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SCALING LIMIT OF THE LOCAL TIME OF RANDOM WALKS
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WENMING HONG,∗ ∗∗ AND

MINGYANG SUN ,∗ ∗∗∗ Beijing Normal University

Abstract

We prove that the local time of random walks conditioned to stay positive converges to
the corresponding local time of three-dimensional Bessel processes by proper scaling.
Our proof is based on Tanaka’s pathwise construction for conditioned random walks and
the derivation of asymptotics for mixed moments of the local time.
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1. Introduction and results

1.1. Motivation

Let (Sn)n≥0 denote a random walk on Z with starting point zero, that is, S0 = 0, and for
n ≥ 1, Sn =∑n

i=1 Xi, where {Xn : n ≥ 1} are independent and identically distributed integer-
valued random variables with EX1 = 0, E(X2

1) =: σ 2 ∈ (0,∞). The local time of reflected
random walk (|Sn|)n≥0 is defined as the visiting number of level x during the first n steps,
that is, for x ∈Z+ and n ≥ 1,

ξ (x, n) = #{0< k ≤ n : |Sk| = x} =
n∑

k=1

1{|Sk| = x}.

Let (Bt)t≥0 denote a standard Brownian motion and let (|Bt|)t≥0 denote the reflected
Brownian motion. The local time of (Bt)t≥0 is defined by

Lx
t (B) = lim

ε→0

1

ε

∫ t

0
1[x,x+ε)(Bs) ds, t ≥ 0, x ∈R,

and Lx
t (|B|) = Lx

t (B) + L−x
t (B), x ≥ 0 is the local time of reflected Brownian motion. Set γ0 = 0

and define recursively

γn = inf{k> γn−1 : |Sk| = 0} = inf{k ≥ 0: ξ (0, k)> n}, n ≥ 1.
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Local time of conditioned random walks 1061

Similarly, the inverse of Brownian local time at level 0 is defined as follows:

�x = inf{t ≥ 0: L0
t (B)> x}, x ≥ 0.

Donsker’s invariance principle tells us that the reflected random walk converges to the
reflected Brownian motion by proper time and space scaling. It is natural to consider the scal-
ing limit of the local times. However, one cannot get it directly from the continuous mapping
theorem because the local time is not a continuous function of the process. For the case of
simple random walks, this is confirmed by Rogers [21].

Theorem A. (Rogers.) Assume (Sn)n≥0 is a simple symmetric random walk. Then, as n → ∞,(
ξ (�nx	, γn)

n
: x ≥ 0

)
=⇒ (

Lx
�1

(|B|) : x ≥ 0
)
, (1.1)

where the symbol =⇒ denotes the convergence in distribution in the space D[0,∞).

Note that this type of scaling for local times is closely related to the classical Ray–Knight
theorems. In fact, Rogers’ proof relies heavily on the intrinsic branching structure of sim-
ple random walks revealed by Dwass [10]. The local time ξ (�nx	, γn) can be represented in
terms of a critical Galton–Watson (GW) process. As a consequence, convergence of local
times follows from the corresponding results for GW processes, and the scaling limits are
continuous-state branching processes, which in law equal the right-hand side of (1.1) by the
second Ray–Knight theorem. The idea of connecting local times and branching processes has
recently been used by Hong et al. (see [13], [24]), and they extended Rogers’ result to random
walks with bounded jumps based on the multitype branching process with immigration which
is hidden in the path (see [11], [12]).

Later, Denisov and Wachtel [7] considered general random walks for which the increments
are centred and belong to the domain of attraction of an α-stable law with 1<α ≤ 2. They
showed that the convergence of (1.1) holds in the sense of finite-dimensional distributions
by the method of moments. Since there exists no branching structure for random walks with
unbounded jumps, the proof of tightness is still an open problem for the local time of general
random walks.

In this paper we are interested in the scaling limits of the local time of random walks con-
ditioned to stay positive. It is well known that the phrase ‘random walks conditioned to stay
positive’ has at least two different interpretations. In the first, we consider a random walk con-
ditioned on the event that the first n values are positive; this is a discrete version of meander,
and it has been known for a long time that a suitably rescaled version of this process converges
weakly to a Brownian meander (see Iglehart [14]). The second interpretation involves condi-
tioning on the event that the random walks always stay positive, and so can be thought of as a
discrete version of the Bessel process, i.e. random walks conditioned to stay positive under P+
(one can make sense of this probability by means of the Doob h-transform; see [2] or below).
Similarly, a suitably rescaled version of this process converges weakly to a Bessel process (see
Bryn-Jones and Doney [5]).

