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Abstract. In this paper, we investigate pigeonhole statistics for the fractional parts of the
sequence

√
n. Namely, we partition the unit circle T = R/Z into N intervals and show

that the proportion of intervals containing exactly j points of the sequence (
√
n+ Z)Nn=1

converges in the limit as N → ∞. More generally, we investigate how the limiting
distribution of the first sN points of the sequence varies with the parameter s ≥ 0. A
natural way to examine this is via point processes—random measures on [0, ∞) which
represent the arrival times of the points of our sequence to a random interval from
our partition. We show that the sequence of point processes we obtain converges in
distribution and give an explicit description of the limiting process in terms of random
affine unimodular lattices. Our work uses ergodic theory in the space of affine unimodular
lattices, building upon work of Elkies and McMullen [Gaps in

√
n mod 1 and ergodic

theory. Duke Math. J. 123 (2004), 95–139]. We prove a generalisation of equidistribution
of rational points on expanding horocycles in the modular surface, working instead on
nonlinear horocycle sections.
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1. Introduction
Let T := R/Z denote the circle, N := {1, 2, 3, . . .} be the set of natural numbers,
N0 := N ∪ {0} be the set of non-negative integers and R+ the set of non-negative real
numbers. We investigate pigeonhole statistics for the sequence

√
n modulo 1. Specifically,

we look at the limiting distribution of the numbers (
√
n+ Z)Nn=1 among partitions of T

into intervals of length 1/N as N → ∞.
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For s ≥ 0, x0 ∈ [0, 1) and N ∈ N with N ≥ 1, define

SN(x0, s) :=
∣∣∣∣
{

1 ≤ n ≤ sN :
√
n ∈

[
x0 − 1

2N
, x0 + 1

2N

)
+ Z

}∣∣∣∣. (1.1)

When x0 ranges over the set �N := {k/N : 0 ≤ k ≤ N − 1} ⊂ [0, 1), the N intervals
[x0 − 1/2N , x0 + 1/2N)+ Z will partition T and so the average value of SN(x0, s) as
x0 ranges over �N will be 
sN�/N = s +O(1/N). As a result, it is natural to investigate
the long term statistical properties of the sequences {SN(x0, s) : x0 ∈ �N } as N → ∞
and, in particular, the proportion of terms equal to a given j ∈ N0 as N → ∞. Indeed, for
each j ∈ N0, we define

Ej ,N(s) := 1
N

∣∣∣∣
{

0 ≤ k ≤ N − 1 : SN

(
k

N
, s

)
= j

}∣∣∣∣. (1.2)

This is the proportion of the intervals {[x0 − 1/2N , x0 + 1/2N)+ Z : x0 ∈ �N }
containing exactly j of the points {√n : 1 ≤ n ≤ sN}. Here we show the following.

THEOREM 1.1. For all j ∈ N0 and s ≥ 0, Ej(s) := limN→∞ Ej ,N(s) exists. Moreover,
the limiting distribution function Ej(s) is C2 with respect to s.

Our proof of Theorem 1.1 builds upon the work of Elkies and McMullen in [7]. Here
ergodic theory and, specifically, Ratner’s theorem are used to determine the gap distribu-
tion of the sequence (

√
n+ Z)∞n=1 via relating these properties to the equidistribution of a

family of closed orbits of a certain unipotent flow in the homogeneous space

X = (SL(2, Z)� Z2)\(SL(2, R)�R2). (1.3)

We elaborate on this further in §1.1.

Remark 1.2. The limiting functions Ej(s) are given more concretely by equation (5.7).
They give the probability the lattice corresponding to a randomly chosen point x ∈ X
contains exactly j points in a fixed triangle of area s in the plane. The functionsEj(s) agree
with the limiting distribution for the probability of finding j of the points of the sequence
{√n+ Z : 1 ≤ n ≤ sN} in a randomly shifted interval of length 1/N in T [7]. They also
agree with the limiting functions found by Marklof and Strömbergsson for the probability
of finding exactly j lattice points of a typical (two-dimensional) affine unimodular lattice
in a ball of radius N whose directions all lie in a random open disc of radius proportional
to s/N2 on the unit circle [14, Theorem 2.1 and Remark 2.3]. As we will see in §5, the
work of Marklof and Strömbergsson allows us to immediately infer the aforementioned
differentiability of the limiting distribution functions.

Remark 1.3. We do not give exact formulae for the functions Ej(s) in terms of explicit
analytic functions in this paper. The analogous functions for rectangles were considered by
Strömbergsson and Venkatesh in [17], who obtained explicit piecewise analytic formulae
for small j. Based on their work, we would expect the functions Ej(s) to be piecewise
analytic with the functions becoming increasingly complex as j increases.

Remark 1.4. As is discussed in, for example, [18], the sequence of fractional parts of
the sequence

√
n is of interest from the point of view of fine-scale statistics. The gap
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FIGURE 1. The proportion of N = 10 000 000 intervals in partition of T containing 0 ≤ j ≤ 6 points of nα + Z

for n ≤ N when α is equal to 1
2 , 1

3 and 2
3 . For α = 1/2, these proportions approximate Ej (s) for s = 1.

distribution of this sequence in not Poissonian (see also Remark 1.6), which contrasts with
the conjectured gap distribution of the fractional parts of nα for any other α ∈ (0, 1) \ { 1

2 }.
In our case, if we instead considered the fractional parts of nα for α ∈ (0, 1) \ { 1

2 }, we
would expect Poissonian pigeonhole statistics in the sense that the corresponding limiting
distribution functions Ej(s) would equal sj e−j /j !. This contrasts with the case α = 1

2 , as
shown in Figure 1.

We can also recast our problem in a probabilistic setting. Indeed, forN ∈ N, letWN be a
random variable which is distributed uniformly on the set�N . Then, we define a sequence
of stochastic processes YNs for N ∈ N and s ≥ 0 by setting

YNs := SN(WN , s). (1.4)

With this notation, Theorem 1.1 states that the sequence P(YNs = j) converges asN → ∞.
For each N, we can also think about each point x0 ∈ �N as giving us a locally finite

Borel measure on R+ of the form

ηN(x0) :=
∞∑
r=1

δsr (x0),

where s1(x0) < s2(x0) < s3(x0), . . . , are the complete sequence of points s ∈ (1/N)N
such that

√
sN ∈ [x0 − 1/2N , x0 + 1/2N)+ Z. Namely, these are points of discontinuity

of the map s �−→ SN(x0, s). In this case, we have the relation

ηN(x0)([0, s]) = SN(x0, s). (1.5)

Again, recasting this in a probabilistic setting, we define the corresponding sequence of
random measures/point processes ξN by setting

ξN := ηN(WN). (1.6)

Equation (1.5) above tells us that for an interval (a, b] ⊂ R+, we have that the point process
and stochastic process are related via

ξN((a, b]) = YNb − YNa . (1.7)

In this setting, we establish the following convergence result which helps us to understand
how the limiting distribution of the points of our sequence varies with s.
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THEOREM 1.5. The point process (ξN)∞N=1 converges in distribution to a point process ξ .

