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Quantum projective planes finite over
their centers
Ayako Itaba and Izuru Mori

Abstract. For a three-dimensional quantum polynomial algebra A = A(E , σ), Artin, Tate, and Van
den Bergh showed that A is finite over its center if and only if ∣σ ∣ < ∞. Moreover, Artin showed that
if A is finite over its center and E ≠ P2 , then A has a fat point module, which plays an important role
in noncommutative algebraic geometry; however, the converse is not true in general. In this paper,
we will show that if E ≠ P2 , then A has a fat point module if and only if the quantum projective plane
Projnc A is finite over its center in the sense of this paper if and only if ∣ν∗σ 3 ∣ < ∞ where ν is the
Nakayama automorphism of A. In particular, we will show that if the second Hessian of E is zero, then
A has no fat point module.

1 Introduction

A quantum polynomial algebra is a noncommutative analogue of a commutative
polynomial algebra, and a quantum projective space is the noncommutative projective
scheme associated to a quantum polynomial algebra, so they are the most basic objects
to study in noncommutative algebraic geometry. In fact, the starting point of the sub-
ject noncommutative algebraic geometry is the paper [3] by Artin, Tate, and Van den
Bergh, showing that there exists a nice correspondence between three-dimensional
quantum polynomial algebras A and geometric pairs (E , σ) where E = P

2 or a cubic
divisor in P

2, and σ ∈ AutE, so the classification of three-dimensional quantum
polynomial algebras reduces to the classification of “regular” geometric pairs. Write
A = A(E , σ) for a three-dimensional quantum polynomial algebra corresponding to
the geometric pair (E , σ). The geometric properties of the geometric pair (E , σ)
provide some algebraic properties of A = A(E , σ). One of the most striking results
of such is in the companion paper [4].

Theorem 1.1 [4, Theorem 7.1] Let A = A(E , σ) be a three-dimensional quantum
polynomial algebra. Then ∣σ ∣ < ∞ if and only if A is finite over its center.
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Let A = A(E , σ) be a three-dimensional quantum polynomial algebra. To prove
the above theorem, fat points of the quantum projective plane ProjncA play an
essential role. By Artin [2], if A is finite over its center and E ≠ P

2, then ProjncA has a
fat point; however, the converse is not true. To check the existence of a fat point, there
is a more important notion than ∣σ ∣, namely,

∥σ∥ ∶= inf{i ∈ N+ ∣ σ i = ϕ∣E for some ϕ ∈ AutP2}.

In fact, ProjncA has a fat point if and only if 1 < ∥σ∥ < ∞ by [2].
In [13], the notion that ProjncA is finite over its center was introduced, and the

following result was proved.

Theorem 1.2 [13, Theorem 4.17] Let A = A(E , σ) be a three-dimensional quantum
polynomial algebra such that E ⊂ P

2 is a triangle. Then ∥σ∥ < ∞ if and only if ProjncA
is finite over its center.

The purpose of this paper is to extend the above theorem to all three-dimensional
quantum polynomial algebras. In fact, the following is our main result.

Theorem 1.3 (Theorem 3.6 and Corollary 4.1) Let A = A(E , σ) be a three-
dimensional quantum polynomial algebra such that E ≠ P

2, and ν ∈ AutA the
Nakayama automorphism of A. Then the following are equivalent:
(1) ∣ν∗σ 3∣ < ∞.
(2) ∥σ∥ < ∞.
(3) ProjncA is finite over its center.
(4) ProjncA has a fat point.

Note that if E = P
2, then ∣∣σ ∣∣ = 1, but ProjncA has no fat point (see Lemma 2.14).

As a biproduct, we have the following corollary.

Corollary 1.4 Let A = A(E , σ) be a three-dimensional quantum polynomial algebra.
If the second Hessian of E is zero, then A is never finite over its center.

These results are important to study representation theory of the Beilinson algebra
∇A, which is a typical example of a 2-representation infinite algebra defined in [6].
This was the original motivation of the paper [13].

2 Preliminaries

Throughout this paper, we fix an algebraically closed field k of characteristic 0. All
algebras and (noncommutative) schemes are defined over k. We further assume that
all (graded) algebras are finitely generated (in degree 1) over k, that is, algebras of the
form k⟨x1 , . . . , xn⟩/I for some (homogeneous) ideal I ⊲ k⟨x1 , . . . , xn⟩ (where deg x i =
1 for every i = 1, . . . , n).

https://doi.org/10.4153/S0008439522000017 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000017


Quantum projective planes finite over their centers 55

2.1 Geometric quantum polynomial algebras

In this subsection, we define geometric algebras and quantum polynomial algebras.

