INCOMPRESSIBLE SURFACES IN THE BOUNDARY OF A HANDLEBODY-AN ALGORITHM

HERBERT C. LYON

Our first result is a decomposition theorem for free groups relative to a set of elements. This enables us to formulate several algebraic conditions, some necessary and some sufficient, for various surfaces in the boundary of a 3-dimensional handlebody to be incompressible. Moreover, we show that there exists an algorithm to determine whether or not these algebraic conditions are met.

Many of our algebraic ideas are similar to those of Shenitzer [3]. Conversations with Professor Roger Lyndon were helpful in the initial development of these results, and he reviewed an earlier version of this paper, suggesting Theorem 1 (iii) and its proof. Our notation and techniques are standard (cf. [1], [2]). A set X of elements in a finitely generated free group F is a basis if it is a minimal generating set, and $X^{ \pm 1}$ denotes the set of all elements in X, together with their inverses. A cyclic word in F is the set of all cyclic permutations of a cyclically reduced word; thus cyclic words are in one-to-one correspondence with conjugacy classes in F, which we refer to as cyclic elements. If w is a cyclic element in F and F^{\prime} is a subgroup, we abuse our notation slightly to write $w \in F^{\prime}$ whenever $w \cap F^{\prime} \neq \emptyset$. If $W \subset F$ is a set of words (or cyclic words) in the basis X, the incidence graph $J(W)$ is defined to have vertex set W and an undirected edge between two vertices whenever there is an $x \in X$ such that either x or x^{-1} lies in each of the corresponding words. The set W is connected with respect to X if $J(W)$ is connected and it is connected if it is connected with respect to each basis of F. Components are defined accordingly. A second graph, the star graph $\sum(W)$, is defined to have vertex set $X^{ \pm 1}$ and an undirected edge connecting vertices x and y for each occurrence of a sequence of letters $x^{-1} y$ or $y^{-1} x$ in W.

The automorphism group of F is generated by two types of Whitehead automorphisms; (a) automorphisms σ which permute elements of $X^{ \pm 1}$, and (b) automorphisms τ, which, for some fixed $d \in X^{ \pm 1}$ and some set $A \subset X^{ \pm 1}$, with $d \in A$ and $d^{-1} \notin A$, take each $a \in A$ to either $a d$ or $d^{-1} a d$ and fix each element of $X^{ \pm 1}-A$. Whitehead automorphisms of this second type are denoted by $\tau=(A, d)$, and, since $\sigma^{-1} \tau \sigma=\sigma^{-1}(A, d) \sigma=$ $(A \sigma, d \sigma)$, they generate a normal subgroup of automorphisms. The outer automorphism group of F is the group of all automorphisms modulo the

[^0]inner automorphisms. The symbol $|w|_{X}$ denotes the length of the word (or cyclic word) w with respect to X, and $|W|_{X}=\sum|w|_{X}$, the sum taken over all $w \in W$. If ν is any automorphism of F, we shall consistently compare $|w|_{X}$ with $|w|_{X \nu}$ rather than (equivalently) with $|w|_{X}$. If $|W|_{Y}$ is minimal in $\langle Y\rangle$, we say $|W|_{Y}$ is minimal.

Theorem 1. Let W be a finite set of elements (resp., cyclic elements) in the finitely generated free group F. There exists a decomposition $F=$ $F_{0} * F_{1} * \ldots * F_{n}$, with $F_{i} \neq 1$ if $i \neq 0$, such that
(i) $W \subset \cup_{i \neq 0} F_{i}$;
(ii) $W_{i}=W \cap F_{i}$ is non-empty and connected for $1 \leqq i \leqq n$;
(iii) The stabilizer of W in the automorphism group (outer automorphism group) of F is the direct product of the stabilizers of the components W_{i} in the (outer) automorphism groups of the $F_{i}, 1 \leqq i \leqq n$;
(iv) If $F=G_{1} * G_{2}$ and $W \subset G_{1} \cup G_{2}$, then each of $W \cap G_{1}$ and $W \cap G_{2}$ is the union of certain of the components W_{i}, and the corresponding F_{i} are (conjugate to) free factors of G_{1} and G_{2}, respectively;
(v) If Y is any basis for F such that $|W|_{Y}$ is minimal, then each F_{i} has a basis equal to (conjguate to) some $Y_{i} \subset Y$; and
(vi) If Y is any basis for F such that $|W|_{Y}$ is minimal, then the number of basis elements used in so expressing W is minimal.

