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MULTILINEAR FUNCTIONS OF ROW STOCHASTIC 
MATRICES 

STEPHEN PIERCE 

1. Introduction. In the study of inequalities, the cases of equality are 
often the most difficult and interesting part. The case of equality is, in some 
sense, a measure of the tightness of the inequality. In this paper, we generalize 
two inequalities of Brualdi and Newman [1, Theorems 3, 4], but the instances 
of equality are probably more interesting because of the variety of cases which 
can occur. 

Let A = (a if) be an n X n matrix. Define the permanent of A by 
n 

per(A) = X 11 ^«.T(O. 
<r£Sn t=l 

We say that A is row stochastic if all entries are non-negative and all row sums 
are 1. In [1], several inequalities involving permanents of row stochastic 
matrices were proved. In two of these results, the case of equality was not 
determined. We will generalize both of these results to a class of functions 
which includes the permanent, and determine all cases of equality. All proofs 
are purely combinatorial. We assume familiarity with [1]. 

2. Results. Let 1 ^ r S n. Define Qr,n to be the f j strictly increasing 

sequences a = («i, . . . , ar) of length r chosen from {1, . . . , n]. If a, /3 £ QT,n, 
let -4[a|j3] be the r X r submatrix whose (i,j) entry is aai^^ If /3 = a, we 
write A[a\. Let H be a subgroup of Sn and set 

n 

dH(A) = X FI a>tMt)-

If a G Qr,ny let H (a) be the subgroup of H consisting of all a G H which fix 
each integer not in a. Define 

r 

dr(A[a]) = Z 11 <W(«,). 
<r£H(a) t=l 

Let r + s = n. If a G Qr,n, let a' be the sequence in QStn complimentary to a. 
For convenience, let 12 be the set of all permutation matrices. 

THEOREM 1. Let 1 ^ r ^ n — 1. If A is row stochastic, then 

(1) E dr(A[a])(l - d\A[a'})) J " " ^(l-d^A)). 
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Note that, if H = Sn, then dH, dr, and ds are all permanents and (1) becomes 
[1, Theorem 3]. 

THEOREM 2. Equality holds in (1) if and only if dH(A) = per(4) and A is 
permutation isomorphic to a matrix B having one of the following forms: 

(a) A is a permutation matrix; 

(b) B = 
Xi 

0 

x2 . 

P 

where P 6 Q and P is the identity if r ^ n — 2; 

(c) B = 

X l - X 0 

y l - y 

0 p 

where P £ O and P is the identity if r ^ n — 2; 

(d) B = 

0 
l - y 

z 

x 1 — x 
0 y 

1 - z 0 
0 

0 P 

where r — n — 1 and P £ 0. 

It is of interest to note that the cases of equality are independent of the 
group H. Also note that the four cases can overlap. 

From Theorem 2, we easily obtain 

THEOREM 3. Let 1 ^ r S n — 1. £ ^ A be n X n row stochastic. Then 

(2) £ <f 04 W) g (n - X) + (* - \)dH(A). 

Equality holds in (2) if #nd 0^/3; i/ d#G4) = per (̂ 4) and A is permutation 
isomorphic to a matrix B of the form (b) in Theorem 2, or r = n — 1 and A is 
permutation isomorphic to a matrix B of the form 

B = 

where P Ç Œ. 

Brualdi and Newman determined the case of equality in (2) when A is 
doubly stochastic. From Theorem 3, the only possibility is the identity 
matrix. 

O x 1 — x 
1 0 0 0 
1 0 0 

0 P 
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3. Proofs . For a fixed a G QriU1 consider the expression 

(3) d'(A[a])(l - d'iAla1])). 

Replace the 1 in (3) by 

f i fafl + . . . + djn). 
Then rewrite (3) as 

(4) 2 ^ L* a^p 
(«l) • • • da.ro(a.r)Q'ct\'<r(,a.\') • • • da8'a(as') , 

p <x 

where p runs over H (a) and a runs over all functions of {<x\', . . . , a / } into 
{1, . . . , n) such t h a t <r G H (a'). Every term in (4) appears as a term in 

( 5 ) 2 ^ dlr(l) . . • ^TITO?) = Z~Ê aT> 
r T 

where r runs over all functions of {1, . . . , n) into itself except for those which 
are permuta t ions in H. All terms in (4) are formally distinct, bu t a term in the 
sum (5) m a y occur in (4) for more than one a G Qr>n. 