1.2. Conditioned random walks

To begin with, we introduce the random walks conditioned to stay positive in the meander
sense. For x ≥ 0, we define the exit time

τx = inf{n> 0: x + Sn ≤ 0},
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1062 W. HONG AND M. SUN

and write τ := τ0 for convenience. Let S(m)
n denote the random variable Sn under the

conditional probability P(· | τ > n), and its local time is defined as

ξ (m)(x, n) = #
{
0< k ≤ n : S(m)

k = x
}
, x ∈Z+, n ≥ 1.

The continuous-time analogue of (S(m)
n )n≥0 is known as the Brownian meander (see [9], [14]),

which may be considered as the Brownian motion (Bt)t≥0 conditioned to stay positive on the
time interval (0, 1], and is defined as follows:

B(m)
t = |B(α+ (1 − α)t)|√

1 − α
, 0 ≤ t ≤ 1,

where α= sup{t ∈ [0, 1] : Bt = 0} is the last passage time at 0 before time 1. Let us introduce
its local time at the level x ≥ 0 before time t ∈ [0, 1]:

Lx
t (B(m)) = lim

ε→0

1

ε

∫ t

0
1[x,x+ε)

(
B(m)

s

)
ds.

This limit exists almost surely (see [22]). Note that (S(m)
n )n≥0 is the random walk (Sn)n≥0 condi-

tioned to stay positive up to epoch n, so it is natural to conjecture that the local time of (S(m)
n )n≥0

before time n converges to the local time of the Brownian meander by proper scaling. Recently,
this has been confirmed by Afanasyev (see [1]).

Theorem B. (Afanasyev.) Assume EX1 = 0 and E(X2
1) =: σ 2 ∈ (0,∞). Then, as n → ∞,(

σξ (m)(�σ√
nx	, n)√

n
: x ≥ 0

)
=⇒ (

Lx
1(B(m)) : x ≥ 0

)
. (1.2)

The main purpose of this paper is to extend Rogers’ and Afanasyev’s results respectively
to the local times of random walks conditioned to stay positive in the sense of h-transforms.
Before stating our results precisely, we recall the essentials of the conditioning to stay positive
for random walks.

The weakly descending ladder process (σn,Hn)n≥0 is defined recursively as σ0 = H0 = 0,
and for n ≥ 1,

σn = inf{k>σn−1 : Sk ≤ Sσn−1}, Hn = −Sσn .

We let V(x) denote the renewal function associated with (Hn)n≥0, which is a positive function
defined by

V(x) =
∑
n≥0

P(Hn ≤ x), x ≥ 0.

Note that V(x) is the expected number of descending ladder heights which are ≤ x. It is well
known that V is harmonic for the sub-Markov process obtained by killed (Sn)n≥0 when leaving
the positive half-line (see [23]), that is,

V(x) =E[V(x + S1); x + S1 > 0], x ≥ 0.

Next we introduce a change of measure which is defined by the well-known Doob
h-transform: for any n ∈N and A ∈ σ (S1, . . . , Sn),

P
+(A) := E[V(Sn); A ∩ {τ > n}].
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Local time of conditioned random walks 1063

According to Kolmogorov’s extension theorem and the harmonic property of V(x), it is
easy to see that P

+ is well-defined. The random walk (Sn)n≥0 under the new probability
P

+ is denoted by S+ = (S+
n )n≥0 and called a random walk conditioned to stay positive. This

terminology is justified by the following weak convergence result (see [2, Theorem 1]):

P
+(·) = lim

n→∞ P(· | τ > n).

The local time ξ+(x, n) is defined as the visiting number of level x by S+ during the first n
steps, that is, for x ∈Z+ and n ≥ 1,

ξ+(x, n) = #{0< k ≤ n : S+
k = x} =

n∑
k=1

1{S+
k = x}.

Similarly, the local time ξ+(x) is defined as the visiting number of level x by the whole path
of S+,

ξ+(x) = #{k> 0: S+
k = x} =

∞∑
k=1

1{S+
k = x}, x ∈Z+.

Now we turn to the continuous-time analogue of S+. Let ρ = (ρt : t ≥ 0) denote a three-
dimensional Bessel process starting from 0, which may be considered as the Brownian motion
(Bt)t≥0 conditioned to stay positive over the whole real half-line, and its local time is denoted
by Lx

t (ρ), that is, for x ≥ 0 and t ≥ 0,

Lx
t (ρ) = lim

ε→0

1

ε

∫ t

0
1[x,x+ε)(ρt) dt. (1.3)

Note that (1.3) is also well-defined for t = ∞, and the right-hand side is almost surely finite
(see [19, Exercise VI.1.27]).

