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Abstract

A proof is given of the Euler-Maclaurin sum formula, on a Banach space of differentiable vector-
valued functions of bounded exponential growth, using the Laplace transformation. Some related
summation formulae are proved by the same methods. Properties of the standard summation operator
are proved, namely spectral properties and boundedness, continuity and differentiability results.
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1. Introduction

The aim of this paper is to give a new proof of the classical Euler-Maclaurin
formula using Laplace transform techniques, and to describe some properties of
the standard summation operator on spaces of differentiable functions. Here we
stretch the adjective 'classical' to include the case of vector-valued functions; but
this is only an incidental generalization, and not the main purpose of the proof.
The new proof of the Euler-Maclaurin formula is no shorter than existing proofs,
but it does show very clearly the close connection between the formula and the
Laplace transformation; it is based upon an elegant relation between the Laplace
transforms of the nth Bernoulli polynomial and its periodic extension (Lemma 4).
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368 John Boris Miller [2]

The proof is a reformulation, for a space of differentiable functions, of a proof
given previously by the author for generalized functions, in [8].

The formula is seen as a statement about the standard summation operator Su,
defined by

(i) (sB*)(0= L*( ' -~ ) ;
r = 0

indeed it can be thought of as a Laurent series expansion for this operator in
terms of a variable w about 0, although we allow only <o > 0. In an earlier paper
[7] (see also [5], [6], [9]) the author discussed the Euler-Maclaurin formula arising
from a general Baxter operator acting on an arbitrary Banach algebra. Because of
the spectral conditions required there, the operator Sa in (1), although a Baxter
operator, is not covered by that discussion, and the present paper is in part an
attempt to clarify this inadequacy. The choice of Banach space on which to study
Su is suggested by the Euler-Maclaurin formula: it is SJC* +> %'•> P)>tne space of n
times continuously differentiable functions of exponentially bounded growth
taking values in a Banach space X, and vanishing with their derivatives at 0. On
this ©2, Su turns out rather surprisingly to be bounded, and something can be
said about its spectrum and about the properties of the function u <-* Sa. We give
a formula for the resolvent of S^. The spectrum does not contain 0, and SJ1 is a
difference operator (Theorem 5).

The properties of the function w >-* Su depend upon a functional equation
(Lemma 8) which it satisfies. Continuity between spaces is uniform, but on a
single space the matter is more delicate. One is also interested in the existence of
the limit K = limMN0 uSu. The results are summarized in Theorem 9.

Finally, in Section 6 some related summation formulae are proved by the same
Laplace methods. These include Boole's summation formula and the periodic
formulae of Berndt and Schoenfeld.

The author would like to thank for its hospitality the Faculty of Mathematical
Studies at the University of Southampton, where this work was done.

2. Notation and preliminary lemmas

2.1 Let X denote a complex Banach space, with norm || • ||. We use Jf-valued
functions x, y,... on R + = [0, oo). The derivative x'(t) of x is the limit in norm
of (x(t + h) — x(f))A"1 as h -* 0 (or as h \ 0 when t = 0; and one-sided
derivatives are also used elsewhere) if this limit exists. Integrals of ^-valued
functions may be taken to be Bochner integrals (see [4], pp. 78ff); most integrands
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[ 3 ] The standard summation operator 369

will be continuous functions. The Laplace transform of x is the function x defined
by

(2) x(s) = (X e~s'x{t) dt = lira C e~s'x(t) dt,

whose domain includes some open halfplane of C and whose range is in X ([4],
Chapter 6, and [10]). The same formula (2) is used also for the Laplace transform
/of a C-valued function/.

First we summarize some well-known properties of Laplace transforms needed
here.

LEMMA 1. Let x: R +-> X have continuous derivatives x', x",... ,x{k~l) on R +,
with x(*-1) absolutely continuous, satisfying

(3) ||JC<;>(O||<«P' (a / / /GR+)

for some positive constants c and p, and j = 0 ,1, . . . ,k — 1. Then the Laplace
integrals (xO )) (s), j = 0,l,...,k, converge (absolutely for j < k — 1) for all
R e ( s ) > p; and for j = 1,2, ...,k,

(4) (JC<»)"(J) = -x(O)^"1 - x'(0)sJ~2 xO-^O) + sJx(s).

If also x(0) = x'(0) = • • • = x^ -^O) = 0 then sJx(s) is the (value at s of the)
Laplace transform ofxu)forj = 1,2,.. .,k and Re(s) > p.

PROOF. By induction, using integration by parts.

LEMMA 2. If x is continuous and the Laplace integral x(s) converges absolutely
(i.e. if j ^ e~'Re(s)\\x(t)\\dt < oo) then s'^s) is the Laplace transform of Kx,
where

(5) (Kx)(t) = f x(u) du.
Jo

LEMMA 3. If x: R+-> X and f: U + -> C are continuous and the integrals
x(s), f(s) converge absolutely, then f(s)x(s) is the Laplace transform of
f'f(t-u)x(u)du.

For the proofs of Lemmas 2 and 3 we can use [4], Theorem 6.2.4.