Definition 2.1 [12, Definition 4.3] A geometric pair (E , σ) consists of a projec-
tive scheme E ⊂ P

n−1 and σ ∈ Autk E. For a quadratic algebra A = k⟨x1 , . . . , xn⟩/I
where I ⊲ k⟨x1 , . . . , xn⟩ is a homogeneous ideal generated by elements of degree 2,
we define

V(I2) ∶= {(p, q) ∈ Pn−1 × P
n−1 ∣ f (p, q) = 0 for any f ∈ I2}.

(1) We say that A satisfies (G 1) if there exists a geometric pair (E , σ) such that

V(I2) = {(p, σ(p)) ∈ Pn−1 × P
n−1 ∣ p ∈ E}.

In this case, we write P(A) = (E , σ), and call E the point scheme of A.
(2) We say that A satisfies (G 2) if there exists a geometric pair (E , σ) such that

I2 = { f ∈ k⟨x1 , . . . , xn⟩2 ∣ f (p, σ(p)) = 0 for any p ∈ E}.

In this case, we write A = A(E , σ).
(3) A quadratic algebra A is called geometric if A satisfies both (G1) and (G2) with

A = A(P(A)).

Definition 2.2 A right Noetherian graded algebra A is called a d-dimensional
quantum polynomial algebra if
(1) gldim A = d,

(2) Exti
A(k, A) ≅

⎧⎪⎪⎨⎪⎪⎩

k if i = d ,
0 if i ≠ d ,

and

(3) HA(t) ∶= ∑∞i=0(dimk A i)t i = (1 − t)−d .

Note that a three-dimensional quantum polynomial algebra is exactly the same
as a three-dimensional quadratic AS-regular algebra, so we have the following
result.

Theorem 2.1 [3] Every three-dimensional quantum polynomial algebra is a geometric
algebra where the point scheme is either P2 or a cubic divisor in P

2.

Remark 2.2 There exists a four-dimensional quantum polynomial algebra which
is not a geometric algebra; however, as far as we know, there exists no example of a
quantum polynomial algebra which does not satisfy (G1).

We define the type of a three-dimensional quantum polynomial algebra A =
A(E , σ) in terms of the point scheme E ⊂ P

2.
Type P E is P2.
Type S E is a triangle.
Type S’ E is a union of a line and a conic meeting at two points.
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Type T E is a union of three lines meeting at one point.
Type T’ E is a union of a line and a conic meeting at one point.
Type NC E is a nodal cubic curve.
Type CC E is a cuspidal cubic curve.
Type TL E is a triple line.
Type WL E is a union of a double line and a line.
Type EC E is an elliptic curve.

2.2 Quantum projective spaces finite over their centers

Definition 2.3 A noncommutative scheme (over k) is a pair X = (modX ,OX) con-
sisting of a k-linear abelian category modX and an object OX ∈ modX. We say that
two noncommutative schemes X = (modX ,OX) and Y = (modY ,OY) are isomorphic,
denoted by X ≅ Y , if there exists an equivalence functor F ∶ modX → modY such that
F(OX) ≅ OY .

If X is a commutative Noetherian scheme, then we view X as a noncommutative
scheme by (modX ,OX) where modX is the category of coherent sheaves on X and
OX is the structure sheaf on X.

Noncommutative affine and projective schemes are defined in [5].

Definition 2.4 If R is a right Noetherian algebra, then we define the noncommutative
affine scheme associated to R by SpecncR = (modR, R) where modR is the category
of finitely generated right R-modules and R ∈ modR is the regular right module.

Note that if R is commutative, then SpecncR ≅ SpecR.

Definition 2.5 If A is a right Noetherian graded algebra, grmodA is the category
of finitely generated graded right A-modules, and torsA is the full subcategory
of grmodA consisting of finite-dimensional modules over k, then we define the
noncommutative projective scheme associated to A by ProjncA = (tailsA, πA) where
tailsA ∶= grmodA/torsA is the quotient category, π ∶ grmodA → tailsA is the quotient
functor, and A ∈ grmodA is the regular graded right module. If A is a d-dimensional
quantum polynomial algebra, then we call ProjncA a quantum P

d−1. In particular, if
d = 3, then we call ProjncA a quantum projective plane.

Note that if A is commutative, then ProjncA ≅ ProjA. It is known that if A is a two-
dimensional quantum polynomial algebra, then ProjncA ≅ P

1.
For a three-dimensional quantum polynomial algebra A = A(E , σ), we have the

following geometric characterization when A is finite over its center.

Theorem 2.3 [4, Theorem 7.1] Let A = A(E , σ) be a three-dimensional quantum
polynomial algebra. Then the following are equivalent:
(1) ∣σ ∣ < ∞.
(2) A is finite over its center.
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Since the property that A is finite over its center is not preserved under isomor-
phisms of noncommutative projective schemes ProjncA, we will make the following
rather ad hoc definition.