1.3. Main results

Our first result deals with the local time within a fixed but finite time period [0, t], which is
an analogue of the relation (1.2) for the random walk conditioned to stay positive under P+.

Theorem 1.1. Assume EX1 = 0 and E(X2
1) =: σ 2 ∈ (0,∞). Then, for any t ∈ [0,∞),

as n → ∞, (
σξ+(�σ√

nx	, �nt	)√
n

: x ≥ 0

)
=⇒ (

Lx
t (ρ) : x ≥ 0

)
. (1.4)

Remark 1.1. The main idea is to make use of the mutually absolute continuity between the
two conditioned random walks S+ and S(m), then apply Afanasyev’s invariance principle (1.2).
To our knowledge, this continuity argument was originally raised by Bolthausen [3] and then
developed by Caravenna and Chaumont [6], who have shown that a rescaled version of random
walk conditioned to stay positive converges in distribution (in the functional sense) towards the
corresponding stable Lévy process conditioned to stay positive.

Now we are interested in the local time within the time period [0,∞). We prove the con-
vergence in the sense of finite-dimensional distributions, which is related to the Ray–Knight
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theorem of three-dimensional Bessel processes (see [20, page 32]), so can also be seen as an
analogue of the relation (1.1) for the random walk conditioned to stay positive under P+. The
proof is based on the derivation of asymptotics for mixed moments of the local time ξ+(x) in
the same spirit as Denisov and Wachtel [7].

Theorem 1.2. Assume EX1 = 0 and E(X2
1) =: σ 2 ∈ (0,∞). Then, as n → ∞,(

σ 2ξ+(�nx	)

n
: x ≥ 0

)
f.d.d.−→ (

Lx∞(ρ) : x ≥ 0
)
, (1.5)

where the symbol
f.d.d.−→ denotes the convergence in the sense of finite-dimensional distributions

in the space D[0,∞).

If (Sn)n≥0 is a simple symmetric random walk, the above result can be strengthened as
follows, based on the intrinsic branching structure of simple random walks.

Theorem 1.3. Assume (Sn)n≥0 is a simple symmetric random walk. Then, as n → ∞,(
ξ+(�nx	)

n
: x ≥ 0

)
=⇒ (

Lx∞(ρ) : x ≥ 0
)
.

Remark 1.2. The proof of Theorem 1.3 relies on Tanaka’s pathwise construction for random
walks under P+ and the intrinsic branching structure of simple random walks. Consequently,
the local time of S+ can be expressed in terms of a critical Galton–Watson process with immi-
gration (GWI). In the same vein as Rogers [21], this embedding into a branching process
ensures weak convergence in the functional sense. However, we do not know how to prove
the tightness of the rescaled local time sequence under conditions of Theorem 1.2, since there
exists no branching structure for general random walks.

1.4. Outline of the paper

The exposition of this paper is organized as follows. In Section 2 we prove Theorem 1.1
based on the mutually absolute continuity between the conditioned processes, and Afanasyev’s
invariance principle for local times. Then we prove Theorem 1.3 in Section 3. The assumption
of the simple symmetric random walk is essential because we will use the intrinsic branch-
ing structure within the path of the walk, which is revealed by Dwass [10]. In Section 4 we
determine the asymptotic behaviour of the mixed moments of local time ξ+(x), and then in
Section 5 we can prove Theorem 1.2 by the method of moments.

2. Proof of Theorem 1.1

The main purpose of this section is to prove Theorem 1.1. To this end, we first show that
(1.4) holds for t = 1, that is, for any bounded and continuous functional H : D[0,∞) →R,

lim
n→∞ E

[
H

(
σξ+(�σ√

nx	, n)√
n

: x ≥ 0

)]
=E

[
H
(
Lx

1(ρ) : x ≥ 0
)]

. (2.1)

By the definition of S(m) and S+, it is easy to see that they are absolutely continuous with
respect to each other, hence

E

[
H

(
σξ+(�σ√

nx	, n)√
n

: x ≥ 0

)]
=E

[
Vn
(
S(m)

n

)
H

(
σξ (m)(�σ√

nx	, n)√
n

: x ≥ 0

)]
,

where Vn(x) := P(τ > n) · V(x) is the rescaled renewal function.
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For the continuous-time analogue, we recall the following lemma due to Imhof [15], which
shows the absolute continuity relation between the Brownian meander and three-dimensional
Bessel process.