2.2 Definition. For n e N and p 6 R let 6"(R +, X; p), or 6" for short, denote
the space of all functions x: R + -» X which have continuous derivatives up to and
including x(n) on R +, satisfying (3) for^ = 0,1 , . . . ,n. Here c may depend upon x.
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Clearly © " is a Banach space with respect to pointwise operations, and norm

(6) |4,= ETrsupfllx^Oll*-")

(note that the norm depends upon p).
S°°(R +, X; p), or S00 for short, is the subset of 0 ^ ©"(R +, X; p) consisting

of those x for which l*^ is finite, and is a Banach space with respect to this
norm.

©2(R+, X\ p), briefly ©(J, for 1 < n < oo denotes the closed subspace of ©"
consisting of those x for which xij\0) = 0foij = 0,l,2,...,n. We write [x]y =
sup,>0ll*O)(')e-p% so that

(7) ll*O)(0|| < e<"[x]j for all / > 0,

and \x\n = Y.j-o[x]j/j\ (The factorial factor is significant only when n = oo or
when ring multiplication is under consideration.)

If p < 0 and A" is a Banach algebra then ©"(R +, X; p) is also a Banach algebra
with respect to pointwise multiplication; if p < 0 then © " is without identity, and
its elements are functions which together with their derivatives decay at least
exponentially to zero as t -» oo.

If p > 0 then ©"is not an algebra. To obtain an algebra one would need to
modify the definition, replacing p by a sequence P = (pj)JL0 of nonnegative
numbers and writing py instead of p in the definition of [x]j. Provided the
sequence is superadditive, that is, p7 + pk < pj+k, and hence increasing and
unbounded, ©"so modified is a Banach algebra with identity which we denote by
©"(P). Even here we must have p0 = 0, so that x in 6"(P) is bounded though its
derivatives may increase exponentially with t. If px > 0 then the sequence P is
strictly increasing. We do not use ©"(P) in this paper.

2.3 For the Bernoulli numbers and polynomials we follow the notation of [3,
pp. 320, 321]. Thus the Bernoulli numbers are the constants 2?y in the formula

and the nth Bernoulli polynomial is

(9) ^(t) = t-- ^nf-1 + £

Here [•] is the greatest integer function, and empty sums are zero. Note that
</>„(()) = 0. The periodic extension of </>„ outside [0, l ) is written ^n:

(10) * „ ( ' ) = * , ( ' ) f o r O < / < l , *B(r + r ) = *„( / ) for r = 1,2,...
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We shall use the recurrence formula

(11) <t>n(t + I) - 4>n(t) = nt"~l (» = 1 ,2 , . . . ) .

LEMMA 4. The Laplace transform integrals of <$>„ and \pn converge absolutely for
Re(s) > 0, and

(12) k(s) = Us ]
s"(es —

PROOF. Convergence is clear. Also, by (11),

e~^(u + k) du

= f e-K'f e-"U(u) + » *!(« +y)"~1) du
k-0 J<> \ j-0 ]

= f f e-«"+k)tn{u + k)d f

= t T + 1 e-'VB(0 dt + -^— f fJ

k-0J>< e l y = 0 J

f fJ+l e-

LEMMA 5. For Re( \ ) > 0 and n > 2,

i + i

PROOF. For the power function/(f) = tp,p e N, we have/(X) = />!X ^ J; so
(13) follows on taking the Laplace transform of <j>n in (9).

Notice that (13) gives a formula for an arbitrary partial sum of the righthand
side of (8). Then (12) immediately gives a formula using \$/n for the remainder
after finitely many terms:

for all Re{A) > 0, n > 2. These two lemmas are crucial.

https://doi.org/10.1017/S1446788700026148 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026148


372 John Boris Miller [6j

2.4 Further notation. For Banach spaces X and Y, &8{X,Y) denotes the Banach
space of all bounded linear operators from X into Y, with identity / ; 9S(X)
denotes 38(X, X). For r e f ( J f , 7 ) , R(\,T) denotes the resolvent operator
(XI - T)~\ an element of $6(Y, X), and Sp(r), PtSp(T), Res(7) denote the
spectrum, point spectrum and resolvent set of T respectively.

3. The standard summation operator Su

For any function x: U + -> X and « > 0, t > 0 we define (Sux)(t) by (1),

(15) (Sux)(t) = £ x(t - r«),

so that also SMx: R + -* X. Su can be thought of as a linear operator which maps
any function to a sum of pulses, each the shape of that function, recurring at time
intervals u, starting at time 0 and repeated indefinitely. If x(u) for u < 0 is
interpreted always as 0 then the sum can be written as L~_0.x(/ — ru). If x is
continuous then Sux is continuous if and only if JC(O) = 0.

LEMMA 6. / / the Laplace integral x(s) converges absolutely and Re(i) > 0, then
the integral (Sux) (s) also converges absolutely, and

P R O O F "
j=0 Ju r=0

00 00

= E /"V"*(/ - ru) dt
0 ™r - 0

r-(TO

The assumptions on x(s) and J are sufficient to justify the change of order at (17),
and also to establish the absolute convergence of the integral (Sux) (s).