Definition 2.6 Let A be a d-dimensional quantum polynomial algebra. We say that
ProjncA is finite over its center if there exists a d-dimensional quantum polynomial
algebra A′ finite over its center such that ProjncA ≅ ProjncA′.

For a three-dimensional quantum polynomial algebra, the above definition coin-
cides with [13, Definition 4.14] by the following result.

Lemma 2.4 [1, Corollary A.10] Let A and A′ be three-dimensional quantum polyno-
mial algebras. Then grmodA ≅ grmodA′ if and only if ProjncA ≅ ProjncA′.

To characterize “geometric” quantum projective spaces finite over their centers, we
will introduce the following notion.

Definition 2.7 [13, Definition 4.6] For a geometric pair (E , σ) where E ⊂ P
n−1 and

σ ∈ Autk E, we define

Autk(Pn−1 , E) ∶= {ϕ∣E ∈ Autk E ∣ ϕ ∈ AutkP
n−1}, and

∥σ∥ ∶= inf{i ∈ N+ ∣ σ i ∈ Autk(Pn−1 , E)}.

For a geometric pair (E , σ), clearly ∥σ∥ ≤ ∣σ ∣. The following are the basic properties
of ∥σ∥.

Lemma 2.5 [13, Lemma 4.16(1)], [14, Lemma 2.5] Let A and A′ be d-dimensional
quantum polynomial algebras satisfying (G1) with P(A) = (E , σ) and P(A′) =
(E′ , σ ′).
(1) If A ≅ A′, then E ≅ E′ and ∣σ ∣ = ∣σ ′∣.
(2) If grmod A ≅ grmod A′, then E ≅ E′ and ∣∣σ ∣∣ = ∣∣σ ′∣∣.
In particular, if A and A′ are three-dimensional quantum polynomial algebras such that
ProjncA ≅ ProjncA′, then E ≅ E′ (that is, A and A′ are of the same type) and ∣∣σ ∣∣ = ∣∣σ ′∣∣.

For a three-dimensional quantum polynomial algebra A = A(E , σ) of Type S,
we have the following geometric characterization when a quantum projective plane
ProjncA is finite over its center.

Theorem 2.6 [13, Theorem 4.17] Let A = A(E , σ) be a three-dimensional quantum
polynomial algebra of Type S. Then the following are equivalent:
(1) ∥σ∥ < ∞.
(2) ProjncA is finite over its center.

The purpose of this paper is to extend the above theorem to all types.
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2.3 Points of a noncommutative scheme

Definition 2.8 Let R be an algebra. A point of SpecncR is an isomorphism class of
a simple right R-module M ∈ modR such that dimk M < ∞. A point M is called fat if
dimk M > 1.

Remark 2.7 If R is a commutative algebra and p ∈ SpecA is a closed point, then
A/mp ∈ modR is a point where mp is the maximal ideal of R corresponding to p. In
fact, this gives a bijection between the set of closed points of SpecR and the set of
points of SpecncR. In this commutative case, there exists no fat point.

Remark 2.8 Fat points are not preserved under Morita equivalences. For exam-
ple, modk ≅ modM2(k), but it is easy to see that Specnck has no fat point while
Specnc M2(k) has a fat point. However, since SpecncR ≅ SpecncR′ if and only if
R ≅ R′, fat points are preserved under isomorphisms of SpecncR.

Example 2.9 If R = k⟨u, v⟩/(uv − vu − 1) is the first Weyl algebra, then it is well
known that there exists no finite-dimensional right R-module, so SpecncR has no
point at all.

Example 2.10 (cf. [15]) If R = k⟨u, v⟩/(vu − uv − u) is the enveloping algebra of
a two-dimensional nonabelian Lie algebra, then the set of points of SpecncR is
given by {R/uR + (v − μ)R}μ∈k , so SpecncR has no fat point. In fact, the linear
map δ ∶ k[u] → k[u] defined by δ( f (u)) = u f ′(u) is a derivation of k[u] such
that R = k[u][v; δ] is the Ore extension, so that v f (u) = f (u)v + u f ′(u). If M
is a finite-dimensional right R-module, then there exists f (u) = ad ud +⋯+ a1u +
a0 ∈ k[u] ⊂ R of the minimal degree deg f (u) = d ≥ 1 such that M f (u) = 0. Since
u f ′(u) = v f (u) − f (u)v, M(d f (u) − u f ′(u)) = 0 such that deg(d f (u) − u f ′(u)) <
deg f (u), d f (u) = u f ′(u) by minimality of deg f (u) = d ≥ 1, but this is possible only
if f (u) = a1u, so Mu = 0. It follows that M can be viewed as an R/(u)-module,
a point of Specnc(R/(u)) ≅ Specnck[v], so M ≅ R/uR + (v − μ)R for some μ ∈ k.
Since Specnc(R/(u)) ≅ Specnck[v] is a commutative scheme, SpecncR has no fat
point.