T h u s far, we have imitated the procedure in [1], and we also call on [1] to 

conclude tha t if r $ Sn, then aT can appear in (4) for a t most ( ) 

dist inct a G QT,n- Suppose t ha t r G Sn, bu t T Q H. We must show t h a t aT 

occurs in (4) for a t most f J a G QT,n-

If r G H, then, in particular, r is not the identi ty. If aT occurs in (4) for 
some a, then the action of r on a corresponds to a member of H (a). Since 
r G H, it cannot fix every member of a. T h u s we pick i\,j\ G GL such t h a t 
r{i\) = j \ . If /? is another member of Qr>n for which aT occurs in (4), then both 
ii,ji are in (3 or both are in ft'. The number of elements in Qrn satisfying this 
condition for ii,ji is 

' •7 2 ) + C=0-
If there is a ^ in QTjn such t ha t aT occurs in (4) and ii,ji G jS, then we can pick 
^2,72 G /3' such t h a t r(i2) = 72. For all a G Gr^ such t h a t aT appears in (4), 
22,7*2 are both in a or both in a . T h e number of a in Qr>n satisfying the above 
conditions on the pairs (21,7*1) and (2*2,72) is 

')+<: 
n — 4\ , n(n — 4 \ . (n — 4 

r - 2 / + \ f - 4 

Cont inue this procedure until we obtain & pairs (21,71), (2*2,7*2), • • • , (%,jic) 
such t h a t if a r appears in (4) for some a G Çr,w Then each pair is in a or in a ' . 
Moreover, not all k pairs are in a; otherwise, we could make an additional s tep. 
T h e total number of a G Qr,n satisfying these conditions on the k pairs is 

https://doi.org/10.4153/CJM-1971-092-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-092-7


836 STEPHEN PIERCE 

For small values of n, we easily verify that (6) is strictly less than ( 
Thus, if 

mt--?)<u-1 
r 

C ) C - T ^ ) <(::;)• 
addition yields the inequality for the case n + 1. Thus, if r G Sn\H, aT occurs 

in (4) for fewer than f ) a G Qr,n- Since (5) is 1 — dH(A), Theorem 1 
is proved. ^ 

We now assume that equality holds in (1). We will apply a lemma of A4arcus 
and Pierce [2, Theorem 2], which we state here in a form suitable to us. 

LEMMA 1. Let A = (a if) be n X n. Let Tm be the set of integer sequences 
7 — (lii • • • i In), 1 = It ~ nJ such that some integer occurs in y with multi­
plicity at least m. Suppose that for all y G Tm, alyi . . . an7n = 0. Then every 
column of A has fewer than m non-zero entries. 

LEMMA 2. If equality holds in (1), then every column of A has at most 2 non­
zero entries. 

Proof. From the proof of (1), we see that for each r w^hich is not in H, 

either aT occurs in (4) for exactly ( ) a G Qr n, or aT = 0. But if r G r3 , 
(n - 1\ . . ^ . T ' 

there cannot be ( J distinct a in Qr>n for which aT appears in (4). Thus, 
aT = 0 if r G T3 and we apply Lemma 1. 

In addition, if two distinct integers both occur at least twice in r, then 
aT = 0. Thus, we cannot find rows ii, i2, iz, i± and columns ji,J2 in A such 
that «ûyi«z2i2a^3i2^û;2 ^ 0- Let us say that a matrix satisfying this condition 
and that of Lemma 2 satisfies (*). 

For convenience, we now eliminate one case of equality in (1). 

LEMMA 3. If equality holds in (1) and A has a zero column, then A falls into 
class (b) of Theorem 2. 

Proof. Our problem is invariant under permutation isomorphism if we use a 
suitable group conjugate to H, so assume that column 1 of A is zero. Then 
(1) becomes 

*€Qr,n \ r / 

Thus, for equality in (1), we must have dr(A[a]) = 1 for all a G Qr,n, 1 6 a, 
and this is possible only if ^4[2, . . . , n] G Œ if r = n — 1 and A[2, . . . , n] 
is the identity if r ^ n — 2. Lemma 3 is proved, and henceforth we will 
assume that A has no zero column. 
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LEMMA 4. Let A be a row stochastic matrix satisfying (*). Then the number of 
rows in A which have a 1 is at least n — 3. 