We return to discuss S,, further in Section 5 below.
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4. The Euler-Maclaurin formula

We introduce the Euler-Maclaurin operator EMn u by the definition

(18) (EMn^x)(t) = I,x(t-rO)--( x(u)du-lX(t)

\\(n-\)\ l-\\>-XB.

The proof of the Euler-Maclaurin formula, which says that EMn ux = 0, is an
easy deduction from (14) and Lemmas 6, 2, 1 and 3. Let x be given, say in Eg.
Write X = us in (14) and multiply by x{s): the resulting equation asserts, in view
of those lemmas and the fact that x and its derivatives vanish at 0, that

(EMnux)'(s) = 0 forRe(j) > max{0, p}.

Thus EMn wx, being a continuously differentiable function whose Laplace trans-
form vanishes on a right halfplane, must vanish identically ([10], p. 61; [4], p.
216). Taking n = IN for simplicity (and noting that the property x(2N)(0) = 0 is
not used in the proof) we can state the result thus:

THEOREM 1. If x: R +—» X and its first 2N derivatives are continuous on R +, and
for some positive constants c and p satisfy \\x^\t)\\ < cept {all t > 0; j =
0,1, . . .,2N), and if x, x',... ,x(2N~1) all vanish at 0, then

['/<•»]

(19) £ x{t -ru) = -

yh

for all t ^ 0 and all w > 0.

COROLLARY 1. On E™ the operator EMn M is zero, for all n < m < oo.
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COROLLARY 2. Under the assumptions in Theorem 1, for integers k, m with
0 < k < mwe have

m 1 /-ma 1
(20) £ x(/-«) = - / x(u) du +-r{x(mu) - x(ka))

+ £

Here the periodicity of \p2N has been used to simplify the remainder term.
Since equation (20) uses vak. s of x and its derivatives only in the interval

[ku, mu], whereas the proof uses values on all of R +, we need to show that this
dependence upon a wider domain is illusory.

LEMMA 7. Let y: [a, b] —» X, where 0 < a < b < oo, /lafe continuous derivatives
y', y",... ,_y<n) on [a, b]; here n < oo. 77ien f/iere exwte a function x e S Q JMC/I that
x\[a,b]=y.

PROOF. For 0 < t < a take

x(t) = / n + 1 c 0 + / n + 2 c x + • • • + tln+lcn

with coefficients Cj in X. Clearly xu\0) = 0 fory = 0 , 1 , . . . ,n; and we can solve
the equations jc( j )(a) = yu\a) for the elements Cj uniquely. This extends ap-
propriately the definition of y to the interval [0, a]. We deal similarly with the
interval [b, b + 1] and take x(t) = 0 for all f > b + 1.

From this and the previous corollary we deduce

THEOREM 2. / / k, m e N, 0 < /c < m, u > 0, N > 1 am/ / / x: [£«, ww] -> A'

has continuous derivatives up to and including x ( 2 N ) o« [/cw, mu], then (20)

This establishes the Euler-Maclaurin formula almost in the sought generality,
by this method of proof. In Theorem 2 we assume k > 0, so that 0 is not in the
domain of x, and we next consider how to deal with the case where x e E" \ ©g,
which covers the case k = 0.

For any y in 6 " there is a unique polynomial p of degree at most n such that
the equation x(t) = y(t) — p{t) defines a function x in 6 ^ namely, p is the
(n + l)th partial sum of the Taylor series of y about 0. By Theorem 1 we have
EMnux = 0, so
(21) EMn^y = EMn<uP.
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We introduce the Euler-Maclaurin functional An a m on ©" (here m is a nonnega-
tive integer) by writing

(22) K«,Jy) = ( ^ , « P ) ( ™ « ) = (EMn,ay)(ma>).
An w TO is a linear functional (cf. Hardy's introduction of the 'Euler-Maclaurin
constant' of a function, [3, p. 327]). Direct calculation shows, for the polynomials
tJ and with n = 2N again, that

j+1 B\U+»<*J O'odd, 1 <./ < 2tf - 3),

(23) EM2NJtJ){mU) = / 0 U = 2N- 1),

The numbers on the right are independent of m (and for 2N > j + 2 they are also
independent of N). If p is the polynomial of degree 2N constructed as above for y
in 6 2 ̂  then we get
(24)

so A is independent of m, and its third suffix can be dropped. Therefore
(EM2N j X m w ) is equal to this expression on the right in (24). This equation, on
examination, turns out to be nothing other than equation (20) with x replaced by
y and with k put equal to 0. Thus

THEOREM 3. Theorem 2 holds also when k = 0. This is so whether or not x and its
derivatives vanish at 0.

While (EM2Nux)(t) = 0 for all t > 0 when x e &lN, we do not assert the
same identity when x e ©2Ar; we have shown only that EM2Nux then takes the
same values at all integer multiples of u.