The process ξ is defined similarly to the processes ξN as the sum of Dirac delta measures
associated to the jump points of a stochastic process Ys : X → R. Here the space X can
be the thought of as the homogeneous space of all two-dimensional affine unimodular
lattices (which we show explicitly in §2) and Ys(x) gives the number of points of the lattice
associated to x ∈ X within a certain triangle of areas s in the plane. More concretely, if the
lattice associated to x ∈ X is L ⊂ R2 and

τ(∞) := {(u, v) ∈ R2 : u ≥ 0, −u ≤ v ≤ u}, (1.8)

then

ξ(x) =
∑

(u,v)∈L∪τ(∞)

δ√u. (1.9)

As we illustrate in §6, ξ is a simple, intensity-1 process which does not have independent
increments.

Remark 1.6. The pigeonhole statistics we consider were previously studied by Weiss
and Peres for the fractional parts of the sequence 2nα (as well as higher dimensional
generalisations). In this case, the analogous processes converge to a Poisson point process
[19]. A Poisson point process is also (almost surely) the limiting process we would
obtain if, instead of generating our point processes via considering how the points of the
sequence

√
n distribute among shrinking partitions of T, we instead consider the analogous

processes defined for a sequence of points in T generated by a sequence of independent and
identically distributed random variables which are uniformly distributed on T [8, §VI.6].

Similarly to what is observed in [6], even though our limiting processes is not
Poissonian, its second moment is nearly Poissonian with an error resulting from the fact
that, asymptotically,

√
N of the points {√n+ Z : 1 ≤ n ≤ N} are 0.

COROLLARY 1.7.

E[|YNs |2] →
∞∑
j=0

j2Ej(s)
2 + s =

∫
X

|Ys |2 dmX + s = s2 + 2s

as N → ∞. In particular,

Var[YNs ] → 2s

as N → ∞.

Remark 1.8. If we desire the (more satisfactory) convergence of the variance of the random
variables YNs to those of Ys , one has to avoid the escape of mass resulting from the term
0 appearing regularly in the sequence of fractional parts of

√
n. This can be done via

removing the terms
√
n when n is a square and, in this case, we would have Var[YNs ] → s

which is the variance we would obtain if the limiting point process were Poissonian. We
will also use this approach in the proof of Corollary 1.7.
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1.1. Ergodic theory. Let G = ASL(2, R) = SL(2, R)�R2 be the affine special linear
group of R2 with multiplication law defined by

(M , x)(M ′, x′) = (MM ′, xM ′ + x′),

where elements of R2 are viewed as row vectors. Let � = SL(2, Z)� Z2 be the discrete
subgroup of G consisting of elements with integer entries. As is discussed in §2, � is a
lattice in G, meaning we have a fundamental domain F̃ with finite volume (and hence, up
to normalization, volume 1) under the Haar measuremG on G. By restrictingmG to F̃ and
projecting to X, we have a right-invariant probability measure mX on the space X := �\G
which we call the Haar measure on X [4, Proposition 9.20]. Let

	(t) :=
( (

e−t/2 0
0 et/2

)
, (0, 0)

)

and

a(N) := 	(log(N)).

As in [7], we shall be concerned with the equidistribution of points on certain horocycle
sections in the space X. Here, a horocycle section is a function σ : R → G of the form

σ(t) :=
( (

1 2t
0 1

)
, (x(t), y(t))

)
,

where x(t) and y(t) are smooth functions. We call σ(t) a horocycle section of period p ∈
N if there exists some γ0 ∈ � such that γ0σ(t + p) = γ0σ(t) for all t ∈ R. Moreover, such
a horocycle section is nonlinear if there exists some α, β ∈ Q such that the set {t ∈ [0, p] :
y(t) = αt + β} has zero Lebesgue measure. For such horocycle sections, the following
equidistribution result is known.

THEOREM 1.9. [7, Theorem 2.2], [12, Theorem 4.2] Let σ be a nonlinear horocycle
section with period p. Then, for any bounded continuous function f : X → R,

1
p

∫ p

0
f (�σ(x0)	(t)) dx0 →

∫
X

f dmX

as t → ∞.

Applying this to the nonlinear period 1 horocycle section

n(t) :=
( (

1 2t
0 1

)
, (t , t2)

)
,

one can determine the distribution of {√n}Nn=1 among the intervals [x0 − 1/2N , x0 +
1/2N)+ Z when x0 is uniformly distributed on [0, 1). In our setting, we restrict x0 to
lying in the set �N for each N and the corresponding equidistribution we desire is that of
rational points on such a horocycle section. We therefore prove the following result which,
like Theorem 1.9, applies more generally to functions f : X → R which are piecewise
continuous: functions f : X → R whose points of discontinuity are contained in a set of
measure zero with respect to mX.
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THEOREM 1.10. Let σ be a nonlinear horocycle section with period p. Then, for any
bounded piecewise continuous function f : X → R and C ≥ 1,

1
pN

pN−1∑
k=0

f

(
�σ

(
k

N

)
a(M)

)
→

∫
X

f dmX (1.10)

as N → ∞ and 1/CN ≤ M ≤ CN .

As we show concretely in §5, for an appropriate f : X → R, we can approximate
P(ξN((a, b]) = 0) (or more generally P(ξN(B) = 0) for B as in Lemma 1.13(ii)) by a sum
of the above form in equation (1.10) and, using the above equidistribution result, show
Theorem 1.5. The same principle applies in the case of Theorem 1.1.

Remark 1.11. Although Theorems 1.1, 1.5 and 1.10 are stated for the points/interval centres
k/N for 0 ≤ k ≤ N − 1, one can see the methods presented in this paper also give the
analogous results when considering the points/interval centres (k + α)/N for any α ∈ R.
The choice α = 1

2 in particular results in considering the points of the sequence
√
n in the

intervals formed via partitioning by cutting T at the points k/N for 0 ≤ k ≤ N − 1.

Remark 1.12. There are many known results related to Theorem 1.10 when considering
the equidistribution of discrete collections of points on expanding horocycle orbits. An
effective equidistribution theorem for rational horocycle points {k/N + iy}N−1

k=0 in the
modular surface is proved by Burrin, Shapira and Yu in [1, Theorem 1.1]. Using spectral
methods, [1] shows such points equidistribute when the number of such rational points N
being considered at height y satisfiesN � y−(39/64+ε) for some ε > 0. This contrasts with
Theorem 1.10, which corresponds to the case when N � y−1. Using dynamical methods,
Einsiedler, Luethi and Shah prove effective equistribution results for the rational points{(

SL(2, Z)
(

1 k/N

0 1

) (
N−1/2 0

0 N1/2

)
,
k

N
+ Z

)
: 0 ≤ K ≤ N − 1

}

in the more general space SL(2, Z)\SL(2, R)× T [3]. The equidistribution of such points
when projected SL(2, Z)\SL(2, R) is implied by Theorem 1.10. Finally, in [13], Marklof
and Strömbergsson prove for fixed δ > 0, there is full measure set of α ∈ [0, 1) such
that the points {mα + iy}Nm=1 equidistribute in the modular surface as y → 0 whenever
y � N−δ .

1.2. Outline of proof. Recall the following conditions which are sufficient to give the
convergence in distribution of a sequence of point processes [11, Theorem A2.2].