Lemma 2.1. Let (B(m)
t : 0 ≤ t ≤ 1) be a standard Brownian meander and let (ρt : t ≥ 0) be

a three-dimensional Bessel process starting from 0. For any measurable and non-negative
functional F : D[0, 1] →R, we have

E[F(ρt : 0 ≤ t ≤ 1)] =E

[√
2

π
B(m)

1 F
(
B(m)

t : 0 ≤ t ≤ 1
)]

.

By Lemma 2.1 we can rewrite the right-hand side of (2.1) as follows:

E
[
H
(
Lx

1(ρ) : x ≥ 0
)]=E

[√
2

π
B(m)

1 H
(
Lx

1

(
B(m)) : x ≥ 0

)]
. (2.2)

Combining (2.1) and (2.2), it suffices to show that

lim
n→∞ E

[
Vn
(
S(m)

n

)
H
(
ξ (m)

n

)]=E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))], (2.3)

where for convenience we let

ξ (m)
n =

(
σξ (m)(�σ√

nx	, n)√
n

: x ≥ 0

)
, L1

(
B(m))= (

Lx
1

(
B(m)) : x ≥ 0

)
.

The basic idea is to use the fact (see equation (3.12) of [6]) that, for any M > 0,

lim
n→∞ sup

x∈[0,M]

∣∣∣∣Vn(σ
√

nx) −
√

2

π
x

∣∣∣∣= 0, (2.4)

and then to apply the invariance principle (1.2). However, some care is needed, because the
functions Vn(σ

√
nx) and (2/π )1/2 x are unbounded. To overcome this difficulty, we introduce

for M> 0 the cut function IM(x), which can be viewed as a continuous version of the indicator
function 1(−∞,M](x):

IM(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x ≤ M,

M + 1 − x, M ≤ x ≤ M + 1,

0, x ≥ M + 1.

Then we restrict the values of S(m)
n /σ

√
n and B(m)

1 to a compact set. More precisely, the left-
hand side of (2.3) can be decomposed as

E
[
Vn
(
S(m)

n

)
H
(
ξ (m)

n

)]=E

[
Vn
(
S(m)

n

)
H
(
ξ (m)

n

)
IM

(
S(m)

n

σ
√

n

)]

+E

[
Vn
(
S(m)

n

)
H
(
ξ (m)

n

)(
1 − IM

(
S(m)

n

σ
√

n

))]
, (2.5)
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and the right-hand side of (2.3) can be decomposed as

E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))]=E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))IM

(
B(m)

1

)]

+E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))(1 − IM

(
B(m)

1

))]
. (2.6)

Since H is bounded by some positive constant C1 and the second terms of the right-hand side
of (2.5) and (2.6) are non-negative, it follows by the triangle inequality that∣∣∣∣E[Vn

(
S(m)

n

)
H
(
ξ (m)

n

)]−E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))]∣∣∣∣

≤
∣∣∣∣E[Vn

(
S(m)

n

)
H
(
ξ (m)

n

)
IM

(
S(m)

n

σ
√

n

)]
−E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))IM

(
B(m)

1

)]∣∣∣∣
C1 E

[
Vn
(
S(m)

n

)(
1 − IM

(
S(m)

n

σ
√

n

))]
+ C1 E

[√
2

π
B(m)

1

(
1 − IM

(
B(m)

1

))]
.

By the definition of S(m)
n and the harmonic property of V(x), we get

E
[
Vn
(
S(m)

n

)]=E[Vn(Sn) | τ > n] =E[V(Sn); τ > n] = 1,

and it follows from Lemma 2.1 that

E

[√
2

π
B(m)

1

]
= 1. (2.7)

This implies that∣∣∣∣E[Vn
(
S(m)

n

)
H
(
ξ (m)

n

)]−E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))]∣∣∣∣

≤
∣∣∣∣E[Vn

(
S(m)

n

)
H
(
ξ (m)

n

)
IM

(
S(m)

n

σ
√

n

)]
−E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))IM

(
B(m)

1

)]∣∣∣∣
+ C1

(
1 −E

[
Vn
(
S(m)

n

)
IM

(
S(m)

n

σ
√

n

)])
+ C1

(
1 −E

[√
2

π
B(m)

1 IM
(
B(m)

1

)])
. (2.8)