5. Further properties of 5U

5.1 Each Sa is a Baxter operator with parameter value 1, in the sense that it
satisfies the identity

(25) Sax • Say = SjSax • y + x • Suy - x • y)

for all functions x,y onU +, using pointwise multiplication. The property cannot
be formulated in 6" when p > 0 since the products are not well defined there;
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however (25) is certainly meaningful for arbitrary functions on U +. Identity (25)
is the starting point of the analysis in [7].

THEOREM 4. For every « > 0 and 0 < n < oo, Su is a bounded linear operator on

6g(R+, X; p) with norm

(26) ISJ,, < * ' " ( * ' " - I ) " 1 ,
provided p > 0.

PROOF. Let n be finite, and X G 6 J . If ku < t < (k + l)w then for j =

Calculation shows that the same formula holds when t = ku because x and its
derivatives vanish at 0, and that (Sux)U) is continuous. (In order for (Sux)("\t)
to exist everywhere we must assume x(n)(0) = 0. This is the reason for requiring
x("'(0) = 0 in the definition of Eg, although the property was not needed for
Theorem 1.) Since Sax(t) = x(t) for 0 < t < a, (Sux)a)(0) = 0 fory = 0,1, . . . ,n.
Finally, when ku < t < (k + l)w we have, by (7),

(27) ||SB*<;>(0|| < £ ||*O)(> - ™)|| < I [x]je«'-»» < [x]je<" £ e —

so |5ux|n = E;»0sup,>0ll(^)O)(0^'"| |//!<^'0(^u-l)"VU. The result
follows.

Note that Sw does not map ©" into 6", or even into ©°. It is clear also that the
proof fails for p < 0, and hence for the algebras Sg(P) of Section 2.2. Henceforth
we assume p > 0.

THEOREM 5. For all w > 0 and 0 < n < oo the point spectrum of Su as an
element o/^(Gg) is empty, and 1 belongs to the residual spectrum. When X ¥= 1,

(28) (XI - | £
for allt >0 (the sum is zero when 0 < t < u). In particular, 0 e Res(Su) and

(29) S - M ' ) = * ( ' ) ( 0 < r < w ) , x ( 0 - * ( * - « ) ( / > « ) •
WTie/i \ = 1 tve Ziaue

(30) dom((7 - S,,)"1) = {x e g^: jc(r) = 0/or0 < t < «,
O)(w) = 0 forj = 1,2,.. . ,«},
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(31) ( / - Sj-'xit) = x(t) - x(t + <o) (t> 0),

and (I — S^)'1 is a bounded operator on its domain. For all n,

(32)

(the righthand side is a closed disc), and the resolvent R(X, Sa) is given by (28) when
X is not in Sp(Sa)). When n is finite there is equality in (32).

PROOF. Straightforward calculations from the definition (15) show that for all
X, (XI - Su)y = 0 implies >> = 0, so PtSp(SJ = 0 . Moreover, for any y e eg,
(I — Su)y belongs to the righthand side of (30). Conversely, if x belongs to the
righthand side then (31) and boundedness are easily verified, and this completes
the proof of (30).

To prove (28), write the righthand side as Vx(t); it can be verified that
(XI - SJVx = V(XI - SJx = x and so (28) holds for all x in the domain of V.

The previous proposition gives an upper bound for \Su\n and hence for the
spectral radius of Su. To get the sharper result (32), write y(t) = Vx(t); for
ko> < t < (k + 1)« we have

— ru
X- 1

so

and therefore, with n < oo,

provided |X(\ - I)"1! < epu. Thus for all such numbers \ , F e ^ ( E g ) and so
X G Res(Su). This proves the inclusion.

Now suppose that n is finite. Let x be a function which equals ep'a for t 2= a (a
being any nonzero element of X) and is defined on [0, w] in such a way that
x e G J ( x can be constructed as in the proof of Lemma 7). If X(X — I ) " 1 = epaz
we have, for ku < / < (k + l)w and \z\ > 1,

i e""(zk — 11
y{t)e-<" = T-5-y + — (-2

 iJ~,
* " 1 ( A l ) 2 ( l )

and with fixed X this is unbounded as k -> oo. So for such X, [y]0 = +oo,
y <£ Eg. Therefore if X is in the open disc |A(X - 1) - 1 | > e"" then x does not
belong to the domain of (XI - Sw)-1, and so X e Sp(5w); since the spectrum is
closed there must be equality in (32).
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COROLLARY. For finite n, \Sa\n = e"u(ep" - I)"1.

PROOF. The result just proved shows that the spectral radius is ep"(e1'" — I)"1,
and the norm is not less than this; nor more, by (26).

The integration operator K of (5) belongs to ^ ( 6 " ) and maps ©g into ©g with
norm \K\n < 1 + 1/p. For n < oo it is quasinilpotent as an element of ^(©g).