LEMMA 1.13. [11, Theorem A2.2] Let (ξn)∞n=1 and ξ be point processes defined on R+
with ξ being simple. Suppose the following:
(i) E[ξN((a, b])] → E[ξ((a, b])] as N → ∞ for all 0 ≤ a < b < ∞;

(ii) P[ξN(V ) = 0] → P[(ξ(V ) = 0] for all V of the form
⋃k
j=1(aj , bj ] with 0 ≤ a1 <

b1 ≤ a2 < b2 ≤ · · · ≤ ak < bk .

Then ξN
d−→ ξ , where

d−→ denotes convergence in distribution.
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For our processes ξN defined by equation (1.6), we will see that condition (i) merely
amounts to the fact the average number of points of an affine unimodular lattice in a
triangle of area s is s. We prove this more generally in Lemma 5.1.

Turning to (ii), we define the measures (νN)∞n=1 on X by

νN(f ) =
∫
X

f dνN := 1
N

N−1∑
k=0

f

(
�n

(
k

N

)
a(N)

)
. (1.11)

In §5, for a given set V as in Lemma 1.13(ii), we show how to choose the function
f : X → R such that νN(f ) approximates P(ξN(B) = 0). The same is true in proving
Theorem 1.1, where we choose a function f : X → R such that νN(f ) approximates
P(YNs = j). By takingN → ∞, we can then show the required limiting values are attained
using Theorem 1.10. For the remainder of this section, we thus focus on the proof of
Theorem 1.10.

Proof outline of Theorem 1.10 for σ(t) = n(t). By a standard approximation argument, it
suffices to show we have νN(f ) → ∫

X
f dmX for all f ∈ Cc(X). This allows us to reduce

to understanding weak-star limit points of the sequence of measure (νN). In particular
it suffices, by the Banach–Alaoglu theorem, to show any accumulation point ν of the
measures (νN) is mX.

As is shown in Proposition 3.1, moving from n(k/N)a(N) to n((k + 1)/N)a(N)
corresponds, up to some negligible error, to right multiplication by the unipotent element
u(1), where

u(t) :=
( (

1 2t
0 1

)
, (0, 0)

)
(1.12)

for t ∈ R. It will follow that any such ν is invariant under the action of the subgroup
{u(k)}k∈Z.

The right-action of this subgroup on X is mixing, as is shown in Lemma 3.4. A
consequence of this is that the system (X, Ut , mX), where Ut(x) = xu(t), is disjoint from
the linear rotation flow on [0, 1) in the sense introduced by Furstenberg in [9] (as is shown
in Lemma 3.3). To be precise, the linear rotation flow Rt : [0, 1) → [0, 1) is given by
Rt(s) = {s + t}, where {·} gives the fractional part of a real number. This is used to extend
to the flow Ut to Ũt : X × [0, 1) → X × [0, 1) given by Ũt (�g, s) = (�gu(t), {s + t}).
Disjointness then tells us that the only Ũt -invariant measure onX × [0, 1)whole marginals
(projections to X and [0, 1)) are mX, and the Lebesgue measure ds on [0, 1) is the product
measure mX × ds.

To use this fact, we consider the corresponding special flow under the ceiling function 1:
namely, the flow Tt : X × [0, 1) → X × [0, 1) given by

Tt (�g, s) = (�gu(
s + t�), {s + t}).
This flow has ν × ds as an invariant measure and is also conjugate to the flow Ũt . Keeping
track of the measure ν × ds under this conjugation map (described explicitly in the proof
of Proposition 3.6) and using Theorem 1.9, we see the resulting measure on X × [0, 1)
indeed has marginals mX and ds, and so is the product measure mX × ds. This in turn
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gives us that ν × ds = mX × ds by applying the inverse of the conjugation map and so
ν = mX, as required.

2. The space X
Here we overview, for completeness, some of the basic properties of the space X = �\G
which we will be using. More details can be found in [12, §3.1] and [16, §1].
• X is a T2 = R2/Z2 bundle over the base space B := SL(2, Z)\SL(2, R). If F is a

fundamental domain for the left-action of SL(2, Z) on SL(2, R), then a fundamental
domain for the left-action of � on G is

F̃ = {(I2, x)(M , 0) : x ∈ [0, 1), M ∈ F}
= {(M , x) ∈ G : M ∈ F and x ∈ [0, 1)2M}.

We fix such F and F̃ for the remainder of paper.
• Let mSL(2,R) be the Haar measure on the unimodular group SL(2, R), normalised so

thatmSL(2,R)(F) = 1. Using Fubini’s theorem and the translation invariance, it is easy
to see mG = mSL(2,R) × dx is a (left) Haar measure on X, where dx represents the
Lebesgue measure on R2. The right-invariant measure mX on X is obtained by then
restricting this measure mG to F̃ .

• There exists a left-invariant Reimannian metric dG on G inducing the same topology
on G as the product topology on the space SL(2, R)× R2. Fixing one such metric dG,
we construct a metric d on X via defining

d(�g1, �g2) := inf
γ∈� dG(γg1, g2).

For more explicit details on these constructions, see [4, §9.3]. Throughout the
remaining sections, continuity of functions f : X → R will mean continuity with
respect to this metric.

• Any element (M , x) ∈ G gives us an affine unimodular lattice in R2—namely the
lattice Z2M + x. Moreover, for any other (M ′, x′) ∈ G, the lattice associated to
(M ′, x′)(M , x) is given by Z2M ′M + x′M + x. These two lattices are identical if
and only if (M ′, x′) ∈ �. Thus we have a natural identification between elements
of X = �\G and such lattices. We will use this identification in §5 to construct the
functions f : X → R to which we will apply Theorem 1.10.

3. The special flow under 1
Throughout this section, whenever (X1, μ1) is a measure space, X2 is a measurable space
and T : X1 → X2 is a measurable map, we will define the measure T∗μ1 on X2 by

T∗μ1(A) = μ1(T −1(A))

for any measurable A ⊂ X2.

PROPOSITION 3.1. Let σ be a nonlinear horocycle section of period p. Define the
measures (νN)∞n=1 on X by setting

νN(f ) =
∫
X

f dνN := 1
pN

pN−1∑
k=0

f

(
�σ

(
k

N

)
a(N)

)
(3.1)
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for any continuous bounded f : X → C. Then, any weak-star limit point of the measures
defined in equation (3.1) is invariant under the map T : X → X given by

T (�g) = �gu(1), (3.2)

where u(1) is defined by equation (1.12).

To see this, we will need the following lemma.

LEMMA 3.2. Any f ∈ Cc(X) is uniformly continuous in the T2 direction. More precisely,
for any ε > 0, we can find δ > 0 such that for all M ∈ SL(2, R) and u, v ∈ T2 with
dT2(u, v) ≤ δ, we have

|f ((I2, u)(M , 0))− f ((I2, v)(M , 0))| < ε.