Proof. Let X be any basis for F such that $|W|_{X}$ is minimal. By 1.7 .1 of [2], there exist partitions $X_{0}, X_{1}, \ldots, X_{n}$ of X and $W_{1}, W_{2}, \ldots, W_{n}$ of W such that each W_{i} is connected with respect to X, X_{0} is the set of all $x \in X$ such that neither x nor x^{-1} occurs in any $w \in W$, and $X_{i}, 1 \leqq$ $i \leqq n$, is the set of all $x \in X$ such that either x or x^{-1} occurs in some $w \in W_{i}$. Let $F_{i}=\left\langle X_{i}\right\rangle$ for $0 \leqq i \leqq n$, so $W_{i}=W \cap F_{i} \neq \emptyset$, $W \subset \bigcup_{i \neq 0} F_{i}$ and (i) is established. Since any automorphism of F_{i} may be extended to all of F by making it the identity on $F_{j}, j \neq i$, we see that $|W|_{X}$ minimal implies $\left|W_{i}\right|_{x_{i}}$ minimal for $1 \leqq i \leqq n$. Note that, by definition, W_{i} is also connected with respect to X_{i}.

Lemma. Let $\left|W_{i}\right|_{X_{i}}$ be minimal, let W_{i} be connected with respect to X_{i}, let $\tau=(A, d)$ with $d \notin X_{i}{ }^{ \pm 1}$, and assume $\left|W_{i}\right|_{X_{i}} \geqq\left|W_{i}\right|_{X_{\tau}}$. If W consists of cyclic words, then τ either fixes F_{i} or conjugates F_{i} by d, while if W consists of ordinary words, then τ fixes F_{i}.

Proof. First assume W consists of cyclic words. Since $J\left(W_{i}\right)$ is connected, 1.7.7. of $[\mathbf{2}]$ assures us that the star graph $\sum\left(W_{i}\right)$ is connected on the vertex set $X_{i^{ \pm 1}}$. By 1.4.16 of [2], either $X_{i}{ }^{ \pm 1} \subset A$ or $X_{i}{ }^{ \pm 1} \subset X^{ \pm 1}-A$. In the former case, τ conjugates F_{i} by d, while in the latter, τ is the identity on F_{i}. Now assume W consists of ordinary words. If F_{i} is cyclic, the proof is as above; otherwise, let $\hat{F}=F *\langle z\rangle, \hat{F}_{i}=F_{i} *\langle z\rangle$, and let u be the cyclic word $z^{2} w_{1} z^{2} w_{2} \ldots z^{2} w_{m}$, where $W_{i}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$.

We extend τ to $\hat{\tau}$ on \hat{F} by defining $z \hat{\tau}=z$, so $|u|_{X \cup\{z\}}=|u|_{x \tau \cup\{z\}}$. By the proof of 1.7.7 of [2], the star graph $\sum(u)$ is connected, and we are reduced to the case above. However, since $z \hat{\tau}=z, \tau$ must be the identity on F_{i}.