The differentiation operator D, for which

(33) (Dx)(t) = x'(t), dom(Z>)= {xG©g:x 'G ©g},

is closed, unbounded with dense domain; in fact dom(£>) = Co"
+1 (see Section

5.2, below). The point spectrum of D is empty and Sp(D) is included in the right
halfplane Re(X) > p. In particular, 0 G Res(D) so D : is bounded on ©g; in fact
D1 = K. On heuristic grounds we would expect that Su and D are related by

(34) Sa = euD(e"D- I)"1

(see [7], equation (52); but note that in the present circumstances the right-
hand side of (34) is not defined), and hence we would expect that Sp(Sw) =
{e"x(e"x - I)"1: X G Sp(Z>)}. In this connection note that the function <j>(X) =
ex(ex - 1) maps the halfplane Re(X) > p onto the disc |jti(/x - I)"1! > ep" of
(32). Theorem 5 therefore suggests that Sp(D) is precisely the halfplane when n is
finite; but we lack a proof of this.

The operator Ru N giving the remainder in (19),

is closed unbounded on &lN, since

(36) s±K+H+ E \2j)\

5.2 Instead of working in ©„ for a fixed n we can treat K and D as maps
between such spaces; the picture is then simpler. In what follows we assume
always that n is finite, and ©g denotes the space with its own norm | • \n whereas
Co" will stand for ©2 as a dense subspace of 6™ for some m < n, so that Co"
carries the relativized norm of ©"• The norm of ^(©o> ®o) wi l1 b e written
I " \m,n- We have seen that, for K, D and Sa mapping from ©g into 6g,

(37) ran(K) = dom(D) = Co"
+1,

and K and S bounded, D unbounded.
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THEOREM 6. The injection maps id: 6 g + 1 -> Sg and id: 6g3 -» 6g are bounded.
The maps K: ©2 ~* @o + 1, ^ : ®o + 1 ~* ®o a r e bounded isomorphisms of vector
spaces, each the inverse of the other, with norms

(38) |Jf|B>II+1<max{l,l/p}, |D|»+i,B < « + 1;

//ie operators K, D and Su: ©2 ~* ® o commutepairwise.

The proof is straightforward. The statement about commutativity must be
suitably interpreted: for D and Su for example it says that SaD = Z)5W as
operators from ©3+1 o n t o ®S-

5.3 We turn to some properties of the function

and the family (Su)u>0, supposing always that p > 0 and n is finite. First, an
addition law:

LEMMA 8. For all positive a and /?,

(39) Sa+p(Sa + Sp-I) = SaSp,

and Sa and Sp commute.

PROOF. For x e 6g and t > 0,

[I/a] [(I-ja)/fi]

(40) 5.5^(0= L L x(t-ja-kP).
7 = 0 /t = 0

Treating y and A: as a pair of real variables, let A denote the closed triangular
region in R2 bounded by the lines j = 0, k = 0 andya + k/3 = t. The righthand
side of (40) is the sum of terms x(t — ja — kfl) taken over all lattice points (j, k)
in A. Using such representations for each of the terms in (39), we find that the
proof of (39) reduces to making a simple partition of A into two triangles having a
common side. Commutativity of the range of S follows immediately from (39).

Identity (39) is implicit in the heuristic formula (34). It can be iterated: for
example, Sa+p+y(SpSy + SySa + SaSp - Sa - Sp - Sy + I) = SaSpSy. Perhaps
the most illuminating view of (39) comes by introducing the operators

(41) 7 L = 5 u ( 5 u - / ) - 1 = ( / - S - 1 ) " 1

with domains (30); we find that Tux(t) = x(t + u), so Tu is the restriction to its
domain of backward translation, and (39) becomes the semigroup property
Ta+p = TaTp. But notice that dom(7]i)) depends upon w.

Two important questions about the function S concern, in one form or another,
its continuity and the nature of the limit limMNi0«Sw. We consider first continu-
ity, and also differentiability.
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5.4 If x e ©2 then the A'-valued function (w, /) >-* Sux(t) is easily shown to be
continuous: one considers separately the cases where t/u is or is not an integer.
The continuity of the functions w -> Sux and w •-» Su is more delicate. First, we
give an easy result in which 5U is allowed to map into a larger space.

T H E O R E M 7. For all finite n > \ the function w -> Sa, (0, oo) -

norm-continuous, uniformly with respect to w on any halfline [TJ, oo) with T) > 0.

PROOF. For given x e 6J, w > 0, / > 0, small e, write

(42) y,(t) = Su+ex(t) ~ Sox(t).

The meanvalue theorem gives

(43) | k ' > ( 0 | | < 2 | e | [ * ] , + 1 e > ' £ y e - * " (/ = 0 , 1 , . . . , « -
7 = 0

(but there is no inequality for I = n). Write

(44) gp(a) - tjpe~j"> sothatgl(a) = ea(ea - I)'2;
j-0

then

(45) bJ»-a

(46) l^+e-U

The theorem follows.
To Sa there also corresponds an operator Ua recognizable as its derivative,

namely

(47) (Uux)(t)=- E « ' ( r - r « ) ;
r = l

however, to estabhsh that Uu = dSw/du> we have to work in ̂ ( S ^ , Sg"2) .