Proof. Take f ∈ Cc(X) and let K be the projection of the support of f to the base space B.
Here, K is a compact set and so the map K × T2 � (M , x) �−→ f ((I2, x)(M , 0)) ∈ R is
uniformly continuous. This means f is uniformly continuous in the fibre direction over K
in the sense that for any ε > 0, we can find δ > 0 such that for any M ∈ K and u, v ∈ T2

with dT2(u, v) < δ, we have

|f ((I2, u)(M , 0))− f ((I2, v)(M , 0))| < ε.

Hence, since f is identically zero on the fibre above all base points outside of K, f is in fact
uniformly continuous in the fibre direction over all of B.

Proof of Proposition 3.1. Suppose ν is a weak-star limit of the sequence of measures (νNj )
where Nj ↗ ∞.

Now, for anyN ∈ N and 0 ≤ k ≤ pN − 1, we will see via equations (3.3) and (3.4) that
the two points σ((k + 1)/N)a(N) and σ(k/N)a(N)u(1) are identical in their SL(2, R)
components and, as the functions x and y are smooth and so bounded and Lipschitz on
[0, p], differ by a distanceO(1/N) in the T2 direction. Using this, we will see the measures
{T∗νNj }j∈N given by

T∗νNj (f ) = 1
pNj

pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(Nj )u(1)

)
, f ∈ Cc(X)

will also converge to ν as j → ∞ in the weak-star topology, since, for compactness, f ∈
Cc(X), f (σ(k/Nj )a(Nj )u(1)) and f (σ((k + 1)/N)a(N)) will be uniformly close across
all 0 ≤ k ≤ pNj − 1 in equation (3.5). This will follow from the Lemma 3.2.

Indeed, we have

σ

(
k + 1
N

)
a(N) =

((
N−1/2 2(k + 1)N−1/2

0 N1/2

)
,
(
x

(
k + 1
N

)
N−1/2, y

(
k + 1
N

)
N1/2

))

=
(
I2,

(
x

(
k + 1
N

)
, y

(
k + 1
N

)
− 2(k + 1)

N
x

(
k + 1
N

)))
(3.3)

×
( (

N−1/2 2(k + 1)N−1/2

0 N1/2

)
, (0, 0)

)
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and

σ

(
k

N

)
a(N)u(1) =

(
I2,

(
x

(
k

N

)
, y

(
k

N

)
− 2k
N
x

(
k

N

)))
(3.4)

×
( (

N−1/2 2(k + 1)N−1/2

0 N1/2

)
, (0, 0)

)
.

Take f ∈ Cc(X) and let ε > 0. Choose δ > 0 as given by Lemma 3.2 for such ε. By the
fact x, y are bounded and Lipschitz on [0, p], for any sufficiently large j sufficiently large,
we have that

dT2

((
x

(
k + 1
Nj

)
, y

(
k + 1
Nj

)
− k + 1

Nj
x

(
k + 1
Nj

))
,
(
x

(
k

Nj

)
, y

(
k

Nj

)
− k

Nj
x

(
k

Nj

)))
< δ

(3.5)

for all 0 ≤ k ≤ Nj − 1. Hence, for such j,

|T∗(νNj )(f )− νNj (f )|

≤ 1
pNj

∣∣∣∣
pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(Nj )u(1)

)
− f

(
�σ

(
k

Nj

)
a(Nj )

)∣∣∣∣
≤ 1
pNj

∣∣∣∣
pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(Nj )u(1)

)
− f

(
�σ

(
k + 1
Nj

)
a(Nj )

)∣∣∣∣ +O

(‖ f ‖∞
Nj

)

≤ ε +O

(‖ f ‖∞
Nj

)
.

So lim supj→∞ |T∗(νNj )(f )− νNj (f )| ≤ ε for any ε > 0 and so T∗(ν) = limj→∞
T∗(νNj )(f ) = limj→∞ νNj (f ) = ν(f ), as required.

Next, as mentioned in §1.2, we will use the special flow under the ceiling function
1 to show that any weak-star limit point ν of the measures (3.1) is the Lebesgue measure.
Specifically, the special flow will give us a system with invariant measure ν × ds conjugate
to a joining of the systems (X, Ut , mX) and ([0, 1), Rt , ds), where Ut(�g) = �gu(t) and
Rt(s) = {s + t}. This will imply ν = mX due to the following.

LEMMA 3.3. The flows (X, Ut , mX) and ([0, 1), Rt , ds) are disjoint.

To see this, we will use the following lemmas.

LEMMA 3.4. The system (X, Ut , mX) is mixing.

Proof. This follows from applying the proposition from [10, §2.2] to the system
(X, Ut , mX) (instead of a diagonal flow) and using that the horocycle flow on B is
ergodic.

LEMMA 3.5. [2, Proposition 2.2] Let T : X → X be an ergodic measure-preserving
transformation with respect to the measure mX. Then, (X, T , mX) is disjoint from any
measure-preserving system given by the identity map I : Y → Y on a probability space
(Y , μ).
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Proof of Lemma 3.3. Let μ be a joining of (X, Ut , mX) and ([0, 1), Rt , ds) an invariant
measure on X × [0, 1) for the map Ũt (�g, s) = (�gu(t), {s + t}) whose marginals are
mX and ds. Here, μ will be invariant under the map Ũ1, and so is a joining of the systems
(X, U1, mX) and ([0, 1), R1, ds). Additionally, R1 is the identity and, by Lemma 3.4,
U1 is mixing and hence ergodic. Thus it follows from Lemma 3.5 that μ = mX × ds,
as required.

We are now in a position to prove the following.

PROPOSITION 3.6. Any weak-star limit point ν of the measures (3.1) is the Haar measure
mX on X.

As mentioned, the main construction we will use in this proof is the special flow under
the ceiling function 1.

LEMMA 3.7. [4, Lemma 9.23] Let ν be a finite measure on X which is invariant under u(1).
Then ν × ds is an invariant measure for the map Tt : X × [0, 1) → X × [0, 1) given by
Tt (�g, s) = (�gu(
s + t�), {s + t}).
Proof. If ν(X) > 0, the result is given by [4, Lemma 9.23] (which applies to probability
measures and hence any non-zero finite measure via normalizing). Otherwise, the result is
trivial as ν × ds is the zero measure.

Proof of Proposition 3.6. Note that for a weak-star limit point ν of the probability
measures in (3.1), we have ν(X) ∈ [0, 1]. Thus, Lemma 3.7 implies ν × ds is Tt invariant,
where Tt is as in the statement of Lemma 3.7.

Now let ψ : X × [0, 1) → X × [0, 1) be given by ψ(�g, s) = (�gu(s), s) and recall
the extension of the flow Ut to X × [0, 1) is given by Ũt (x, s) = (xu(t), {s + t}). Using
that s + t = 
s + t� + {s + t}, we see that ψ ◦ Tt = Ũt ◦ ψ , meaning Tt and Ũt are
conjugate via ψ and μ := ψ∗(ν × ds) is an invariant measure for the flow Ũt . Denote
the projection maps from X × [0, 1) to X and [0, 1) by PX and P[0,1), respectively. Here
P[0,1)∗(μ) is invariant under all Rt : [0, 1) → [0, 1) with t ∈ R and so, if it is a probability
measure, it is the Lebesgue measure ds on [0, 1).