Proof. We use induction on n. Verification for n = 4, 5 is easy, so assume 
that n ê; 6. First, assume that there are Ts in A, so we may take ann = 1. 
If ain = . . . = an-.i,n = 0, induction applies to A[l, . . . , n — 1] and the 
lemma is proved. Otherwise, let an-i>n = x ^ 0. Let -B be the matrix obtained 
from A by adding x to an_itn_i. By (*), aire = . . . = aw_2,w = 0, so 
B[l, . . . , n — 1] is row stochastic. It is easily verified that B[l, . . . , n — 1] 
satisfies (*), so induction applies. If x were 1, the lemma would be proved. 
If 0 < x < 1, we may conclude that A has at most four rows which have no 1 
and that every column of A which has a 1 also has exactly one other non-zero 
entry which is less than 1. Thus, if there are exactly n — 4 l's in A, A is 
permutation equivalent to a matrix B of the form 

S i B2 

0 In-i 

where B\ is 4 X 4 and every column of B2 has a non-zero entry less than 1. 
But n §: 6, so in order to avoid violation of (*), we must have all non-zero 
entries of B2 in the same row, say the first. Then rows 2, 3, 4 of Bx each have 
at least 2 non-zero entries. Thus, B\ [2, 3, 4|1, 2, 3, 4] has a column with two 
non-zero entries and B cannot satisfy (*). 

Finally, assume that A has no l's. Let the non-zero elements in column n 
be among ann and an—itU. Again replace aK_i,re_i with aM_i,re_i + an-i,n- Then 
A[l, . . . , n — 1] has at least n — 5 l's, so u | 5. This proves Lemma 4. 

LEMMA 5. If equality holds in (1), then for all a £ QTin, 

(7) <k(,4) = per(,4); 

(8) d'(A[a]) = per (.4M); 

(9) d'(A[a])(l - d°(A[a'])) = per(4[«])(l - per(A[a'])). 

Proof. Let r G Sn\H. If ar F^ 0, there are ( J a's in Qr.n for which 

aT appears in (4). But (6) is strictly less than ( J so aT = 0. This proves 

(7). Now suppose that A[a] and A[a'] both contain diagonals with no zeros. 
The union of these two diagonals, by (7), corresponds to a member of H. 
Using the Laplace expansion theorem of Marcus and Soûles [3], expand 
dH(A) by rows «i, . . . , ar. One of the terms in the expansion will be 
dr(A[a\) (ds(A[a'])) and the product of the two diagonals mentioned must 
appear in this term. Since dH(A) = per (^4), dr(A[a]) = per (A [a]) and 
d*(A[a!]) = per (A [«']), so (8) and (9) are satisfied. If all diagonals of A[a] 
contain a zero, then (8) and (9) are satisfied. Finally, suppose that A[a] has 
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a diagonal with no zeros, but per (A[a']) = 0. If dr(A[a]) < per (A [a]), we 
would have 

dr(A[a])(l-d'(A[ar\)) =d'(A[«]) 

< per(A[a]), 

and thus (1) would be strict inequality. Lemma 5 is proved. 

We will use Lemma 5 repeatedly for specific computations. We now have A 
permutation equivalent to a matrix B of the form 

B 

where Bx is of degree 3 or less, no l's occur in Bi or B2, and C is a (0, 1) matrix. 

LEMMA 6. If B1 is 2 X 2 or 3 X 3, then C Ç f l . 

Proof. We do the 2 X 2 case; the 3 X 3 case is the same. Since B satisfies (*), 
if C $ fl, assume that C has the form 

r' Bi B, 

L o C _ 

c = 

0 

0 

1 0 

Then B2 has all zeros, except for exactly one non-zero element in column n. 
(Recall that A has no zero columns.) Then Bi has at least 3 non-zero entries, 
and hence one column of B± has 2 non-zero entries. This violates (*). 