THEOREM 8. Let l < n < oo. l / x e g g tfie/i Uux, defined by (47), belongs to

6S~1

(48)

/ / « ^ 2 the function S: (0, oo) -» ̂ (Kg, Go~2) w differentiable and
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PROOF. Let x e ©g. It is easily verified that for fixed t the X-valued function/:
u >-» Sux(t) is differentiable and/ ' («) = Uax(t) for all u > 0. Using the mean-
value theorem as in the proof of Theorem 7 we can show that z, defined for fixed
w by z(t) = (Uax){t), satisfies \z\n_x < «g!(p«)|x|n; this proves (48) and the
preceding statement. Now write, for small e,

vt(t) = e-lyt(t) - z(t) = {e-l(Su+lx - Sux) - z)(t).

Two applications of the mean-value theorem give [ve], < 2g2(pw)|e|[jc]/+2,

(50) \e-\Sa+e - SJ - Ua\n,n-2 < 2n2g2{po>)\e\.

Then (49) follows; moreover differentiation is uniform on [TJ, OO) when TJ > 0.
More generally, i f l < / > < « — l w e write

(51) UUtPx(t) = (-l)PZ r'x<»(t - r « ) , I/u>1 = £/„;
r = l

then

(52) uUtP

and in #(©3, e^f- 1 ) we have

(53)

We remark that gp(a) has the form ea(ea - l)~p~lQp-i(e") where g^ .^ r ) is a
monic polynomial of degreep - 1; <2o(O = 1» (?i(O = ' + 1, Q2(?) = ' 2 + 4/ +
1, For a summation formula for Uu see Section 6.1 below.

We turn to the continuity of « •-> Su when, as is more natural, Su has the role
of an operator in ^(©g). Here even strong continuity does not hold on EJ;
however it holds on a non-trivial subspace. To prove this we introduce first the
subspaces

F"(a) = {x <= 6g: the function u -> Sax, (0, oo) -> 6g,
is continuous at w = a }.

Because the operators Su are uniformly bounded for say to > ja (Theorem 4),
F"(a) is a closed vector subspace of ©g; and clearly F"(a) is invariant under any
bounded linear operator which commutes with the operators Sa. We shall show
that F"(a) is independent of a. For this a preliminary lemma is needed.

LEMMA 9. For all positive a, 0 with a ¥= /? the operators Sa — Sp and Sa + Sp — I
are one-one, and the inverse of each is bounded on its domain.
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PROOF. Suppose a > /?. Lemma 8 gives (Sa - Sp)Sa_p = Sa(I - Sp), and
therefore since Sa_p is regular in ^ ( 6 g ) by Theorem 5,

and the assertion about Sa — Sp follows from the same theorem. The assertion
about Sa + Sp — I is immediate from (39).

LEMMA 10. The spaces F"(a) are independent of a, that is, if u >-* Sux is
continuous for some w then it is continuous for all w > 0; moreover the continuity is
uniform with respect to « in any interval [TJ, OO), r\ > 0.

PROOF. First we show that 0 < a < /J implies F"(fi) c F"(a). Let x e F"(fi).
For |e| -> 0 we have, in Eg,

W V . + S° ~ *)x ~ sp(Sf>-« + Sa-l)x^0

since all the operators commute. The lefthand side

= Sp-a + a + e\Sp-a + ^a + e ~ ^ ) X + Sp + t(Sa ~ Sa + e)X ~ Sp_aSaX

= (Sa+e - Sa)(Sp_a - Sp+e)x.

Here we have used Lemma 8. Writey = (Sp_a — Sp)x; we get

(Sa+C ~ Sa)y +(Sa+e - Sa)(Sp - Sp+e)x - 0.

The second term has norm at most 2(1 - e"^po)~1|(S'/3 - Sp+e)x\n by (26), so
(sa+e ~ sa)y ~~* °. J e F"(a). Lemma 9 says that (Sp_a - Sp)'1 is bounded on
its domain; since this operator commutes with, and its domain is invariant under,
every Sa, it follows that x e F"(a). This proves F"(fi) c Fn(a). A similar
argument using the other half of Lemma 9 proves the reverse inclusion. A more
careful accounting in the proof using the bound (26) shows that the continuity is
uniform, as stated.

In view of Lemma 10 we write F" in place of F"{a).

5.5 It is evident from the Euler-Maclaurin series (36) applied to x in ©g, at
fixed t, that

(55) UmoSux(t)
O

for yp2N is bounded and so (35) gives ]imUS:k0RUtNx(t) = 0. Equation (55) is the
assertion that the integral of x on [0, t] is the limit of a net of Riemann sums
using 'equipartitions'; more precisely, using the equipartition, for each w, of the
interval [/ - ([f/w] + 1)«, t] restricted to [0, t], and evaluations of the function
at the righthand endpoints. To examine the extent to which the limit exists in
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norm we introduce the subspaces

(56) L" = lx G eg: lim uSux exists in eg j ,

(57) M" = />» G Q£%:y = Um wSwx in eg , for somex G E j j .

Since the limit here must be Kx when it exists, y determines x uniquely in (57), in
fact x = Dy; and M" = K(L"). Since the operators wSu are uniformly bounded
as w \ 0, L" is a closed vector subspace.