We now show (PX)∗μ is the Haar measure mX on X, which in turn shows μ is a
probability measure. To do this, take f ∈ Cc(X) and letNj ↗ ∞ be a sequence of natural
numbers such that νNj converges weak-star to ν as j → ∞. Then∫

X

f d(PX)∗(μ) =
∫
f ◦ PX ◦ ψ d(ν × ds)

=
∫ 1

0

∫
X

f (xu(s)) dν(x)ds

=
∫ 1

0
lim
j→∞

1
pNj

pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(Nj )u(s)

)
ds

= lim
j→∞

∫ 1

0

1
pNj

pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(Nj )u(s)

)
ds, (3.6)

where the last equality follows from the dominated convergence theorem (as f is bounded).
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Similarly to as in the proof of Proposition 3.1, n((k + s)/N)a(N) and n(k/N)a(N)u(s)
have the same base point and are a distance at mostO(1/N) apart in the T2 fibre direction
whenever s ∈ [0, 1]. Hence, by Lemma 3.2, given any ε > 0, we can ensure

∫ 1

0

1
pNj

pNj−1∑
k=0

f

(
�σ

(
k + s

Nj

)
a(Nj )

)
ds (3.7)

and the integrals in equation (3.6) differ by at most ε provided j is sufficiently large.
However, by making the substitution t = (s + k)/Nj , we see that

∫ 1

0

1
pNj

pNj−1∑
k=0

f

(
�σ

(
k + s

Nj

)
a(Nj )

)
ds = 1

pNj

pNj−1∑
k=0

∫ 1

0
f

(
�σ

(
k + s

Nj

)
a(Nj )

)
ds

= 1
p

pNj−1∑
k=0

∫ (k+1)/Nj

k/Nj

f (�σ(t)a(Nj )) dt

= 1
p

∫ p

0
f (�σ(t)a(Nj )) dt (3.8)

and, by Theorem 1.9, equation (3.8) converges to
∫
f dmX as j → ∞. Hence, we have

shown that for any ε > 0,∣∣∣∣
∫
X

f d(PX)∗(μ)−
∫
X

f dmX

∣∣∣∣ ≤ ε.

Therefore, (PX)∗(μ) = mX and so μ is a joining of (X, Ut , mX) and (T, Rt , ds). Since
Lemma 3.3 shows these two systems are disjoint, we conclude μ = mX × ds. To see
finally that this implies ν = mX and note, since mX is invariant under the right-action
of G, we have∫

g d(ν × ds) =
∫
g dψ−1∗ (μ) =

∫ 1

0

∫
X

g(xu(−s), s) dmX(x) ds

=
∫ 1

0

∫
X

g(x, s) dmX(x) ds =
∫
g d(mX × ds)

for any g ∈ Cc(X × T). Thus, ν × ds = mX × ds and so ν = mX.

4. Completing the proof of Theorem 1.10
Proof of Theorem 1.10. By the by the Banach–Alaoglu theorem, any subsequence of
the measures (νN) defined in equation (3.1) has a further subsequence which converges
weak-star to some limiting measure ν. By Proposition 3.6, ν = mX. This shows the
sequence of measures (νN) indeed converges weak-star to mX.

Notice that for any constant function f : X → R, it is immediate that
∫
X
f dνN →∫

f dmX as N → ∞. This convergence therefore also holds for continuous functions
which are constant outside of a compact set, being the sum of a constant function and
a function in Cc(X). Now, let f : X → R be a bounded continuous function and let ε > 0.
Then we can find continuous functions f−, f+ : X → R, which are constant outside some
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compact set, with f− ≤ f ≤ f+ and for which∫
X

f+ − f− dmX < ε.

Then we have∫
f dmX − ε ≤

∫
f− dmX = lim inf

n→∞ νN(f−) ≤ lim inf
n→∞ νN(f )

≤ lim sup
n→∞

νN(f ) ≤ lim sup
n→∞

νN(f+) =
∫
f+ dmX ≤

∫
f dmX + ε

meaning

lim inf
n→∞ νN(f ) = lim sup

n→∞
νN(f ) =

∫
f dmX,

as our choice of ε > 0 was general. Thus, (νN) converges weakly to mX and so νN(f ) →∫
f dmX as N → ∞ for all piecewise continuous f : X → R by the continuous mapping

theorem.
Finally, let C ≥ 1 and (MN)

∞
N=1 be a sequence satisfying (1/C)N ≤ MN ≤ CN for all

N ∈ N. Take an arbitrary subsequence (MNj )
∞
j=1 of the sequence (MN). By compactness

of the interval [1/C, C], we can find a further subsequence of (MNj ), which we will still
index by Nj , such that (MNj /Nj ) → c ∈ [1/C, C] as j → ∞. Let f ∈ Cc(X) and define
h ∈ Cc(X) by setting

h(�g) := f (�ga(c)).

Note that

νNj (h) = 1
pNj

pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(cNj )

)
.

Using the metric d defined in §2, we see

d

(
�σ

(
k

Nj

)
a(cNj ), �σ

(
k

Nj

)
a(MNj )

)
≤ dG

(
e, a

(
MNj

cNj

))
→ 0

uniformly in k as j → ∞. Using this and the fact that as f is continuous and compactly
supported, f is uniformly continuous, we have∣∣∣∣ 1

pNj

pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(cNj )

)
− 1
pNj

pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(MNj )

)∣∣∣∣ → 0

as j → ∞. Thus, given νNj (h) → ∫
h dmX and

∫
X
h dmX = ∫

X
f dmX by the

right-invariance of mX, we have

1
pNj

pNj−1∑
k=0

f

(
�σ

(
k

Nj

)
a(MNj )

)
→

∫
f dmX (4.1)

as j → ∞. Since our original subsequence was arbitrary, equation (4.1) holds in the case
whereNj = j as required. This can also be extended to any piecewise continuous function
f : X → R by the standard approximation argument above.
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5. Pigeonhole statistics
As mentioned in §1.1, to prove Theorem 1.13, we are going to apply Theorem 1.10 to a
family of functions f : X → R such that νN(f ) gives us, up to some error of o(1) in N,
P(ξN((a, b]) = 0).

For a non-negative measurable function f : R2 → R, we define f̂ : X → R by setting
f̂ (x) to be the sum of all the function values at the lattice points corresponding to x ∈ X.
Explicitly,

f̂ (�(M , x)) =
∑
m∈Z2

f (mM + x).

For such functions, the following simple version of Siegel’s formula holds [15].

LEMMA 5.1. Let f : R2 → R be a non-negative measurable function. Then∫
X

f̂ dmX =
∫
R2
f dx.

Proof. Using the non-negativity of f, the fact SL(2, R) consists of matrices on determinant
1 and the form of the Haar measure mX described in §2, we see∫

X

f̂ dmX =
∫
F

∫
[0,1)2M

f̂ dx dmSL(2,R)

=
∫
F

∫
[0,1)2

∑
m∈Z2

f ((m+ x)M) dx dmSL(2,R).

The result then follows from the fact that∫
[0,1)2

∑
m∈Z2

f ((m+ x)M) dx =
∫
R2
f (x) dx.