According to the proof of (1.2) in [1], Afanasyev actually proved the convergence of the joint
processes, {( S(m)

�nt	
σ
√

n
,
σ ξ (m)(�σ√

nx	, n)√
n

)
: t ∈ [0, 1], x ≥ 0

}
=⇒ {(

B(m)
t , Lx

1

(
B(m))) : t ∈ [0, 1], x ≥ 0

}
,

where the symbol =⇒ denotes the convergence in distribution in the space D[0, 1] × D[0,∞).
Thus, for any bounded and continuous functional F : D[0, 1] × D[0,∞) →R, we have

lim
n→∞ E

[
F
(̃
S(m)

n , ξ (m)
n

)]=E
[
F
(
B(m), L1

(
B(m)))], (2.9)
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where for convenience we use

S̃(m)
n =

( S(m)
�nt	
σ
√

n
: t ∈ [0, 1]

)
.

Let fM(x) = xIM(x), x ≥ 0; then fMH is a bounded and continuous functional defined on the
space R+ × D[0,∞). In particular, it follows from (2.9) that

lim
n→∞ E

[
fM

(
S(m)

n

σ
√

n

)
H
(
ξ (m)

n

)]=E
[
fM
(
B(m)

1

)
H
(
L1
(
B(m)))]. (2.10)

By the triangle inequality we obtain∣∣∣∣E[Vn
(
S(m)

n

)
H
(
ξ (m)

n

)
IM

(
S(m)

n

σ
√

n

)]
−E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))IM

(
B(m)

1

)]∣∣∣∣
≤
∣∣∣∣E[

√
2

π

S(m)
n

σ
√

n
H
(
ξ (m)

n

)
IM

(
S(m)

n

σ
√

n

)]
−E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))IM

(
B(m)

1

)]∣∣∣∣
+ C1 sup

x∈[0,M]

∣∣∣∣Vn(σ
√

nx) −
√

2

π
x

∣∣∣∣.
It follows from (2.4) and (2.10) that

lim
n→∞ E

[
Vn
(
S(m)

n

)
H
(
ξ (m)

n

)
IM

(
S(m)

n

σ
√

n

)]
=E

[√
2

π
B(m)

1 H
(
L1
(
B(m)))IM

(
B(m)

1

)]
. (2.11)

Observe that this equation also yields the convergence as n → ∞ of the second term in the
right-hand side of (2.8) towards the third term (just take H ≡ 1), and note that the third term
can be made arbitrarily small by choosing M sufficiently large due to (2.7). Therefore, from
(2.11) it actually follows that the left-hand side of (2.8) vanishes as n → ∞, that is, equation
(2.3) holds true.

Next, we adapt the above argument to show that (1.4) holds for any t ∈ [0,∞). First note
that Afanasyev’s proof in [1] can be adapted to show a more general version of (1.2), that is,
for t ∈ [0, 1], as n → ∞,(

σξ (m)(�σ√
nx	, �nt	)√
n

: x ≥ 0

)
=⇒ (

Lx
t

(
B(m)) : x ≥ 0

)
.

Consequently, by the continuity argument it is easy to see that (1.4) holds for t ∈ [0, 1]. To
handle the case of t> 1, we have to renew the definition of Brownian meander. For any fixed
M ∈Z+, we redefine the Brownian meander on [0, M], that is,

B̃(m)
t := √

M B(m)
(

t

M

)
=
√

M

1 − α

∣∣∣∣B(α+ (1 − α)
t

M

)∣∣∣∣, 0 ≤ t ≤ M.

Now, by the scaling properties of the Brownian meander B̃(m) and its local time, it is not hard to
see that Iglehart’s and Afanasyev’s invariance principles can be extend as follows: as n → ∞,(

S�nt	√
n

: t ∈ [0,M]
∣∣∣ τ >Mn

)
=⇒ (̃

B(m)
t : t ∈ [0,M]

)
,
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and for any t ∈ [0,M],(
σ ξ̃ (�σ√

nx	, �nt	)√
n

: x ≥ 0
∣∣∣ τ >Mn

)
=⇒ (

Lx
t

(̃
B(m)) : x ≥ 0

)
,

where ξ̃ (x, n) = #{0< k ≤ n : Sk = x} is the local time of (Sn)n≥0. Hence, by the continuity
argument and since M ∈Z+ is chosen arbitrarily, we obtain the convergence of (1.4) holds for
t ∈ [0,∞). Thus the proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.3