THEOREM 9. There are the following relations of inclusion among these subspaces

of&l,forn > 0:

(58) C0"
+2 QM"Q Co"

+1 c F" n L";

50 no«e of these subspaces is trivial.

PROOF. Since ran(K) = Co"
+1 (Theorem 6), we have M" c Co"

+1. By property
(45), if x G Co

n+1 then x G Fn, so Co
n+1 c F".

To prove Co°+1 c L" we use the Euler-Maclaurin formula (19) or (36) for the
case N = 1. Let x G CO"+1; then

(59) uSax = Kx+ rwx + 2

where

(60) z(0 = « * w > 1 * ( 0 = - y

To prove wSux -» Kx it suffices therefore to show that \uRa x\n -» 0. Differenti-
ate once with respect to t in (60); we get

(61) z ' ( 0 = " '

since »p2(0) = 0 (<j>2(t) = t2 — t). (Since \p'2(v) is not defined at the points
v G ftj, a full verification of (61) involves partitioning [0, t] into subintervals
[t — (k + l)w, t — ku] and differentiating each such integral.) Now write this as

fory = 1,2,...,« we have

and hence

]>+i (y = 1,2 n), [ z ] y < (co 2 /8p ) [x ] 1 (j = 0).
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So as w \ 0,

»+i -» 0.

This proves that Co"+1 c L". Finally, this implies C0"+2 = AT(C0"
+1) c K(L") =

M".
W. Walter [11] has pointed out a class of uniformly continuous functions which

lie in F" n L". Suppose x G Eg and there exists a function 8: R +-> U + such that
(i) \x - xh\ < 8(/i) for h > 0 (here jcA(f) = x(f - /I) (/ > h), and xA(/) = 0
(0 < t < h)), (ii) S(h) \ 0 as h \ 0, and (iii) for some /> e M, S(mh) <
for all m e M, A > 0. Then \Sa+hx - Sax\ < 8(h)gp(pu) and IwS^x - Kx\
(1 - e""" )" 1 ^ 8 (" ) ^"' so x G /"" n L".

6. Other summation formulae

There are other summation formulae similar to the Euler-Maclaurin formula
and associated with summation-type operators rather like Sa. We mention a few
of these.

6.1 Theorem 8 gives information about Ua = dSa/du. By differentiating (36)
with respect to u> we obtain, for x
(62)

E rx(r rU) j&(r) E
r - l « 7 = 1

This formula but without remainder is proved by Laplace transform techniques in
a space of generalized functions in [8, equation (58)]. Note that the kernel in the
integral is not periodic. Further differentiations give more summation formulae.

6.2 Boole's summation formula. In the spirit of the present discussion this is
formulated as

(63) E (-irx*(' - ™) = \x(t) + £ L-V^
r - l y = l

where Hn is defined below; see B. C. Berndt and L. Schoenfeld [1, p. 31] and [2].
A proof along the lines of Sections 2-4 using the Laplace transformation is based
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on the Euler polynomials En( t) in place of the Bernoulli polynomials. En(t) is
defined by the generating function

Let Hn be the alternating periodic extension of En outside [0,1), Hn(t) =
(-l)[t]En(t - [t]). We find that

and also

1 -. IiC + l)] (_

these two equations being analogues of (12) and (14). Then (63) comes by taking
n = 2N — 1, A = us in (65), multiplying by x(s) and interpreting the terms.
Equation (63) holds for x e £ f .

6.3 Periodic Euler-Maclaurin summation formula of Berndt and Schoenfeld.
This formula includes and generalizes the Euler-Maclaurin and the Boole for-
mulae. It is determined by first choosing any periodic sequence A = {a^JL-n-
Let K ( e M) denote the period of A. Periodic Bernoulli numbers Bn(A) and
periodic Bernoulli polynomials Bn(t, A) are defined (neither sequence nor function
is actually periodic), and the formula can then in the present spirit be formulated
as follows: for X G 6 J ,

(66)

where the operator WAu and function Vn are defined below, by (77) and (80)
respectively; Vn is a modified periodic extension of Bn{-, A) outside [0, « ) . We
shall adopt the notation of B. C. Berndt [2], except for writing the period of A as
K, not k, who introduces the function and sequence

(67) G(\, A) = £ ane
2"inX/K, A* = (a_j)^_^x.

Of more interest to us is the function

(68) «?(A, A) = (*«* - 1)-1G[£,A) = (e*X ~ I)"1 £ ane»\
' n = 0
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The definitions of Bj(A) and Bj(t, A) by generating functions are

(69)

°° BAt,A)\J

(70) Xe^(X, A*) = £ A ,, }

j-Q J-

Now using the periodicity of 4̂ we find that

(71) 9(\, A) + 9(-\, A*) = -a0.

This gives

(72) BJ(A) = (-l)JBj(0,A) 0*1), 5^^)=

iy(0,yl*) = « ^ ) (ally).