For a set A ⊂ R2, we denote by fA : X → R the function χ̂A, where χA denotes
the indicator function of the set A. Following [12, §4], we see how such functions can
be used to approximate the values of the functions SN . This will allow us to show the
random variables YNs defined by equation (1.4) converge to the same limit of a sequence of
random variables Ỹ Ns which will be defined by evaluating such a function fA at the points
n(k/N)a(N) uniformly at random.

Indeed, fixing some s > 0 and setting N ′ = 
sN�, the counting function SN(x0, s)
defined in equation (1.1) is given by

SN(x0, s) =
N ′∑
n=1

∑
m∈Z

χ[−1/2,1/2)(N(
√
n− x0 +m)). (5.1)

It turns out SN(x0, s) can be well approximated by fτ (n(x0)a(N)), where

τ = τ(s) := {(x, y) ∈ R2 : x ∈ [0,
√
s], y ∈ [−x, x]} (5.2)

is a triangle of area s in the plane (see Figure 2).
To see this, it is first useful to rewrite SN(x0, s) using the constraint imposed on the

summation over m in equation (5.1) by the inner indicator function. Indeed, the constraint
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FIGURE 2. The boundaries of Aε,δ (left) and τ (right).

imposed on the inner sum is equivalent to(
x0 −m− 1

2N

)2

≤ n <

(
x0 −m+ 1

2N

)2

,

which amounts to

− 1
N
(x0 −m) ≤ n− (x0 −m)2 −

(
1

2N

)2

<
1
N
(x0 −m),

giving us that

χ[−1/2,1/2)(N(
√
n− x0 +m)) = χ[−1,1)

(
N1/2(n− (x0 −m)2 − (1/2N)2)

N−1/2(x0 −m)

)
.

Note also, |√n− x0 +m| ≤ 1/2N , whenever (m, n) contributes to the sum in equation
(5.1). So, the summation bound 1 ≤ n ≤ N ′ can be replaced by

χ(0,1]

(
x0 −m+O(1/2N)√

N ′

)
(5.3)

giving us

SN(x0, s) =
∑

(m,n)∈Z2

χ(0,1]

(
x0 −m+O(1/2N)√

N ′

)
χ[−1,1)

(
N1/2(n− (x0 −m)2 − (1/2N)2)

N−1/2(x0 −m)

)

whenever x0 �= 0. The case x0 = 0 can largely be ignored as the random variable WN ,
which is uniformly distributed on the set �N = {k/N : 0 ≤ k ≤ N − 1}, has probability
1/N of taking this value and we are interested in the limit as N → ∞.

Therefore, the counting function can be bounded above and below using the follow-
ing family of functions depending on parameters ε and δ, which can be realised as
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functions on X:

SN ,ε,δ(x0, s) :=

⎧⎪⎨
⎪⎩

∑
(m,n)∈Z2

χ(−ε,
√
s+ε]

(
x0 −m

N1/2

)
χ[−1,1)

(
N1/2(n− (x0 −m)2)+ δ

N−1/2(x0 −m)

)
if x0 �= 0,

0 if x0 = 0.
(5.4)

Note that equation (5.3), together with the fact that N ′ = 
sN�, implies we have

SN ,−ε,δ(x0, s) ≤ SN(x0, s) ≤ SN ,ε,δ(x0, s) (5.5)

for ε = εN := 1/2N(N ′)1/2 + |(N ′)1/2/N1/2 − √
s|, δ = δN := −1/4N3/2 and x0 �= 0.

As N → ∞, the difference between the upper and lower bounds on SN(x0, s) given by
equation (5.5) converges to zero in probability as x0 runs over �N according to WN , as is
shown in Proposition 5.3.

The utility of introducing the functions SN ,ε,δ is that they can be interpreted as functions
of the form fA : X → R for suitable sets A ⊂ R2.

PROPOSITION 5.2.

SN ,ε,δ(x0, s) = fAε,δ (�n(x0)a(N)), (5.6)

where Aε,δ = Aε,δ(s) := {(x, y) ∈ R2 : x ∈ (−ε,
√
s + ε], ((y + δ)/x) ∈ (−1, 1]}.

As one would expect, as ε and δ converge to zero, the domains Aε,δ = Aε,δ(s)

increasingly better approximate the triangle τ = τ(s). This is shown in Figure 2.

Proof of Proposition 5.2. From equation (5.4), if we make the substitutions (m, n) �−→
(−m, −n) and then n �−→ n+m2 in the sum over n, we get

SN ,ε,δ(x0, s) =
∑

(m,n)∈Z2

χ(−ε,
√
s+ε]

(
x0 +m

N1/2

)
χ[−1,1)

(
N1/2(n− x2

0 + 2mx0)+ δ

N−1/2(x0 +m)

)
.

To realise this as the value of a function of the space X, note for

(M , x) := n(x0)a(N) =
( (

N−1/2 2x0N
1/2

0 N1/2

)
,
(
x0

N1/2 , x2
0N

1/2
))

,

we have that

(m, n)M + x =
(
x0 +m

N1/2 , (2mx0 + n+ x2
0)N

1/2
)

.

Thus,

SN ,ε,δ(x0, s) = fAε,δ (�n(x0)a(N)),

where Aε,δ = Aε,δ(s) := {(x, y) ∈ R2 : x ∈ (−ε,
√
s + ε], ((y + δ)/x) ∈ (−1, 1]}, as

required.

To relate the random variables YNs to those defined on the space X, we set S̃N (x0, s) :=
fτ(s)(�n(x0)a(N)), Ỹ Ns := S̃N (WN , s) and, more generally, YN ,εN ,δN := SN ,ε,δ(WN , s).

https://doi.org/10.1017/etds.2022.58 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.58


3124 S. Pattison

As we will now see, the limiting distribution of the variables YNs is identical to that of Ỹ Ns .
To see this, we first show the following.

PROPOSITION 5.3. P(YNs �= YN ,εN ,δN ) → 0 as N → ∞.

Proof. In light of equation (5.5), it is sufficient to prove

P(YN ,−εN ,δN
s < YN ,εN ,δN

s ) → 0

as N → ∞. Note

SN ,εN ,δN (x0, s)− SN ,−εN ,δN (x0, s) = (fAεN ,δN
− fA−εN ,δN

)(�n(x0)a(N)))

= fAN (�n(x0)a(N)),

where AN := AεN ,δN \ A−εN ,δN . Now, we let the set A′
N be the union of the two rectangles

[−εN , εN ] × [−η, η] and [1 − εN , 1 + εN ] × [−η, η], where η := √
s + 1. Then, for N

sufficiently large, AN ⊂ A′
N and A′

N ↘ A∞ := {0, 1} × [−η, η] which has (Lebesgue)
measure zero. Therefore, whenever n ≤ N are sufficiently large,

P(YN ,−εN ,δN
s <YN ,εN ,δN

s ) ≤ νN(fA′
n
).