In this section we assume (Sn)n≥0 is a simple symmetric random walk. We will use the
intrinsic branching structure within the path of the walk. For n ≥ 0, define

Tn = inf{k ≥ 0: Sk = n},
which is the first hitting time of site n of the walk. Clearly Tn <∞, for any n ≥ 0 due to our
walk is recurrent, i.e. lim supn→∞ Sn = ∞ and lim infn→∞ Sn = −∞. For any fixed n ≥ 1, let
Un(0) = 1 and for k ≥ 1, denote

Un(k) = #{Tn−1 ≤ m< Tn : Sm = −k + n, Sm+1 = −k + n − 1}.
The connection between branching processes and simple random walks is as follows, we refer
the readers to [10] and [17] for the proof and more details.

Lemma 3.1. {Un(k) : k ≥ 0}n≥1 are independent Galton–Watson processes, with the same
offspring distribution {pk}k≥0, where pk = ( 1

2 )k+1.

Remark 3.1. Note that the branching mechanism of the GW process is a geometric distribu-
tion, which can be interpreted as follows: starting at −k + n, if the walker jumping from −k + n
to −k + n − 1 is considered a success, and jumping from −k + n to −k + n + 1 is considered a
failure, then the number of trials required for the first success follows a geometric distribution.

Next we recall Tanaka’s pathwise construction for random walks conditioned to stay posi-
tive (see [16], [23]). Let (τ+

k ,H+
k )k≥0 be the sequence of strictly ascending ladder epochs and

heights, that is, τ+
0 = H+

0 = 0, and for k ≥ 1,

τ+
k = inf

{
n> τ+

k−1 : Sn > Sτ+
k−1

}
, H+

k = Sτ+
k

.

Define e1, e2, . . . , the sequence of excursions of (Sn)n≥0 from its supremum that have been
time-reversed,

en = (
0, Sτ+

n
− Sτ+

n −1, . . . , Sτ+
n

− Sτ+
n−1

)
for n ≥ 1. For convenience write en = (en(0), en(1), . . . , en(τ+

n − τ+
n−1)) as an alternative for

the steps of each en. According to Tanaka’s construction, the random walk conditioned to stay
positive S+ = (S+

n )n≥0 has a pathwise realization by glueing these time-reversed excursions
end to end in the following way:

S+
n = H+

k + ek+1(n − τ+
k ), if τ+

k < n ≤ τ+
k+1.

For simple random walks, it is easy to see that τ+
k = Tk and H+

k = k, for any k ≥ 0. By the
definition of Un(k), it can be verified that

Un(k) = #
{
Tn−1 ≤ m< Tn : S+

m = k + n, S+
m+1 = k + n − 1

}
.
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Therefore, using the definition of local time, we obtain

ξ+(x, Tn) = U1(x − 1) + U1(x)

+ U2(x − 2) + U2(x − 1)

+ · · · · · ·
+ Un(x − n) + Un(x − n + 1). (3.1)

It is not hard to see that {Tn}n≥0 are the prospective minimum value sequences of S+, that is,
minimum values with respect to the future development of random walks conditioned to stay
positive,

Tn = min
{
m> Tn−1 : S+

m+k > S+
m for all k ≥ 1

}
.

Hence ξ+(n) = ξ+(n, Tn) by the fact that S+
k > S+

Tn
= n for k> Tn. Thus we can reformulate

(3.1) as follows:

ξ+(n) = U1(n − 1) + U2(n − 2) + · · · + Un−1(1) + Un(0)

+ U1(n) + U2(n − 1) + · · · + Un−1(2) + Un(1). (3.2)

By Lemma 3.1, {Un(k) : k ≥ 0}n≥1 are independent Galton–Watson processes. If we denote

Zn := U1(n) + U2(n − 1) + · · · + Un(1) + Un+1(0), n ≥ 1,

then {Zn}n≥1 is a GWI process with offspring distribution {pk}k≥0 and immigration distribution
δ1, that is, there is only one immigrant in each generation. Using (3.2), we get

ξ+(n) = Zn−1 + Zn − 1. (3.3)

Next we recall the scaling limits of GWI processes (see [18, Theorem 3.43]): as n → ∞,(
Z(�nt	)

n
: t ≥ 0

)
=⇒ (Xt : t ≥ 0), (3.4)

where (Xt)t≥0 is a CBI process (continuous-state branching process with immigration) defined
by the stochastic differential equation

dXt =√
2Xt dBt + dt, X0 = 0. (3.5)

Applying (3.3), (3.4), and (3.5), we get the scaling limit of local time(
ξ+(�nt	)

n
: t ≥ 0

)
=⇒ (

X̃t : t ≥ 0
)
, (3.6)

where (X̃t)t≥0 is also a CBI process and satisfies the stochastic differential equation

dX̃t = 2
√

X̃t dBt + 2dt, X̃0 = 0.

