathrm{nc}} A /(y)=\mathbb{P}^{1}$ has no fat point. Since $A\left[y^{-1}\right]_{0} \cong k\langle u, v\rangle /(v u-u v-u)$ where $u=x y^{-1}, v=z y^{-1}$ is isomorphic to the enveloping algebra of a two-dimensional nonabelian Lie algebra, $\operatorname{Spec}_{\mathrm{nc}} A\left[y^{-1}\right]_{0}$ has no fat point by Example 2.10. By Theorem 2.15, Proj ${ }_{\mathrm{nc}} A$ has no fat point. Since $E \neq \mathbb{P}^{2},\|\sigma\|=\infty=\left|\sigma^{3}\right|$ by Lemma 2.14.
Type EC Since $\sigma_{p}^{i}=\sigma_{i p} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2}, E\right)$ if and only if $i p \in E[3]$ if and only if $3 i p=o$, $\overline{\left\|\sigma_{p}\right\|=\mid 3} p\left|=\left|\sigma_{p}^{3}\right|\right.$.

Next, we will show the equivalences $(1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$. Since $\|\sigma\|=\left|\sigma^{3}\right|$ for every type, (1) $\Leftrightarrow(2)$. By Theorem 2.3, (1) $\Leftrightarrow(3)$. By definition, (3) \Rightarrow (4), so it is enough to show that (4) $\Rightarrow(2)$. Indeed, if $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center, then there
exists a three-dimensional quantum polynomial algebra $A^{\prime}=\mathcal{A}\left(E^{\prime}, \sigma^{\prime}\right)$ which is finite over its center such that $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj}_{\mathrm{nc}} A^{\prime}$ by Definition 2.6, so $\|\sigma\|=\left\|\sigma^{\prime}\right\| \leq\left|\sigma^{\prime}\right|<$ ∞ by Lemma 2.5 and Theorem 2.3.

3.2 General case

Definition 3.2 [14, Definition 3.2] For a d-dimensional geometric quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$ with the Nakayama automorphism $v \in \operatorname{Aut} A$, we define a new graded algebra $\bar{A}:=\mathcal{A}\left(E, v^{*} \sigma^{d}\right)$ satisfying (G2).

Lemma 3.4 [14, Theorem 3.5] Let A and A^{\prime} be geometric quantum polynomial algebras. If $\operatorname{grmod} A \cong \operatorname{grmod} A^{\prime}$, then $\bar{A} \cong \overline{A^{\prime}}$.

Remark 3.5 If A and A^{\prime} are both three-dimensional quantum polynomial algebras of the same Type $\mathrm{P}, \mathrm{S}_{1}, \mathrm{~S}_{1}^{\prime}, \mathrm{T}_{1}, \mathrm{~T}_{1}^{\prime}$, then the converse of the above lemma was proved in [14, Theorem 3.6].

Theorem 3.6 If $A=\mathcal{A}(E, \sigma)$ is a three-dimensional quantum polynomial algebra with the Nakayama automorphism $v \in$ AutA, then $\|\sigma\|=\left|v^{*} \sigma^{3}\right|$, so the following are equivalent:
(1) $\left|v^{*} \sigma^{3}\right|<\infty$.
(2) $\|\sigma\|<\infty$.
(3) $\operatorname{Proj}_{n c} A$ is finite over its center.

Moreover, if A is of Type T, T, CC, TL, WL, then A is never finite over its center.
Proof For every three-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$, there exists a three-dimensional Calabi-Yau quantum polynomial algebra $A^{\prime}=\mathcal{A}\left(E^{\prime}, \sigma^{\prime}\right)$ such that $\operatorname{grmod} A \cong \operatorname{grmod} A^{\prime}$ by Theorem 3.1. Since the Nakayama automorphism of A^{\prime} is the identity, $\mathcal{A}\left(E, v^{*} \sigma^{3}\right)=\bar{A} \cong \overline{A^{\prime}}=\mathcal{A}\left(E^{\prime},{\sigma^{\prime}}^{3}\right)$ by Lemma 3.4, so

$$
\|\sigma\|=\left\|\sigma^{\prime}\right\|=\left|\sigma^{\prime 3}\right|=\left|v^{*} \sigma^{3}\right|
$$

by Lemma 2.5 and Theorem 3.3. Since $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center if and only if $\operatorname{Proj}_{\mathrm{nc}} A^{\prime}$ is finite over its center if and only if $\left\|\sigma^{\prime}\right\|<\infty$ by Theorem 3.3, we have the equivalences $(1) \Leftrightarrow(2) \Leftrightarrow(3)$.