Next, assume $\left|W_{i}\right|_{X i}$ is minimal. If $\left|W_{i}\right|_{X}$ were not minimal, there would exist, by Whitehead's Theorem (1.4.20 and 1.4.24 of [2]), a Whitehead automorphism $\tau=(A, d)$ such that $\left|W_{i}\right|_{X \tau}<\left|W_{i}\right|_{X}=\left|W_{i}\right|_{X_{i}}$. By the lemma, we would have $d \in X_{i^{ \pm 1}}$, contradicting the minimality of $\left|W_{i}\right|_{X_{i}}$. Thus $\mid W_{\left.i\right|_{X i}}$ minimal implies $\left|W_{i}\right|_{X}$ minimal. Similarly, $\left|W_{i}\right|_{X}$ minimal for $1 \leqq i \leqq n$ implies $|W|_{X}$ minimal. Thus, $|W|_{X}$ is minimal if and only if $\left|W_{i}\right|_{X}$ is minimal for $1 \leqq i \leqq n$; i.e., if and only if $\left|W_{i}\right|_{X_{i}}$ is minimal for $1 \leqq i \leqq n$. Whitehead's Theorem assures us that if $|W|_{X}=|W|_{X \tau}$ is minimal, then τ is the product of level Whitehead automorphisms; i.e., $\tau=\tau_{1} \tau_{2} \ldots \tau_{k}$, and each τ_{j} is level on W. Hence, by the above, τ_{j} is level on each W_{i}. Moreover, since those τ_{j} of the second type generate a normal subgroup, we may assume all but possibly τ_{k} are of the second type. But any stabilizer of W is level on W, and thus on each W_{i}, so (iii) follows immediately from the lemma.

Now let Y be any basis such that $|W|_{Y}$ is minimal. Whitehead automorphisms of the first type merely permute $Y^{ \pm 1}$, so we may assume $Y=X \tau_{i} \ldots \tau_{k}$, where each τ_{i} is a level Whitehead automorphism of the second type, and (v) follows from the lemma. To prove (iv), let $Y=$ $Y_{1} \cup Y_{2}$ be a basis for F such that $G_{1}=\left\langle Y_{1}\right\rangle, G_{2}=\left\langle Y_{2}\right\rangle$, and each of $\left|W \cap G_{1}\right|_{\gamma_{1}}$ and $\left|W \cap G_{2}\right|_{\gamma_{2}}$ are minimal. As above, $|W|_{Y}$ is minimal, and (iv) follows from the lemma. To prove (vi), assume $Y=Y_{1} \cup Y_{2}$ such that $W \subset\left\langle Y_{1}\right\rangle$ and the number of elements in Y_{1} is minimal. Then (vi) follows from (iv). Finally, to prove (ii), merely apply the proof of (iv) with W_{i} replacing W.

If the set W of elements (or cyclic elements) is not contained in any proper free factor of F, and if W is connected, we say W binds F. If $F=G_{1} * G_{2}$ and $W \subset G_{1} \cup G_{2}$, then W respects the splitting $F=G_{1} * G_{2}$. Implicit in the Whitehead Theorem (1.4.20 and 1.4.24 of [2]) is an algorithm for determining whether or not a finite set W binds F or respects a splitting of F. By Theorem 1, we need merely apply successive Whitehead automorphisms (they are finite in number) until $|W|$ is minimal and observe the situation at this point.

Now we turn to topological considerations. The symbols $\partial(. .$.$) ,$ $N(\ldots),(\ldots)^{0}$, and $\mathrm{Cl}(\ldots)$ denote the boundary, regular neighborhood, interior, and closure, respectively, of the object (. . .), and H_{n} denotes an orientable 3-dimensional handlebody of genus n. If $B=\left\{B_{1}, \ldots, B_{n}\right\} \subset$ H_{n} is any collection of properly embedded, pairwise disjoint disks such that $\mathrm{Cl}\left(H_{n}-N(B)\right)$ is a 3 -cell, then B corresponds, in a natural way, to a basis for $\pi_{1}\left(H_{n}, p\right)$, and all bases are so derived (cf. [4]). Such sets B
enable us to translate geometric questions into algebraic ones. If $\gamma \subset H_{n}$ is any oriented closed curve, then γ determines a cyclic element of $\pi_{1}\left(H_{n}, p\right)$, and we let γ denote both the curve and the corresponding cyclic element. Since we deal only with cyclic elements, the basepoint p is immaterial and we shall suppress it, writing $\pi_{1}\left(H_{n}\right)$.