We can also deduce from (71) that

(73) Bn(t,A)=

Then (72) and (73) imply for the Laplace transform of Bn(-,A) that, when
Re(X) > 0,

(74) ^Bn(K,A)= t^l\^

is the sum of the first n + 1 terms of the Laurent series of ^(X, A*) about
X = 0. Here we have an analogue of (13). Write the remainder as
- (\"/n\)Vn(\, A), thereby defining Vn and giving

which can also be written

(76) 9(\,A*)- L
y-0

These equations are the relevant analogues of (12) and (14) respectively. To
reproduce the arguments of Sections 2, 3, 4 we need: (i) to identify ^(X, A*) as
the Laplace transform associated with some operator, and (ii) to identify Vn as
some form of periodic extension of Bn( •, A).
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As to the first, let WA u be the operator defined by
min{K, [f/o>]}

(77) {WAtUx){t)= £ arx{t-ro>).
r = l

(Thus WA ux(t) = 0 for 0 < / < w.) Using the periodicity of the sequence A we
find that

(78) {SKJVA^xY{s) = n™, A*)x(s)

and also

(79) SKUWAtU = WAiUSmu.

Here (78) is the required result for (i), and the analogue for (16): the sought
operator is the product SKJVA u.

As for (ii), it turns out that

(80) Vn(t,A) = Bn(t-r,Ar) for r < t < r + 1, r = 0,1,...,it - 1,

and Vn(-,A) has period <c. Here T is the backward translation operator on
sequences:

(81) (AT)j = aJ+l for ally e Z,

and A1" = (A7"1)7, AT° = A for all r e M.
To get (66) we write \ = us in (76), multiply by x(s) and take the inverse

transforms, as we did in Section 4. We finish by outlining the proof of (80). For
this, two lemmas are required.

LEMMA 11. For any sequence A = (ay)°l _ «, of period K we have

(82) S?(X, AT'*) = erX&(\, A*) - £ ape
(r~P^

p-i

for r = 0,1,2,.. . and\ * 0 (mod 2iri/ic). Hence

(83) *„ ( / , Ar) = Bn{t + r,A)~nt «,(> + r - j ) - 1

forr = 0 , 1 , . . . , n = 1,2,..., t e R.

PROOF. Equation (82) for the case r — 1 follows from straightforward manipu-
lation of the formula (68) for 3?(A, AT*); note that (AT*)j = a_J+1, and AT* #
/4*r unless K = 2. For general r the formula follows by induction.

To prove (83), we multiply (82) by XeXt and use the definition (70), getting

n-0 ' '
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Then comparison of coefficients of \"/n\ gives (83) for the case r = 1; and
subsequent cases again follow by induction.

L E M M A 1 2 . For n, j = 0,1,... and(eR,

K - l 7 - 1

(84) Bn{t +JK, A) = Bn(t, A) + nZa.pT.(t + IK+P)"-\
p = 0 1 = 0

PROOF. The case j = 1 is Proposition 9.6 of Berndt and Schoenfeld [1];
induction gives the general case.

LEMMA 13. Equation (80) holds, where Vn is the inverse Laplace transform of Vn,
defined by (75).

PROOF. Let Un(t, A) denote the righthand side of (80) for 0 < t < K and let Un

have period K. We have to prove (75) with U written in place of V (call this
equation (75U)). Now

(85) Un{\, A) = -£— f e-XuUn(u, A) du

eA - 1 •'o

by periodicity, and

K K ~ 1

f e-XuUn{u,A)du= £ fr+ e-XuBn(u-r,Ar)du
0 r = 0 r

K-l r
V + l

r=l 7=1 r

by (83); so

(86) Un(K A)={1- e-^y1 f e~XuBn(u, A) du - 1,(1),
Jo
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say. On the other hand,
(87)

Bn(X,A) = 2
7 = 0 "JK

= t f e-x^'%(t, A) dt
7 = 0 •'O

jK
 e-x(l+JK)(t + lK+py~l

dt (by (84))
>-0 /=0

7 2
say. Then 5n(A, ^) - Un(X, A) = I2(t) + I^t). In the term I2(t) we reverse the
order of the j and / summations, write aK_p in place of a_p and sum over
q = K - p in place of p. Similarly in I^t) we reverse the order of summation; we
get

I2(t) + 1,(1) = «(1 - e^')-1 t aqr e-«>(v - q)"-1 dv
J

7 = 1

= n{\ - e^'y1 t ajT e-Xu(u - j)"~ldu
7 = 1 V

= -n\\-"(g{-\, A) + a0) = n\\"&(\, A*)

by (71). This proves (75U).
The proof of the summation formula (66) proceeds as previously explained.

The formula holds for all sequences A of period K, all w > 0, t > 0, n e N.
The function Vn(t, A) coincides with the function n!( - l )"P n ( - ; , A*) of [2],

equation (2.10). Our equation (66) gives (by specializing /) the starred form of the
equation in [2], Theorem 3.3. The Euler-Maclaurin formula is the case a, = 1,
K = 1; Boole's formula is the case a, = ( — I)-7, K = 2.
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