LEMMA 7. If B\ is 2 X 2 , then B2 has at least one zero row. If Bi is 3 X 3 , then 
B2 is zero. 

Proof. This is an easy consequence of (*). 

LEMMA 8. If B\ is 2 X 2 or 3 X 3, then Bi is a principal submatrix of A. 

Proof. As in Lemma 6, we give the proof for the 2 X 2 case; the 3 X 3 case 
is similar, but more tedious. Suppose that B\ does not intersect the main 
diagonal of A. Assume, then, that Bi = A[l, 2|3, 4], with an = a12 = 0, 
#i3 = x, #i4 = 1 — x, by Lemma 7. By Lemmas 5 and 6, the right side of (1) 
is 

( • ; > - per (50) 

Consider the possibilities for {1, 2, 3, 4} C\ a, as a: runs through Qr<n. If all 
of 1 ,2 ,3 ,4 are in a, and dr(A[a\) ^ 0, then by Lemma 5, dr(A[a]) = 
per (A [a]) — per(5i) . Thus, by Lemma 6, A[a] G fi, so we get a zero term on 
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the left of (1). Thus, the left side of (1) is at most 

a22 ai) (M ; 4 )d-^))+(:: î> 

+ V - 3) fe 0,v + (1 ~ x ) f e fl,v) • 
/w — 4 \ 

The coefficient of ( , ] comes from considering those a Ç Qr>7Z such that 
the cardinality of {1, 2, 3, 4} C\ a is fe. Now (11) is strictly less than 

(("74)+C":î)+<*:â+C":î))c-^» 
= ( W 7 1 ) ( 1 - ^ U ) ) -

The strictness follows because 1 ̂  r ^ n — 1, 

and because 0 < x < 1, so 

max a2j ^ 1 — a23 — 2̂4 < 1 — «23(1 — x) — a^x = 1 — dH(A). 

Now suppose that B± intersects the main diagonal of A at exactly one point. 
It suffices to assume that B± = A[l, 2|2, 3] and that a12 = x, a i3 = 1 — x. 
The left side of (1) is at most 

(W
 f

 3)(l-dH(A)) + (*_ j)(a„) + ("_ 2) (maxa2,x+ (1 -x)(l -aM)) 

< ((" ; 3 ) + ( " i f ) + C " r | ) ) a - < . * » s (" ; ̂  -<•<*»• 
We remark that from Lemma 7, if B\ is 3 X 3, J5i is permutation equivalent 

to a matrix G of the form 

G 
x 1 — x 0 
0 y l — y 

1 - z 0 s 

0 < x, 3/, s < 1. When attempting to prove that B\ is principal in A, we must 
consider how many zeros there are in the intersection of B± with the main 
diagonal of A. 

We now finish Theorem 2. If B\ is 3 X 3, A is the direct sum of B± and an 
(n — 3) X (n — 3) matrix in 0. As stated in the previous remark, there are 
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three possibilities for BÙ 

x 1 — x 
B1 = 0 

1 - s 
y 
o 

o n 

l - y 
Z 

x 0 1 — x 
0 1 — y y 

I - z z 0 

0 x 
l - y 0 

z 1 — z 

1 X 

y 
0 

0 < x, y, z < 1. In ail cases, 1 — dH(A) = x + y + s — xy — xz — yz. In 
the first case, the left of (1) is at most 

(M ~ 3 ) ( 1 - dB(A)) + ( * ~ J ) ( x ( l - y*) + y(l - xs) + 2(1 - xy)) 

< ((* 7 3)+<;:?)+C"~ S)>' - ™ » • (" 7 'V -<•<*»• 
In the second case, we similarly verify strict inequality in (1). In the third 
case, the left side of (1) is at most 

(12) (n~3)(l-dH(A)) + (^zt)-° 

+ ( ? - 2) W 1 -y)+ yt1 - 2 ) + 2 ( ! - *)) 

Equality holds in (12) if and only if 

i.e., r = n — 1. By Lemma 6, 4̂ [4, . . . , n] Ç Œ, so 4̂ satisfies (d) in Theorem 2. 
If Bx is 2 X 2, let J5i = ,4[1, 2] and set 

Bl==(*y l~z%)' 

Thus dH(A) = xz + y(l — x), so the left side of (1) is at most 

(13) (W ~ 2){l-dH(A)) + (^Z i)(*d - *) + 2(1 " *)) 

-((•T'KTO)»-^» 
- ( " 7 ' ) ( 1 - < ! B M ) ) . 
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For equality in (13), we need y + z = 1, and dT(A[a\) = z for all a £ Qr>n 

such that 1 (? a. Thus A[3, . . . , n] is the identity unless r = n — 1, and hence 
-4 is in class (c) of Theorem 2. 