If A is a three-dimensional quantum polynomial algebra of Type T, T, CC, TL, WL, then A^{\prime} is of the same type by Lemma 2.5 , so $\|\sigma\|=\left\|\sigma^{\prime}\right\|=\infty$ by the proof of Theorem 3.3. It follows that $|\sigma|=\infty$, so A is not finite over its center by Theorem 2.3.

4 An application to Beilinson algebras

We finally apply our results to representation theory of finite-dimensional algebras.
Definition 4.1 [6, Definition 2.7] Let R be a finite-dimensional algebra of $\operatorname{gldim} R=d<\infty$. We define an autoequivalence $v_{d} \in \operatorname{Aut} D^{b}(\bmod R)$ by $v_{d}(M):=$ $M \otimes_{R}^{\mathrm{L}} D R[-d]$ where $D^{b}(\bmod R)$ is the bounded derived category of $\bmod R$ and
$D R:=\operatorname{Hom}_{k}(R, k)$. We say that R is d-representation infinite if $v_{d}^{-i}(R) \in \bmod R$ for all $i \in \mathbb{N}$. In this case, we say that a module $M \in \bmod R$ is d-regular if $v_{d}^{i}(M) \in \bmod R$ for all $i \in \mathbb{Z}$.

By [10], a 1-representation infinite algebra is exactly the same as a finitedimensional hereditary algebra of infinite representation type. For representation theory of such an algebra, regular modules play an essential role.

For a d-dimensional quantum polynomial algebra A, we define the Beilinson algebra of A by

$$
\nabla A:=\left(\begin{array}{cccc}
A_{0} & A_{1} & \cdots & A_{d-1} \\
0 & A_{0} & \cdots & A_{d-2} \\
\vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{0}
\end{array}\right) .
$$

The Beilinson algebra is a typical example of a $(d-1)$-representation infinite algebra by [11, Theorem 4.12]. To investigate representation theory of such an algebra, it is important to classify simple $(d-1)$-regular modules.

Corollary 4.1 Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra with the Nakayama automorphism $v \in$ AutA. Then the following are equivalent:
(1) $\left|v^{*} \sigma^{3}\right|=1$ or ∞.
(2) $\operatorname{Proj}_{n c} A$ has no fat point.
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by the set of closed points of $E \subset \mathbb{P}^{2}$.
In particular, if A is of $P, T, T, C C, T L, W L$, then A satisfies all of the above conditions.

Proof $\quad(1) \Leftrightarrow(2)$: This follow from Theorem 3.6 and Lemma 2.14.
(2) $\Leftrightarrow(3)$: By [13, Theorem 3.6], isomorphism classes of simple 2-regular modules over ∇A are parameterized by the set of points of $\operatorname{Proj}_{n c} A$. On the other hand, it is well known that the points of $\operatorname{Proj}_{\mathrm{nc}} A$ which are not fat (called ordinary points in [13]) are parameterized by the set of closed points of E (see [13, Proposition 4.4]); hence, the result holds.

Remark 4.2 We have the following characterization of Type P, T, T, CC, TL, WL. Let $A=\mathcal{A}(E, \sigma)$ be a three-dimensional quantum polynomial algebra. Write $E=$ $\mathcal{V}(f) \subset \mathbb{P}^{2}$ where $f \in k[x, y, z]_{3}$. Recall that the Hessian of f is defined by $H(f):=$ $\operatorname{det}\left(\begin{array}{lll}f_{x x} & f_{x y} & f_{x z} \\ f_{y x} & f_{y y} & f_{y z} \\ f_{z x} & f_{z y} & f_{z z}\end{array}\right) \in k[x, y, z]_{3}$. Then A is of Type P, T, T, CC, TL, WL if and only if $H^{2}(f):=H(H(f))=0$.