By the definition of BESQ (see [19, Definition XI.1.1]), we know that (X̃t)t≥0 is also called
the square of two-dimensional Bessel process starting from 0 and is denoted by BESQ2

0.
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According to a variant of the Ray–Knight theorems (see [20, page 32]), we know that the law
of (Lx∞(ρ) : x ≥ 0) is the same as the law of BESQ2

0. Applying (3.6) and the above arguments,
we get (

ξ+(�nx	)

n
: x ≥ 0

)
=⇒ (

Lx∞(ρ) : x ≥ 0
)
.

Thus the proof of Theorem 1.3 is complete.

4. Moments of local time

The goal of this section is to determine the asymptotic behaviour of the mixed moments of
local time ξ+(x), which will be used to establish Theorem 1.2 by the method of moments in
the next section.

Proposition 4.1. Assume EX1 = 0 and E(X2
1) =: σ 2 ∈ (0,∞). Let Sm be the set of permutations

of {1, . . . ,m}. Then, for any (x1, . . . , xm) ∈R
m+,

lim
n→∞ E

[
m∏

i=1

σ 2ξ+(�nxi	)

n

]
= 2m

∑
σ∈Sm

xσ (m)

m−1∏
i=1

min{xσ (i), xσ (i+1)}. (4.1)

In particular, if xi = x ∈R+, i = 1, 2 . . . ,m, then

lim
n→∞ E

[(
σ 2ξ+(�nx	)

n

)m]
= (2x)m m!. (4.2)

Proof. Observe that

m∏
i=1

ξ+(nxi) =
∑

j1,...,jm≥1

1
{
S+

j1
= nx1, . . . , S+

jm
= nxm

}
≤
∑
σ∈Sm

∑
j1≤···≤jm

1
{
S+

j1
= nxσ (1), . . . , S+

jm
= nxσ (m)

}
. (4.3)

Here and below, ξ+(nxi) means ξ+(�nxi	) for notational convenience. Similarly,

m∏
i=1

ξ+(nxi) ≥
∑
σ∈Sm

∑
j1<···<jm

1
{
S+

j1
= nxσ (1), . . . , S+

jm
= nxσ (m)

}
. (4.4)

Taking expectations in (4.3) and applying Proposition 2.6 from [7], we obtain that
as n → ∞,

E

[
m∏

i=1

ξ+(nxi)

]
≤E

[∑
σ∈Sm

∑
j1≤···≤jm

1
{
S+

j1
= nxσ (1), . . . , S+

jm
= nxσ (m)

}]

=E
+
[∑
σ∈Sm

∑
j1≤···≤jm

1{Sj1 = nxσ (1), . . . , Sjm = nxσ (m)}
]
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=E

[∑
σ∈Sm

V(nxσ (m))
∑

j1≤···≤jm

1{Sj1 = nxσ (1), . . . , Sjm = nxσ (m), τ > jm}
]

∼ nm−1

EH+

(
2

σ 2

)m−1 ∑
σ∈Sm

V(nxσ (m))
m−1∏
i=1

min{xσ (i), xσ (i+1)}. (4.5)

By the renewal theorem, V(x) ∼ x/EH1, as x → ∞. Applying Theorem 4.5 from [16], we find
that EH1 ·EH+

1 = σ 2/2. Combining this and (4.5), we obtain

lim sup
n→∞

E

[
m∏

i=1

σ 2ξ+(nxi)

n

]
≤ 2m

∑
σ∈Sm

xσ (m)

m−1∏
i=1

min{xσ (i), xσ (i+1)}.

Taking expectations in (4.4) and applying Proposition 2.6 from [7] again, similarly we can
obtain the lower bound

lim inf
n→∞ E

[
m∏

i=1

σ 2ξ+(nxi)

n

]
≥ 2m

∑
σ∈Sm

xσ (m)

m−1∏
i=1

min{xσ (i), xσ (i+1)}.