If B\ is 1 X 1 with entry x, 0 < x < 1, x may not be on the main diagonal 
of A. We may assume that x = an or ai2. Suppose that # = an and that 
per (4) ^ 0. Then per (4) = x and A[2, . . . . , n] £ Œ. It is now easy to 
verify, using Lemma 5, that A is in class (b) of Theorem 2. If per (-4) = 0, 
then A[2, . . . . , n] (? £2, so assume that the last column of A[2, . . . w] is zero. 
The left side of (1) is at most 

("72K":ï)"<("7,)-("71)<1-<«<»-
Now assume that x 

)x < 

a12. Then A has the form 

A = 

an x 
a2i 0 

0 

0 

#13 

#23 

din 

#2rc 

c 

where C is a (0, 1) matrix. 
Suppose that per (4) = x. Then the left side of (1) is at most 

(«^)(1_») + (»:^)(„»ttu)s(«;i)(1_^), 

For equality to hold it is necessary that max^2#iy = 1 — x. If an = 1 — x, 
we must have C £ 12. Thus, a2i = 1 and A is in class (c), so we may assume 
that ai3 = 1 — x. Then 

(14) A = 

0 X 1 - X 0 . 0 
# 2 1 0 # 2 3 

# 3 1 0 # 2 3 

0 C 

where C is (0, 1). Look at the possibilities for {1, 2, 3} P\ a. The left side of 
(1) is at most 

(w ~ z){\-dH{A)) + ( * I i ) (Mi -*)) 

+ ( _ 2J(a 2 ix( l — a33) + a s i ( l — *)) . 
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If a 21 = 1 and a33 = 0, per (A) = 0, which is a contradiction. So the left side 
of (1) is at most 

Thus, for equality in (1), we need r = n — 1, a3i = 1, C Ç 12. Since per 04) = x, 
&23 = 1 and A satisfies (d). Now let per (A) = 0. Let x = au. If 4̂ [3, . . . n] £ 12, 
a2i = 0. Then the left of (1) is at most 

So A[3, , n] & 12. Then the left of (1) is at most 

Since A[3, . . . . n] (? 12, equality cannot hold unless 

i.e., r = n — 1, and m a x ^ ^ i ^ = 1 — x. If an = 1 — x, we force 
-4 [3, . . . . n] Ç 12, which is a contradiction. So let <2i3 = 1 — x. Then 4̂ has 
the form (14). We can verify that C Ç 12 and a2i = a^i = 1. Thus 4̂ satisfies 
(d) of Theorem 2. Finally, if A is a (0, 1) matrix and has no zero columns, 
A £ 12, and using Lemma 5, we complete the proof of Theorem 2. 

As in the Brualdi and Newman paper [1], Theorem 3 follows from (1) and 
the obvious fact that 

(15) dr(A[a])d'(A[a']) SdH{A). 

Thus, equality holds in (2) if and only if equality holds in (1) and (15). By 
Lemma 5, if equality holds in (1), it holds when dH = per, so it suffices to do 
the problem for the pernament. Brualdi and Newman proved [1, Lemma 1] 
that if per (A) 9e 0, and equality holds in (15), then A is permutation iso­
morphic to a lower triangular matrix. Thus, if per (A) 9e 0, A is of the form (b) 
in Theorem 2. 

If per(^4) = 0, and A has a zero column, A is in (b), by Lemma 3. The only 
other possibility for per (A) = 0 and equality in (1) is r = n — 1 and 

0 X 1 — x 
1 0 0 
1 0 0 0 

0 B 
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£ G 0. Then 

.E,perww)=»(;:5) + (i-x)(;:^) 
= 1 

and Theorem 3 is proved. 
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