Remark 4.3 If A is a two-dimensional quantum polynomial algebra, then $\nabla A \cong$ $\left(\begin{array}{cc}k & k^{2} \\ 0 & k\end{array}\right) \cong k(\bullet \Longrightarrow \bullet)$, so ∇A is a finite-dimensional hereditary algebra of tame
representation type. It is known that the isomorphism classes of simple regular modules over ∇A are parameterized by \mathbb{P}^{1} (cf. [13, Theorem 3.19]). For a three-dimensional quantum polynomial algebra A, we expect that the following are equivalent:
(1) $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center.
(2) ∇A is 2 -representation tame in the sense of [6].
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by \mathbb{P}^{2}

These equivalences are shown for Type S in [13, Theorems 4.17 and 4.21].

References

[1] T. Abdelgadir, S. Okawa, and K. Ueda, Compact moduli of noncommutative projective planes. Preprint, 2014. arXiv:1411.7770
[2] M. Artin, Geometry of quantum planes. In: Azumaya algebras, actions, and modules (Bloomington, IN, 1990), Contemporary Mathematics, 124, American Mathematical Society, Providence, RI, 1992, pp. 1-15.
[3] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift. Vol. 1, Progress in Mathematics, 86, Birkhäuser, Basel, 1990, pp. 33-85.
[4] M. Artin, J. Tate, and M. Van den Bergh, Module over regular algebras of dimension 3. Invent. Math. 106(1991), no. 2, 335-388.
[5] M. Artin and J. J. Zhang, Noncommutative projective schemes. Adv. Math. 109(1994), no. 2, 228-287.
[6] M. Herschend, O. Iyama, and S. Oppermann, n-representation infinite algebras. Adv. Math. 252(2014), 292-342.
[7] A. Itaba and M. Matsuno, Defining relations of 3-dimensional quadratic AS-regular algebras. Math. J. Okayama Univ. 63(2021), 61-86.
[8] A. Itaba and M. Matsuno, AS-regularity of geometric algebras of plane cubic curves. J. Aust. Math. Soc. (2021), 1-25 (First View).
[9] M. Matsuno, A complete classification of 3-dimensional quadratic AS-regular algebras of Type EC. Canad. Math. Bull. 64(2021), no. 1, 123-141.
[10] H. Minamoto, Ampleness of two-sided tilting complexes. Int. Math. Res. Not. IMRN 1(2012), 67-101.
[11] H. Minamoto and I. Mori, The structure of AS-Gorenstein algebras. Adv. Math. 226(2011), no. 5, 4061-4095.
[12] I. Mori, Non commutative projective schemes and point schemes, Algebras, rings and their representations, World Scientific, Hackensack, NJ, 2006, pp. 215-239.
[13] I. Mori, Regular modules over 2-dimensional quantum Beilinson algebras of Type S. Math. Z. 279(2015), nos. 3-4, 1143-1174.
[14] I. Mori and K. Ueyama, Graded Morita equivalences for geometric AS-regular algebras. Glasg. Math. J. 55(2013), no. 2, 241-257.
[15] S. P. Smith, Noncommutative algebraic geometry. Lecture Notes, University of Washington, 1999.
[16] K. Ueyama, Graded Morita equivalences for generic Artin-Schelter regular algebras. Kyoto J. Math. 51(2011), no. 2, 485-501.

Institute of Arts and Sciences, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585,
Japan
e-mail: itaba@rs.tus.ac.jp
Department of Mathematics, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
e-mail: mori.izuru@shizuoka.ac.jp

[^0]: Received by the editors June 7, 2021, accepted December 23, 2021.
 Published online on Cambridge Core January 10, 2022.
 The first author was supported by Grants-in-Aid for Young Scientific Research 18K13397 and 21K13781 Japan Society for the Promotion of Science. The second author was supported by Grants-in-Aid for Scientific Research (C) 20K03510 Japan Society for the Promotion of Science and Grants-in-Aid for Scientific Research (B) 16H03923 Japan Society for the Promotion of Science.

 AMS subject classification: 16W50, 16S37, 16D90, 16E65.
 Keywords: Quantum polynomial algebras, geometric algebras, quantum projective planes, Calabi-Yau algebras.