Each of the functions fA′
n

is piecewise continuous as discontinuities of fA′
n

correspond to
lattices with points in the boundary of A′

n, which has (Lebesgue) measure zero. So, taking
lim supN→∞ and using Theorem 1.10, we get

lim sup
n→∞

P(YN ,−εN ,δN
s <YN ,εN ,δN

s ) ≤
∫
X

fA′
n
dmX

for all n sufficiently large. Taking n → ∞ and applying the dominated convergence
theorem (as each set A′

n is uniformly bounded and hence fA′
n

is uniformly bounded by
an integrable function for n sufficiently large), we have

∫
X
fA′

n
dmX → ∫

X
fA∞ dmX. By

Lemma 5.1,
∫
X
fA∞ dmX = 0, which shows the required result.

The above then allows us to prove the following.

PROPOSITION 5.4. P(YNs �= Ỹ Ns ) → 0 as N → ∞.

Proof. This goes along similar lines to the proof of Proposition 5.3. First note that, by this
result, it is sufficient to show

P(YN ,εN ,δN
s �= Ỹ Ns ) → 0

as N → ∞. Points in �N where these random variables differ correspond to lattices with
points in exactly one of the sets τ or AεN ,δN . Hence, P(YN ,εN ,δN

s �=Ỹ Ns ) ≤ νN(fτ�AεN ,δN
).

We can also find a sequence {τN }∞N=1 of regions in R2, each consisting of a triangular
region with a smaller triangular region removed from its interior, such that τ�AεN ,δN ,L ⊂
τN for all N and τN ↘ W , where W has (Lebesgue) measure 0. By taking limsups and
using Theorem 1.10, we get

lim sup
N→∞

P(YN ,εN ,δN
s �= Ỹ Ns ) ≤

∫
X

fτn dmX
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for all n. Taking n → ∞, using the dominated convergence theorem and Lemma 5.1 again
gives the result.

Using these two propositions, we are now in a position to prove Theorems 1.1 and 1.5
using Theorem 1.10.

Proof of Theorem 1.1. Let j ∈ N0 and s > 0. By Proposition 5.4, it is enough to show

lim
N→∞ P(Ỹ Ns = j)

exists. We have P(Ỹ Ns = j) = (1/N)
∑N−1
k=0 χ{x0:S̃N (x0)=j}(k/N) = νN(fj ,s), where

fj ,s := χ{fτ (s)=j}. Now, note that the points of discontinuity of χ{fτ(s)=j} correspond
to lattices with points in the boundary of the set τ(s), ∂τ(s). Namely, if �(M , x) is
a discontinuity point of fj ,s , then the lattice {mM + x}m∈Z2 contains a point in ∂τ .
However, then f∂τ(s)(�(M , x)) ≥ 1. By Markov’s inequality and Lemma 5.1, the set of all
such discontinuity points is contained in a set of measure zero, namely the set {f∂τ(s) ≥ 1}.
So we can apply Theorem 1.10, which gives us that

lim
n→∞ P(Ỹ Ns = j) =

∫
fj ,s dmX.

Hence, we see the limiting distribution Ej(s) of the quantities EN ,j (s) is given by

Ej(s) = mX({�(M , x) ∈ X : |(Z2M + x) ∩ τ(s)| = j}). (5.7)

Reference [14, Proposition 8.13] immediately tells us this function is C2.

Proof of Theorem 1.5. Let Ys : X → R be given by Ys = fτ(s) and let ξ be the associated
point process. Given a point �(M , x) ∈ X, this point process takes the form

ξ(�(M , x)) =
∞∑
j=1

δsj ,

where sj = inf{s > 0 : Ys(�(M , x)) ≥ j}. In this setting we have, analogously to equation
(1.7), that ξ((a, b]) = Yb − Ya . This agrees with equation (1.9) due to the definition of
τ(s). If sj = sj+1 for some j, it must be the case that the lattice defined by (M , x) contains
multiple points on the boundary of the triangle τ(sj ). Now, for any s > 0, the boundary
of the triangle τ(s) is contained within the lines y = x, y = −x and x = √

s. So, if the
lattice defined by (M , x) ∈ X does intersect the boundary of the triangle τ(s) in a set of
size at least two for some s, then either:
• the lattice contains a point in the line y = x;
• the lattice contains a point in the line y = −x;
• the lattice contains multiple points in the line x = √

s for some s > 0.
By Lemma 5.1, the measure of the set of all points �(M , x) ∈ X whose corresponding
lattice intersects the lines y = x or y = −x is zero. Moreover, in the case where we have
multiple lattice points on the line x = √

s for some s > 0, we can find (u, v) ∈ Z2 such
that (u, v)M has first coordinate equal to 0. So, for (u, v) ∈ Z2, define

Gu,v := {(M , x) ∈ G : (u, v)M = (0, y) for some y ∈ R}.
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For all (u, v), Gu,v is a codimension-one submanifold of G and so mX(Gu,v) = 0.
Therefore, the set of all lattices with multiple points on one of the vertical lines x = √

s

has measure zero. Consequently, the points (sj )∞j=1 are almost surely distinct and so the
process ξ is simple.

To verify condition (i) in Lemma 1.13 holds, take an interval (a, b] ⊂ R+. Then,
E[ξN((a, b])] = E[YNb − YNa ] → b − a as N → ∞ since, for any s > 0, the interval
[x0 − 1/2N , x0 + 1/2N)+ Z contains, on average, s +O(1/N) points from the sequence
(
√
n)


sN�
n=1 as x0 varies across �N . By Lemma 5.1, mX(ξ((a, b])) = mX(Yb − Ya) =

b − a.
To verify condition (ii) holds, let k ∈ N and a1 < b1 ≤ a2 < b2 ≤ . . . ≤ ak < bk be

non-negative real numbers. Set V = ⋃k
j=1(aj , bj ].

P(ξN(V ) = 0) = P

( k⋂
j=1

{YNbj = YNaj }
)

. (5.8)

Now let VN := ⋂k
j=1({YNbj = Ỹ Nbj

} ∩ {YNaj = Ỹ Naj }). By Proposition 5.4, P(VN) → 1 as
N → ∞. Therefore,

lim sup
N→∞

|P
( k⋂
j=1

{YNbj = YNaj }
)

− P

( k⋂
j=1

{Ỹ Nbj = Ỹ Naj }
)∣∣∣∣

≤ lim sup
N→∞

P

( k⋂
j=1

{YNbj = YNaj }�
k⋂
j=1

{Ỹ Nbj = Ỹ Naj }
)

≤ lim sup
N→∞

P(BcN) = 0. (5.9)

Moreover,

P

( k⋂
j=1

{Ỹ Nbj = Ỹ Naj }
)

= νN(χ{fD=0}), (5.10)

where D = D(a1, b1; a2, b2; . . . ; ak , bk) is the set
⋃k
j=1(τ (bj ) \ τ(aj )). Note that the

function χ{fD=0} has discontinuities at points in X whose corresponding lattice contains
a point in the boundary of D. Since the boundary of D is a union of the boundaries of
the triangles τ(aj ) and τ(bj ), it has measure zero. Thus, we can apply Theorem 1.10 and
deduce that

νN(χ{fD=0}) → mX(fD = 0) (5.11)

as N → ∞. Finally, given

mX(ξ(V ) = 0) = mX

( k⋂
j=1

{fτ(aj ) = fτ(bj )}
)

= mX(fD = 0), (5.12)
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we get

lim
N→∞ P(ξN(V ) = 0) = mX(ξ(V ) = 0)

by combining equations (5.8), (5.9), (5.10), (5.11) and (5.12), completing the proof.