Example 2.11 [13, Lemma 4.19] If R = k⟨u, v⟩/(uv + vu) is a two-dimensional
(ungraded) quantum polynomial algebra, then the set of points of SpecncR is given
by

{R/(u − λ)R + vR}λ∈k ∪ {R/uR + (v − μ)R}μ∈k

∪ {R/(x2 − λ)R + (√μx +
√
−λy)R + (y2 − μ)R}0≠λ , μ∈k .

Among them, {R/(x2 − λ)R + (√μx +
√
−λy)R + (y2 − μ)R}0≠λ , μ∈k is the set of fat

points of SpecncR.

Definition 2.9 Let A be a graded algebra. A point of ProjncA is an isomorphism
class of a simple object of the form πM ∈ tailsA where M ∈ grmodA is a graded right
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A-module such that limi→∞ dimk M i < ∞. A point πM is called fat if limi→∞
dimk M i > 1, and, in this case, M is called a fat point module over A.

Remark 2.12 If A is a graded commutative algebra and p ∈ ProjA is a closed point,
then π(A/mp) ∈ tailsA is a point where mp is the homogeneous maximal ideal of A
corresponding to p. In fact, this gives a bijection between the set of closed points of
ProjA and the set of points of ProjncA. In this commutative case, there exists no fat
point.

Remark 2.13 It is unclear that fat points are preserved under isomorphisms of
ProjncA in general. However, fat point modules are preserved under graded Morita
equivalences, so if A and A′ are both three-dimensional quantum polynomial algebras
such that ProjncA ≅ ProjncA′, then there exists a natural bijection between the set of
fat points of ProjncA and that of ProjncA′ by Lemma 2.4.

The following facts will be used to prove our main results.

Lemma 2.14 [2, 13] Let A = A(E , σ) be a three-dimensional quantum polynomial
algebra.
(1) ∥σ∥ = 1 if and only if E = P

2.
(2) 1 < ∥σ∥ < ∞ if and only if ProjncA has a fat point.

Theorem 2.15 [13, Theorem 4.20] If A is a quantum polynomial algebra and x ∈ A is
a homogeneous normal element of positive degree, then there exists a bijection between
the set of points of ProjncA and the disjoint union of the set of points of ProjncA/(x) and
the set of points of SpecncA[x−1]0. In this bijection, fat points correspond to fat points.

3 Main results

In this section, we will state and prove our main results.
Let A be a graded algebra and ν ∈ AutA a graded algebra automorphism. For a

graded A–A-bimodule M, we define a new graded A–A bimodule Mν = M as a graded
vector space with the new actions a ∗ m ∗ b ∶= amν(b) for a, b ∈ A, m ∈ M. Let A be a
d-dimensional quantum polynomial algebra. The canonical module of A is defined by
ωA ∶= limi→∞ Extd

A(A/A≥i , A), which has a natural graded A–A bimodule structure.
It is known that there exists ν ∈ AutA such that ωA ≅ Aν−1(−d) as graded A–A
bimodules. We call ν the Nakayama automorphism of A. Since A0 = k, the Nakayama
automorphism ν is uniquely determined by A. Among quantum polynomial algebras,
Calabi–Yau quantum polynomial algebras defined below are easier to handle.

Definition 3.1 A quantum polynomial algebra A is called Calabi–Yau if the
Nakayama automorphism of A is the identity.

The following theorem plays an essential role to prove our main results, claiming
that every quantum projective plane has a three-dimensional Calabi–Yau quantum
polynomial algebra as a homogeneous coordinate ring.
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Theorem 3.1 [8, Theorem 4.4] For every three-dimensional quantum polynomial
algebra A, there exists a three-dimensional Calabi–Yau quantum polynomial algebra
A′ such that grmodA ≅ grmodA′, so that ProjncA ≅ ProjncA′.

By the above theorem, the proofs of our main results reduce to the Calabi–Yau
case.

3.1 Calabi–Yau case

Let E = V(x3 + y3 + z3 − λx yz) ⊂ P
2 , λ ∈ k, λ3 ≠ 27 be an elliptic curve in the Hesse

form. We fix a group structure with the identity element o ∶= (1,−1, 0) ∈ E, and write
E[n] ∶= {p ∈ E ∣ np = o} the set of n-torsion points. We also denote by σp ∈ Autk E the
translation automorphism by a point p ∈ E. It is known that σp ∈ Autk(P2 , E) if and
only if p ∈ E[3] (cf. [12, Lemma 5.3]).