Theorem 2. Let $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\} \subset \partial H_{n}$ be a set of pairwise disjoint, noncontractible (in H_{n}), oriented simple closed curves which respects the splitting $\pi_{1}\left(H_{n}\right)=F_{1} * F_{2}$. Let $\Gamma_{i}=\Gamma \cap F_{i}, i=1$, 2. There exists a set $D \subset H_{n}$ of properly embedded incompressible disks such that $D \cap \Gamma=\emptyset$ and D separates each element of Γ_{1} from each element of Γ_{2}.

Proof. Assume F_{1} has rank k and F_{2} has rank l. Let V_{k} denote a wedge of the k circles $c_{1} \ldots c_{k}$ with the point c_{0} in common, and let V_{l} denote a wedge of the l circles $c_{k+1} \ldots c_{n}$ with the point $c_{0}{ }^{\prime}$ in common. Connect V_{k} to V_{l} by an arc from c_{0} to $c_{0}{ }^{\prime}$ with the point v in its interior, yielding a complex V. Note that $\pi_{1}(V)=\pi_{1}\left(V_{k}\right) * \pi_{1}\left(V_{l}\right), \pi_{2}(V)=\pi_{2}\left(H_{n}\right)=0$, and there is an isomorphism

$$
f_{*}: \pi_{1}\left(H_{n}\right) \rightarrow \pi_{1}(V)
$$

such that $f_{*}\left(F_{1}\right)=\pi_{1}\left(V_{k}\right)$ and $f_{*}\left(F_{2}\right)=\pi_{1}\left(V_{l}\right)$. By standard arguments (cf. [1, p. 66]), f_{*} is induced by a map $f: H_{n} \rightarrow V$. Now consider $f^{-1}(v)$. By [5, Lemma 1.1], we may move f via a homotopy until $f^{-1}(v)$ consists of a finite number of incompressible disks. Assume Γ has been moved by an isotopy in ∂H_{n} until $f^{-1}(v) \cap \Gamma$ is minimal. If $f^{-1}(v) \cap \Gamma \neq \emptyset$, then, since Γ respects the given splitting of $\pi_{1}\left(H_{n}\right)$, there must exist an $\operatorname{arc} \alpha$ in some γ_{i} such that $\alpha \cap f^{-1}(v)=\partial \alpha$, the loop $f(\alpha)$ is contractible in V, and α does not cobound, with the closure of an arc in $\partial f^{-1}(v)-\alpha$, a 2 -cell in ∂H_{n}. Let $C=N(\alpha)$, a 3 -cell, so $C \cap f^{-1}(v)$ consists of two spanning disks in C, the boundaries of which cobound an annulus A in ∂C. Let $B=\mathrm{Cl}\left(A \cap H_{n}{ }^{0}\right)$, a disk, and let $B^{\prime} \subset C$ be a properly embedded (in C) disk such that

$$
\partial B^{\prime} \subset A \text { and } B^{\prime} \cap B=f^{-1}(v) \cap B
$$

Modify f via a homotopy (cf. [1, p. 67]) to f^{\prime} defined as follows. Let $f^{\prime}\left|H_{n}-C^{0}=f\right| H_{n}-C^{0}$, and $f^{\prime}\left(B^{\prime}\right)=v$. Now B^{\prime} meets the disk $C \cap \partial H_{n}$ in two $\operatorname{arcs} \beta_{1}{ }^{\prime}$ and $\beta_{2}{ }^{\prime}$ which cobound, with the arcs β_{1} and β_{2}, respectively, of $B \cap \partial H_{n}$, disks in $C \cap \partial H_{n}$. Since the loop $f(\alpha)$ is trivial, so is the loop $f\left(\beta_{i}\right)$, and we can extend f^{\prime} across the disk in ∂H_{n} bounded by $\beta_{i} \cup \beta_{i}{ }^{\prime}$ for $i=1,2$. If δ_{i} is a component of $\mathrm{Cl}\left(\partial\left(C \cap \partial H_{n}\right)\right.$ $-B$), then $\left[f\left(\delta_{i}\right)\right]$ is trivial and both $f\left(\delta_{1}\right)$ and $f\left(\delta_{2}\right)$ lie on the same side of w. Thus, we may extend f^{\prime} to all of ∂H_{n}, and since $\pi_{2}(V)=0$, to the remaining open 3 -cells in H_{n}, so that

$$
f^{\prime-1}(v)=\left(f^{-1}(v)-\left(f^{-1}(v) \cap C\right)\right) \cup B^{\prime} .
$$