The proof of Corollary 1.7 relies on the following consequence of the Siegel integral
formula.

LEMMA 5.5. [5, (3.7)] Let F1, F2 ∈ L1(R2). Then∫
X

∑
m1 �=m2∈Z2

F1((m1M + x)F2((m2M + x))dmX(M , x) =
∫
R2
F1 dx

∫
R2
F2 dx.

We will also use non-escape of results proved by El-Baz, Marklof and Vinogradov in
[6], which is the content of equation (5.13) below.

Proof of Corollary 1.7. Expanding the formula for |Ys(M , x)|2, we see that∫
X

|Ys(M , x)|2dmX(M , x) =
∫
X

∑
m1 �=m2∈Z2

χτ(s)(m1M + x)χτ(s)(m2M + x)dmX(M , x)

+
∑
m∈Z2

χτ(s)(mM + x)dmX(M , x).

This equals s2 + s by Lemmas 5.5 and 5.1.
As in [6], we define

PN := {√n+ Z : 1 ≤ n ≤ N and n is not a square}.
Also, for an interval I ⊂ R, we define the function ZN(I , ·) : [0, 1) → R by setting

ZN(I , α) := |(|PN |−1I + α + Z) ∩ PN |.
This gives the number of points of PN in the interval I when normalized and shifted by α.
Now, equation (2.5) in [6] tells us

lim
R→∞ lim sup

N→∞

∫
{ZN(I ,·)>R}

ZN(I , α) dα = 0. (5.13)

Fix s > 0. For anyN ∈ N, one can see from the inequality
√
t + 1 − √

t ≥ 1/2
√
t + 1 that

all points PsN lie a distance at least 1/2
√
Ns + 1 away from 0 ∈ T. As a consequence,

when N is sufficiently large, the only points of the sequence {√n+ Z : 1 ≤ n ≤ sN}
which lie in the interval of width 1/N centred at 0 are themselves 0 and correspond to
squares less than sN . Therefore, when N is sufficiently large, we have SN(0, s) = 
√sN�
and, if we define Êj ,N(s) to be the proportion of the intervals {[x0 − 1/2N , x0 + 1/2N)+
Z : x0 ∈ �N } containing j points of PsN,

|Ej ,N(s)− Êj ,N(s)| ≤ 1
N

. (5.14)
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Now, for a large natural number R, we have that∣∣∣∣E[(YNs )
2] −

∫
Y 2
s dmX − s

∣∣∣∣
≤

∣∣∣∣ (SN(0, s))2

N
− s

∣∣∣∣ +
∣∣∣∣ 1
N

∑
x0∈�N\{0}

SN(x0, s)2 −
∫
Y 2
s dmX

∣∣∣∣
≤

∣∣∣∣ (SN(0, s))2

N
− s

∣∣∣∣ +
∣∣∣∣
R∑
j=0

j2Êj ,N(s)−
∞∑
j=0

j2Ej(s)

∣∣∣∣ +
∞∑

j=R+1

j2Êj ,N(s).

The first term above here clearly tends to 0 as N → ∞, whilst the second tends to∑∞
j=R+1 j

2Ej(s) as a consequence of Theorem 1.1 and equation (5.14). So, to complete
the proof, we need to show

lim
R→∞ lim sup

N→∞

∞∑
j=R+1

j2Êj ,N(s) = 0. (5.15)

First, note

∞∑
j=R+1

j2Êj ,N(s) = 1
N

∑
x0∈�N\{0}

SN(x0, s)2χ{SN (·,s)≥R+1}(x0)

≤ 1
N

∑
x0∈�N

∣∣∣∣ZsN
([

− s

2
,
s

2

)
, x0

)∣∣∣∣2

χ{ZsN ([−s/2,s/2),·)≥R+1}
(
k

N

)
,

since the shifted intervals |PsN |−1[−s/2, s/2)+ x0 + Z contain [x0 − 1/2N , x0 +
1/2N) + Z.

Second, for any α ∈ [x0 − 1/2N , x0 + 1/2N), as the interval |PsN |−1[−s, s)+
α + Z contains |PsN |−1[−s/2, s/2)+ x0 + Z, we have ZsN([−s/2, s/2), x0) ≤
ZsN([−s, s), α) for any such α. Thus, we get

1
N

∑
x0∈�N

∣∣∣∣ZsN
([

− s

2
,
s

2

)
, x0

)∣∣∣∣2

χ{ZsN ([−s/2,s/2),·)≥R+1}(x0)

≤ 1
N

∑
x0∈�N

N

∫ x0+1/2N

x0−1/2N
|ZsN([−s, s), α)|2χ{ZsN ([−s,s),·)≥R+1}(α) dα

=
∫

{ZsN ([−s,s),·)>R}
|ZsN([−s, s), α)|2 dα.

Taking N → ∞ and applying equation (5.13) gives us equation (5.15) and hence the
result.

6. Properties of the limiting process
As we noted in §1, ξ is a simple intensity-1 process which does not have independent
increments. The simplicity of this process was shown in the proof of Theorem 1.5. The
fact it has intensity 1 follows from Lemma 5.1 since for any interval (a, b] ⊂ [0, ∞), we
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FIGURE 3. Any lattice containing a single point in B̃ will contain one in either Ã or C̃ (left). An example of a
lattice with no points in Ã ∪ C̃ (right).

have that

mX[ξ((a, b])] = mX(Yb − Ya) = b − a.

To see that ξ does not have independent increments, consider the intervals A := [0, 2),
B := [2,

√
5) and C := [

√
5, 3). Then,

mX(ξ(A ∪ C) ≥ 1 | ξ(B) = 1) = 1,

but

mX(ξ(A ∪ C)) < 1. (6.1)

This follows from the fact that if there is exactly one point of the lattice given by
x ∈ X in the set B̃ = {(u, v) ∈ τ(∞)|4 ≤ u < 5} then, by Minkowski’s theorem, there
is another lattice point in τ(∞) which lies a distance at most 2/

√
π away. Given

ξ(x)(B) = 1, this point must lie in either the set Ã = {(u, v) ∈ τ(∞)|0 ≤ u < 4} or
C̃ = {(u, v) ∈ τ(∞)|5 ≤ u < 9} giving us ξ(x)(A ∪ B) ≥ 1. Conversely, it can easily be
seen via analysing the form of the Haar measure on X that a positive proportion of our
affine unimodular lattices contain no points in Ã ∪ B̃. An example of such a lattice is
shown in Figure 3.

In terms of understanding the distribution of the points {√n+ Z : 1 ≤ n ≤ sN} among
our partition intervals, the lack of independent increments in the limiting point process
tells us when (a, b] ∩ (c, d] = ∅, the points {√n+ Z : aN < n ≤ bN} and {√n+ Z :
cN < n ≤ dN} do not distribute among the partition intervals independently in the limit as
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N → ∞. For example, when SN(x0, 2) is large, then, on average, SN(x0,
√

5)− SN(x0, 2)
will be also. This is made intuitively clear by the fact that if Ã contains many lattice points,
then we would also expect B̃ to do so also.
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