Lemma 3.2 Denote a three-dimensional Calabi–Yau quantum polynomial algebra as

A = k⟨x , y, z⟩/( f1 , f2 , f3) = A(E , σ).

Then Table 1 gives a list of defining relations f1 , f2 , f3 and the corresponding geometric
pairs (E , σ) for such algebras up to isomorphism. In Table 1, we remark that:
(1) Type S and Type T are further divided into Type S1 and Type S3, and Type T1 and

Type T3, respectively, in terms of the form of σ.
(2) The point scheme E may consist of several irreducible components, and, in this

case, σ is described on each component.
(3) For Type NC and Type CC, σ in Table 1 is defined except for the unique singular

point (0, 0, 1) ∈ E, which is preserved by σ.
(4) For Type TL and Type WL, E is nonreduced, and the description of σ is omitted.

Proof The list of the defining relations f1 , f2 , f3 is given in [7, Theorem 3.3] and
[9, Corollary 4.3]. It is not difficult to calculate their corresponding geometric pairs
(E , σ) using the condition (G1) (see, for example, [16, proof of Theorem 3.1] for
Type P, S1, S3, S’, and [14, proof of Theorem 3.6] for Type T1, T’). We only give some
calculations to check that (E , σ) in Table 1 is correct for Type CC.

Let A = k⟨x , y, z⟩/( f1 , f2 , f3) be a three-dimensional Calabi–Yau quantum poly-
nomial algebra of Type CC where

f1 = yz − zy + y2 + 3x2 , f2 = zx − xz + yx + x y − yz − zy, f3 = x y − yx − y2 ,

and let E = V(x3 − y2z), and

σ(a, b, c) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(a − b, b,−3 a2

b
+ 3a − b + c) if (a, b, c) ≠ (0, 0, 1),

(0, 0, 1) if (a, b, c) = (0, 0, 1),
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Table 1: List of defining relations and the corresponding geometric pairs.
Type f1 , f2 , f3 E σ

P
⎧⎪⎪⎪⎨⎪⎪⎪⎩

yz − αzy
zx − αxz α3 = 1
x y − αyx

P
2 σ(a, b, c) = (a, αb, α2c)

S1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

yz − αzy
zx − αxz α3 ≠ 0, 1
x y − αyx

V(x)
∪ V(y)
∪ V(z)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(0, b, c) = (0, b, αc)
σ(a, 0, c) = (αa, 0, c)
σ(a, b, 0) = (a, αb, 0)

S3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

zy − αx2

xz − αy2 α3 ≠ 0, 1
yx − αz2

V(x)
∪ V(y)
∪ V(z)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(0, b, c) = (αc, 0, b)
σ(a, 0, c) = (c, αa, 0)
σ(a, b, 0) = (0, a, αb)

S’
⎧⎪⎪⎪⎨⎪⎪⎪⎩

yz − αzy + x2

zx − αxz α3 ≠ 0, 1
x y − αyx

V(x)
∪ V(x2−λyz)

λ = α3
−1

α

{ σ(0, b, c) = (0, b, αc)
σ(a, b, c) = (a, αb, α−1c)

T1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

yz − zy + x y + yx − y2

zx − xz + x2 − yx − x y
x y − yx

V(x)
∪ V(y)
∪ V(x − y)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(0, b, c) = (0, b, b + c)
σ(a, 0, c) = (a, 0, a + c)
σ(a, a, c) = (a, a,−a+c)

T3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yz − x y − yx + y2

−xz − zx + x2

zx − x2 + x y + yx
−zy − yz − y2

x y − x2 − y2

V(x)
∪ V(y)
∪ V(x − y)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(0, b, c) = (b, 0, b + c)
σ(a, 0, c) = (a, a,−c)
σ(a, a, c) = (0, a,−c)

T’

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yz − zy + x y + yx
zx − xz + x2

−yz − zy + y2

x y − yx − y2

V(y)
∪ V(x2 − yz)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(a, 0, c) = (a, 0, a + c),
σ(a, b, c)
= (a − b, b,−2a + b + c)

NC
⎧⎪⎪⎪⎨⎪⎪⎪⎩

yz − αzy + x2

zx − αxz + y2 α3 ≠ 0, 1
x y − αyx

V(x3 + y3

−λx yz)
λ = α3

−1
α

σ(a, b, c)
= (a, αb,− a2

b + α2c)

CC

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yz − zy + y2 + 3x2

zx − xz + yx + x y
−yz − zy

x y − yx − y2

V(x3 − y2z) σ(a, b, c)
= (a−b, b,−3 a2

b +3a−b+c)

TL
⎧⎪⎪⎪⎨⎪⎪⎪⎩

yz − αzy − x2

zx − αxz α3 = 1
x y − αyx

V(x3) omitted
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Table 1: (Continued)
Type f1 , f2 , f3 E σ