If α connects distinct components of $f^{-1}(v)$, we stop, because $f^{\prime-1}(v)$ will consist entirely of disks. If $\partial \alpha$ was in one component of $f^{-1}(v)$, then $f^{\prime-1}(v)$ will be compressible; however, f^{\prime} may then be altered by an additional homotopy, fixed on ∂H_{n}, which again makes the preimage of v incompressible disks. In either case we will have replaced f by a map f^{\prime} homotopic to it, and $f^{\prime-1}(v) \cap \Gamma$ will be reduced. Hence, we may assume $f^{-1}(v) \cap \Gamma=\emptyset$, and if $D=f^{-1}(v)$, our construction assures us that D separates Γ as required.

Corollary 1. Let $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\} \subset \partial H_{n}$ be a set of pairwise disjoint, oriented simple closed curves. Then $S=\mathrm{Cl}\left(\partial\left(H_{n}\right)-N(\Gamma)\right)$ is incompressible if and only if Γ binds $\pi_{1}\left(H_{n}\right)$ and no γ_{i} is contractible in ∂H_{n}.

Proof. If S is compressible, there exists, by Dehn's Lemma, a properly embedded disk $D \subset H_{n}$ with $\partial D \subset S$ and ∂D noncontractible in S. Since no element of ∂S is trivial in $\partial H_{n}, D$ cannot be boundary parallel in H_{n}. If D separates H_{n}, then $\pi_{1}\left(H_{n}\right)$ may be split nontrivially along D, and this splitting is respected by ∂S, and hence by Γ. If D doesn't separate, then ∂S is contained in

$$
\pi_{1}\left(\mathrm{Cl}\left(H_{n}\right)-N(D)\right) \approx F_{n-1},
$$

a proper factor of $\pi_{1}\left(H_{n}\right)$, so Γ cannot bind $\pi_{1}\left(H_{n}\right)$.
If Γ does not bind and no γ_{i} is contractible in ∂H_{n}, we can, by Theorem 2 , find a collection of incompressible disks D which misses Γ and ∂S, making S compressible.

Corollary 2. Let $S \subset \partial H_{n}$ be an arbitrary connected surface with $\partial S \neq \emptyset$ and with no component of ∂S contractible in H_{n}.
(a) If ∂S binds $\pi_{1}\left(H_{n}\right)$, then S is incompressible.
(b) If ∂S respects a splitting of $\pi_{1}\left(H_{n}\right)$ such that at least one element of ∂S is in each factor, then S is compressible.
(c) If S is incompressible, then ∂S is a connected subset of $\pi_{1}\left(H_{n}\right)$.

Proof. (a) This proof is identical to the first half of the proof of Corollary 1.
(b) By Theorem 2 we find a set D of disks which reflects the split. Since D separates components of ∂S, and since S is connected, S must be compressible.
(c) If ∂S were not connected in $\pi_{1}\left(H_{n}\right)$ we could find a splitting of $\pi_{1}\left(H_{n}\right)$ respected by the set, with components of ∂S on each side of the splitting. Thus, as in (b), S would be compressible.

References

1. J. Hempel, 3-manifolds, Ann. of Math. Studies 86 (Princeton Univ. Press, Princeton, N.J., 1976).
2. R. C. Lyndon and P. E. Schupp, Combinatorial group theory (Springer Verlag, Berlin, Heidelberg, New York, 1977).
3. A. Shenitzer, Decomposition of a group with one defining relation into a free product, Proc. Amer. Math. Soc. 6 (1955), 273-279.
4. S. Suzuchi, On homomorphisms of a 3-dimensional handlebody, Can. J. Math. 29 (1977), 111-124.
5. F. Waldhausen, Gruppen mit Zentrum and 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517.

Northland College,
Ashland, Wisconsin

[^0]: Received August 4, 1978 and in revised form January 2, 1979.