Thus the proof is complete. �

Remark 4.1. Our previous proof of (4.2) requires the assumption that the walk is right con-
tinuous and relies on Tanaka’s construction for S+. We are deeply thankful to one of the
referees for providing an idea to relax this restrictive condition and derive asymptotics for
mixed moments (4.1) based on Denisov and Wachtel [7], which allows us to prove conver-
gence of finite-dimensional distributions in a straightforward manner. Furthermore, as pointed
out by the referee, Proposition 4.1 and Theorem 1.2 can be generalized to stable random walks,
but at the moment the distribution of the limiting process is unknown.

5. Proof of Theorem 1.2

We will prove that the finite-dimensional distributions in (1.5) do converge, that is, for
m ∈Z+ and x = (x1, . . . , xm) ∈R

m+, as n → ∞,(
σ 2ξ+(nx1)

n
,
σ 2ξ+(nx2)

n
, . . . ,

σ 2ξ+(nxm)

n

)
d−→ (

Lx1∞(ρ), Lx2∞(ρ), . . . , Lxm∞(ρ)
)
. (5.1)

To this end, we study the Laplace transform of the left-hand side of (5.1). Obviously, for every
r ≥ 1,

2r+1∑
j=0

(−1)j yj

j! ≤ e−y ≤
2r∑

j=0

(−1)j yj

j! , y ≥ 0. (5.2)

From (5.2) it follows that for any λ= (λ1, . . . , λm) ∈R
m,

E

[
exp

{
−

m∑
i=1

λiσ
2ξ+(nxi)

n

}]
≤

2r∑
j=0

(−1)j

j!
(
σ 2

n

)j

E

[(
m∑

i=1

λiξ
+(nxi)

)j]
(5.3)

and

E

[
exp

{
−

m∑
i=1

λiσ
2ξ+(nxi)

n

}]
≥

2r+1∑
j=0

(−1)j

j!
(
σ 2

n

)j

E

[(
m∑

i=1

λiξ
+(nxi)

)j]
. (5.4)
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Let {a = (a1, a2, . . . , am)} be the set of m-dimensional multi-indices. Then, by the binomial
formula, we have

E

[(
m∑

i=1

λiξ
+(nxi)

)j]
=
∑

a:|a|=j

j!
a! λ

a
E

[
m∏

i=1

ξ+(nxi)
ai

]
. (5.5)

Applying Proposition 4.1, we find that there exists some function φj(x, a) such that

E

[
m∏

i=1

ξ+(nxi)
ai

]
∼ njφj(x, a), as n → ∞. (5.6)

Furthermore, this proposition also gives the following bound:

φj(x, a) ≤ j!
(

2

σ 2

)j(
max

1≤i≤m
xi

)j
.

Combining (5.5) and (5.6), we deduce that as n → ∞,

E

[(
m∑

i=1

λiξ
+(nxi)

)j]
∼ njψj(x, λ), (5.7)

for some function ψj(x, λ) satisfying

ψj(x, λ) ≤ j!
(

2

σ 2

)j(
max

1≤i≤m
xi

)j
(

m∑
i=1

λi

)j

. (5.8)

Plugging (5.7) into (5.3) and (5.4), we obtain

lim sup
n→∞

E

[
exp

{
−

m∑
i=1

λiσ
2ξ+(nxi)

n

}]
≤

2r∑
j=0

(−1)j

j! σ 2j ψj(x, λ)

and

lim inf
n→∞ E

[
exp

{
−

m∑
i=1

λiσ
2ξ+(nxi)

n

}]
≥

2r+1∑
j=0

(−1)j

j! σ 2j ψj(x, λ).

Note that the estimate (5.8) allows us to let r → ∞ for λi small enough. As a result, there exists
δ > 0 such that if λi ∈ [0, δ) for all 1 ≤ i ≤ m, then

lim
n→∞ E

[
exp

{
−

m∑
i=1

λiσ
2ξ+(nxi)

n

}]
=�(x, λ),

where

�(x, λ) :=
∞∑

j=0

(−1)j

j! σ 2j ψj(x, λ).
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Notice also that (5.5) implies the continuity of λ→�(x, λ) on [0, δ)m. By the continuity
theorem for Laplace transform, the distribution of the rescaled local time sequence(

σ 2ξ+(nx1)

n
,
σ 2ξ+(nx2)

n
, . . . ,

σ 2ξ+(nxm)

n

)
converges weakly to a law Fx, which is characterized by the Laplace transform

λ �→�(x, λ).

The continuity of this function implies the consistency of the family of finite-dimensional
distributions Fx. Furthermore, by Theorem 1.3, we know that the limiting process is
(Lx∞(ρ) : x ≥ 0). Thus the proof is completed.
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