WL

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yz − zy − 1
3

y2

zx − xz − 1
3
(yx + x y)

x y − yx

V(x2 y) omitted

EC
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αyz + βzy + γx2

αzx + βxz + γy2

αx y + βyx + γz2

V(x3+y3+z3

−λx yz),
λ = α3

+β3
+γ3

αβγ

σp where p = (α, β, γ)
∈ E/E[3]

where p = (α, β, γ) ∈ E/E[3]

as in Table 1. If p = (a, b, c) ∈ E, then a3 − b2c = 0, so

f1(p, σ(p)) = f1 ((a, b, c),(a − b, b,−3 a2

b
+ 3a − b + c))

= b (−3 a2

b
+ 3a − b + c) − cb + b2 + 3a(a − b)

= −3a2 + 3ab − b2 + bc − bc + b2 + 3a2 − 3ab = 0,

f2(p, σ(p)) = f2 ((a, b, c),(a − b, b,−3 a2

b
+ 3a − b + c))

= c(a − b) − a (−3 a2

b
+ 3a − b + c) + b(a − b)

+ ab − b (−3 a2

b
+ 3a − b + c) − cb

= ac − bc + 3 a3

b
− 3a2 + ab − ac + ab − b2

+ ab + 3a2 − 3ab + b2 − bc − bc

= 3
b
(a3 − b2c) = 0,

f3(p, σ(p)) = f3 ((a, b, c),(a − b, b,−3 a2

b
+ 3a − b + c))

= ab − b(a − b) − b2 = ab − ab + b2 − b2 = 0,

hence {(p, σ(p)) ∈ P2 × P
2 ∣ p ∈ E} ⊂ V( f1 , f2 , f3). Since E ⊂ P

2 is a cuspidal cubic
curve (and we know that the point scheme of A is not P2), E is the point scheme of A,
so P(A) = (E , σ). ∎

Theorem 3.3 If A = A(E , σ) is a three-dimensional Calabi–Yau quantum polynomial
algebra, then ∣∣σ ∣∣ = ∣σ 3∣, so the following are equivalent:
(1) ∣σ ∣ < ∞.
(2) ∣∣σ ∣∣ < ∞.
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(3) A is finite over its center.
(4) ProjncA is finite over its center.

Proof First, we will show that ∣∣σ ∣∣ = ∣σ 3∣ for each type using the defining relations
f1 , f2 , f3 and geometric pairs (E , σ) given in Lemma 3.2. Recall that σ i ∈ Autk(P2 , E)
if and only if it is represented by a matrix in PGL3(k) ≅ AutkP

2.

Type P Since σ 3 = id, ∣∣σ ∣∣ = 1 = ∣σ 3∣.
Type S1 Since

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ i(0, b, c) = (0, b, α i c),
σ i(a, 0, c) = (α i a, 0, c) = (α2i a, 0, α i c),
σ i(a, b, 0) = (a, α i b, 0) = (α2i a, α3i b, 0),

σ i ∈ Autk(P2 , E) if and only if α3i = 1, so ∣∣σ ∣∣ = ∣α3∣ = ∣σ 3∣.
Type S3 Since

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ i(0, b, c) = (0, b, α i c)
⎛
⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟
⎠

i

,

σ i(a, 0, c) = (α i a, 0, c)
⎛
⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟
⎠

i

,

σ i(a, b, 0) = (a, α i b, 0)
⎛
⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟
⎠

i

,

and
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
∈ Autk(P2 , E), σ i ∈ Autk(P2 , E) if and only if α3i = 1, so ∣∣σ ∣∣ = ∣α3∣ =

∣σ 3∣.
Type S’ Since

⎧⎪⎪⎨⎪⎪⎩

σ i(0, b, c) = (0, b, α i c),
σ i(a, b, c) = (a, α i b, α−i c) = (α−i a, b, α−2i c),

σ i ∈ Autk(P2 , E) if and only if α3i = 1, so ∣∣σ ∣∣ = ∣α3∣ = ∣σ 3∣.
Type T1 Since

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ i(0, b, c) = (0, b, ib + c),
σ i(a, 0, c) = (a, 0, ia + c),
σ i(a, a, c) = (a, a,−ia + c),

σ i /∈ Autk(P2 , E) for every i ≥ 1, so ∣∣σ ∣∣ = ∞ = ∣σ 3∣.
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Type T3 Since

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ 3i(0, b, c) = (0, b, ib + c),
σ 3i(a, 0, c) = (a, 0, ia + c),
σ 3i(a, a, c) = (a, a,−ia + c),

σ 3i /∈ Autk(P2 , E) for every i ≥ 1, so ∣∣σ ∣∣ = ∞ = ∣σ 3∣.
Type T’ Since

⎧⎪⎪⎨⎪⎪⎩

σ i(a, 0, c) = (a, 0, ia + c),
σ i(a, b, c) = (a − ib, b,−2ia + i2b + c),

σ i /∈ Autk(P2 , E) for every i ≥ 1, so ∣∣σ ∣∣ = ∞ = ∣σ 3∣.
Type NC Since

σ i(a, b, c) = (a, α i b,− α3i − 1
α i−1(α3 − 1)

a2

b
+ α2i c) ,

σ i ∈ Autk(P2 , E) if and only if α3i = 1, so ∣∣σ ∣∣ = ∣α3∣ = ∣σ 3∣.
Type CC Since

σ i(a, b, c) = (a − ib, b,−3i a2

b
+ 3i2a − i3b + c) ,

σ i /∈ Aut(P2 , E) for every i ≥ 1, so ∣∣σ ∣∣ = ∞ = ∣σ 3∣.
Type TL Since A = k⟨x , y, z⟩/(yz − αzy − x2 , zx − αxz, x y − αyx), α3 = 1, we see
that x ∈ A1 is a regular normal element. Since A/(x) ≅ k⟨y, z⟩/(yz − αzy) is a two-
dimensional quantum polynomial algebra, ProjncA/(x) ≅ P

1 has no fat point. Since
A[x−1]0 ≅ k⟨u, v⟩/(uv − vu − α) where u = yx−1 , v = zx−1 is isomorphic to the first
Weyl algebra, SpecncA[x−1]0 has no (fat) point by Example 2.9. By Theorem 2.15,
ProjncA has no fat point. Since E ≠ P

2, ∣∣σ ∣∣ = ∞ = ∣σ 3∣ by Lemma 2.14.

Type WL Since A = k⟨x , y, z⟩/(yz − zy − (1/3)y2 , zx − xz − (1/3)(yx + x y), x y −
yx), we see that y ∈ A1 is a regular normal element. Since A/(y) ≅ k[x , z] is a two-
dimensional (quantum) polynomial algebra, ProjncA/(y) = P

1 has no fat point.
Since A[y−1]0 ≅ k⟨u, v⟩/(vu − uv − u) where u = x y−1 , v = zy−1 is isomorphic to
the enveloping algebra of a two-dimensional nonabelian Lie algebra, SpecncA[y−1]0
has no fat point by Example 2.10. By Theorem 2.15, ProjncA has no fat point. Since
E ≠ P

2, ∣∣σ ∣∣ = ∞ = ∣σ 3∣ by Lemma 2.14.

Type EC Since σ i
p = σi p ∈ Autk(P2 , E) if and only if ip ∈ E[3] if and only if 3ip = o,

∣∣σp ∣∣ = ∣3p∣ = ∣σ 3
p ∣.

Next, we will show the equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4). Since ∣∣σ ∣∣ = ∣σ 3∣ for
every type, (1) ⇔ (2). By Theorem 2.3, (1) ⇔ (3). By definition, (3) ⇒ (4), so it is
enough to show that (4) ⇒ (2). Indeed, if ProjncA is finite over its center, then there
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exists a three-dimensional quantum polynomial algebra A′ = A(E′ , σ ′)which is finite
over its center such that ProjncA ≅ ProjncA′ by Definition 2.6, so ∥σ∥ = ∥σ ′∥ ≤ ∣σ ′∣ <
∞ by Lemma 2.5 and Theorem 2.3. ∎

3.2 General case

Definition 3.2 [14, Definition 3.2] For a d-dimensional geometric quantum poly-
nomial algebra A = A(E , σ) with the Nakayama automorphism ν ∈ AutA, we define
a new graded algebra A ∶= A(E , ν∗σ d) satisfying (G2).

Lemma 3.4 [14, Theorem 3.5] Let A and A′ be geometric quantum polynomial
algebras. If grmodA ≅ grmodA′, then A ≅ A′.

Remark 3.5 If A and A′ are both three-dimensional quantum polynomial algebras
of the same Type P, S1, S’1, T1, T’1, then the converse of the above lemma was proved
in [14, Theorem 3.6].

Theorem 3.6 If A = A(E , σ) is a three-dimensional quantum polynomial algebra
with the Nakayama automorphism ν ∈ AutA, then ∣∣σ ∣∣ = ∣ν∗σ 3∣, so the following are
equivalent:
(1) ∣ν∗σ 3∣ < ∞.
(2) ∣∣σ ∣∣ < ∞.
(3) ProjncA is finite over its center.
Moreover, if A is of Type T, T’, CC, TL, WL, then A is never finite over its center.

Proof For every three-dimensional quantum polynomial algebra A = A(E , σ),
there exists a three-dimensional Calabi–Yau quantum polynomial algebra
A′ = A(E′ , σ ′) such that grmodA ≅ grmodA′ by Theorem 3.1. Since the Nakayama
automorphism of A′ is the identity, A(E , ν∗σ 3) = A ≅ A′ = A(E′ , σ ′3) by
Lemma 3.4, so

∣∣σ ∣∣ = ∣∣σ ′∣∣ = ∣σ ′3∣ = ∣ν∗σ 3∣
by Lemma 2.5 and Theorem 3.3. Since ProjncA is finite over its center if and only if
ProjncA′ is finite over its center if and only if ∣∣σ ′∣∣ < ∞ by Theorem 3.3, we have the
equivalences (1) ⇔ (2) ⇔ (3).

If A is a three-dimensional quantum polynomial algebra of Type T, T’, CC, TL, WL,
then A′ is of the same type by Lemma 2.5, so ∣∣σ ∣∣ = ∣∣σ ′∣∣ = ∞ by the proof of Theorem
3.3. It follows that ∣σ ∣ = ∞, so A is not finite over its center by Theorem 2.3. ∎

4 An application to Beilinson algebras

We finally apply our results to representation theory of finite-dimensional algebras.

Definition 4.1 [6, Definition 2.7] Let R be a finite-dimensional algebra of
gldimR = d < ∞. We define an autoequivalence νd ∈ AutDb(modR) by νd(M) ∶=
M ⊗L

R DR[−d] where Db(modR) is the bounded derived category of modR and
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DR ∶= Homk(R, k). We say that R is d-representation infinite if ν−i
d (R) ∈ modR for

all i ∈ N. In this case, we say that a module M ∈ modR is d-regular if ν i
d(M) ∈ modR

for all i ∈ Z.

By [10], a 1-representation infinite algebra is exactly the same as a finite-
dimensional hereditary algebra of infinite representation type. For representation
theory of such an algebra, regular modules play an essential role.

For a d-dimensional quantum polynomial algebra A, we define the Beilinson
algebra of A by

∇A ∶=
⎛
⎜⎜⎜
⎝

A0 A1 ⋯ Ad−1
0 A0 ⋯ Ad−2
⋮ ⋱ ⋮ ⋮
0 0 ⋯ A0

⎞
⎟⎟⎟
⎠

.

The Beilinson algebra is a typical example of a (d − 1)-representation infinite algebra
by [11, Theorem 4.12]. To investigate representation theory of such an algebra, it is
important to classify simple (d − 1)-regular modules.

Corollary 4.1 Let A = A(E , σ) be a three-dimensional quantum polynomial algebra
with the Nakayama automorphism ν ∈ AutA. Then the following are equivalent:
(1) ∣ν∗σ 3∣ = 1 or ∞.
(2) ProjncA has no fat point.
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized

by the set of closed points of E ⊂ P
2.

In particular, if A is of P, T, T’, CC, TL, WL, then A satisfies all of the above conditions.

Proof (1) ⇔ (2): This follow from Theorem 3.6 and Lemma 2.14.
(2) ⇔ (3): By [13, Theorem 3.6], isomorphism classes of simple 2-regular modules

over ∇A are parameterized by the set of points of ProjncA. On the other hand, it is
well known that the points of ProjncA which are not fat (called ordinary points in [13])
are parameterized by the set of closed points of E (see [13, Proposition 4.4]); hence,
the result holds. ∎

Remark 4.2 We have the following characterization of Type P, T, T’, CC, TL, WL.
Let A = A(E , σ) be a three-dimensional quantum polynomial algebra. Write E =
V( f ) ⊂ P

2 where f ∈ k[x , y, z]3. Recall that the Hessian of f is defined by H( f ) ∶=

det
⎛
⎜
⎝

fx x fx y fxz
fyx fy y fyz
fzx fz y fzz

⎞
⎟
⎠
∈ k[x , y, z]3. Then A is of Type P, T, T’, CC, TL, WL if and only

if H2( f ) ∶= H(H( f )) = 0.

Remark 4.3 If A is a two-dimensional quantum polynomial algebra, then ∇A ≅

(k k2

0 k ) ≅ k( ● �� �� ● ), so ∇A is a finite-dimensional hereditary algebra of tame
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representation type. It is known that the isomorphism classes of simple regular mod-
ules over∇A are parameterized byP1 (cf. [13, Theorem 3.19]). For a three-dimensional
quantum polynomial algebra A, we expect that the following are equivalent:
(1) ProjncA is finite over its center.
(2) ∇A is 2-representation tame in the sense of [6].
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameter-

ized by P
2.

These equivalences are shown for Type S in [13, Theorems 4.17 and 4.21].
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