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A REMARK ON COLIMITS 

BARBARA L. OSOFSKY 

Let MR be a right module over the associative ring R (with 1). Assume one 
has an expression for M as a colimit (direct limit) of a system 

Fa^F0\a<p £DJ 

over the (directed) poset D. A natural way to get M as a colimit of the family 
{Fa —» Fp\a, ft 6 E} for some subset £ of D is to take E cofinal in D. However, 
if one is concerned about the cardinality of the set E, cofinal subsets may be 
too large. Let us look at a specific example. Lazard [3] has shown that any 
flat MR is a direct limit of finitely generated free R-modules. The cardinality of 
his indexing set depends on the cardinality of M. Thus Lazard 's indexing set 
and any cofinal subset thereof may have cardinality much larger than the 
minimum number of relations required to define M. Thus, knowing that the 
projective dimension of lim Fa ^ sup {proj. dim. (Fa)} + k + 1 where D 

has cardinality X* does not obviously imply that the projective dimension of an 
Xft-presented flat module ^ k + 1. In this note we show how to get around 
this kind of problem by looking at (directed) subsets E of D which are not 
necessarily cofinal but which still have M = co\\mE{Fa —» Fp}. 

In this paper, X will denote an infinite cardinal number, and \D\ will denote 
the cardinality of the set D. 

Definition. A module MR is called ^-related if there exists an exact sequence 

with P free and K X-generated. M is ^-presented if it is X-generated and X-
related. 

THEOREM. Let M be an ^-related module, D a {directed) poset, 

Fa-lU Ffi\a < fi e Dj 

a system of ^-generated modules such that M tt colim^ Fa. Then there exists a 
(directed) subset Df Ç D with \Df\ S X such that M œ colimD'{Fa, irj} © L, 
where L is free. If M is H-generated, we may take L = 0. 
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Proof. We proceed in a series of steps. Let 

be exact, P free with free basis {xt\i G </} , K X-generated. 
(1) (Initial reduction). Since K is X-generated, there exists a s u b s e t ^ / Ç J 

such tha t \J\ = X and K C £ ; 6 / x , i ? . Then 

ilf ttP/Ktt ( £ x ^ W e ^ * , /? . 

If | ^ | ^ X, t a k e / = , / . If not, any X-generated submodule of ]C <€./-/ xtR 
is contained in a proper summand, so M cannot be X-generated. In any case 
we have M œ M' © L', where 

is X-presented and 1/ is free on {xt\i G J — (f\. 
(2) (Well-known fact). Let N be any X-presented module, 0 —> B -+ A —> 

N —» 0 exact, 4̂ X-generated. Then 5 is X-generated. This is a corollary of 
Schanuel 's lemma (see [2, p. 167]), for if P' is an X-generated free mapping 
onto A, kernel ( P ' -^ A —> TV) is an X-generated module mapping onto B. 

(3) (Another well-known fact). ColimD{Pa , TJ} tt ©«ÇD Fa/XDj where XD 

is the submodule of © Fa generated by elements of the form u(a, fi) for a < /3, 
where all projections of u(a, ft) are zero except for x G Fa and — wjx G P/9. 
This is trivial to verify from the definition of colimit. See [6, Chapter V I I I , 
§ 4] if a reference is necessary. This motivates the following notation. 

Notation. For any E Ç D, set XE = the submodule of ®açE Fa generated by 

{u(a,P)\a, fi £ E, u(a, ft) = x — ira^x where x G Fa). 

Set FE = ®a£E Fa. We will consider each FE and XE as a subset of FD and XD 

by the obvious injections. Let vE be the map from FE to M induced by these 
identifications, IE the image of vE in M. 

(4) Let N be any X-generated submodule of M. Then M' + TV is X-gener
ated. Hence there exists a s e t j f Ç / - / such tha t \X\ ^ X and M' + 
N Q M' ® J^itJtrXiR. Since Pz> —> M is onto, for each generator m of M ' © 
^ i € ^ x ^ there is a finite subset G(m) of D such tha t m G /^cm)- Then the set 
E = U G(m) satisfies 

M ' + iV Ç M ' © X) * i ^ ç / * . 

We use this plus a snaking argument of Kaplansky [1] to get: 
(5) Let N Ç M be any X-generated submodule of M. Then there exists 

E(N) Ç P> and i f (TV) Q J - </ such tha t TV Ç 7 W ) , |P(TV)| ^ X, and 
M œ /^(^) © X^É^CAO xtR. We show this by finite induction. By (4), we may 
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find J f o C J - J and E0 Q D with | j f 0| è X and |£0 | ^ X such that 
TV Ç M' © X^oro %iR Q IEQ> Assume we have En and Jfn for all n ^ m such 
that |En| and |jfn| g X and for 0 g n g m - 1 

(a) £ n C En+U 

(b) jT n Ç Jfn+1, 
(c) IEn C M ' © E«€jr„+i *<# £ /*n+i-

Since each Fa is K-generated, so is IEm. Hence by (4) we may find Em+i and 
J^m + i satisfying (a), (b), and (c) with |Em+i| and |Jfm+i| g X. Set £ (TV) = 
U»-o £», J f ( # ) = U»-o^fn- Then |£(7V)| and \X(N)\ £ X and by con
struction, 

i€XT(N) i€*W) 

so M = / W ) © E <€*(*) s ,2? where if(iV) = (J - J) -tf(N). In par
ticular, IE{N) is the X-presented module M' © ]C<ejr(jv) ^<i?. 

(6) Step (5) says that any K-generated submodule N Cl M can be embedded 
in a direct summand IE(N) °f Af which is the image of ®a^E(M)Fa. The £ we are 
looking for in our theorem has the additional property that the kernel XD C\ FE 

of vE : FE —> M is the colim^ kernel XE\ i.e., we must construct E C D such 
that XE = XD C\ FE and M = IE ® Y^ttx xtR. We again use finite induction 
to union up to such an E. 

Set E0 = E(Mf), oêfo = J£(M'). Assume for all n g m we have £ n and 
e^w such that 

(a) \En\ g X; 
(b) M = J ^ © E i ^ n , **#, where IEn = M' © Eiec.*-/)-*» **K 

and for 0 ^ w ^ ra — 1 ; 
( c ) £ n ç £ „ + 1 (so ifn 2-Sf„+i); 
( d ) ^ n f I s = xEn+lnFBn; 
(e) if 7> is directed, then every finite subset of En has an upper bound in 

En+\. 
Since IEm is X-presented, kernel vEm = XD P\ FEm is X-generated, say by 

{7/31/3 G «/ '}. For each |5G i ' there exists a finite set G(/3) Ç 7) such that 
/̂s = 2] u(a, a)r(a, a) where a < a are elements of G(/3) and r(a, a!) Ç i?. 

Set G = U G(/S). Then \G\ ^ X. If 7> is directed, for each finite subset S of 
of Em, let b(S) be an upper bound of 5 in D, and set 

G' = {b(S)\S a finite subset of Em}. 

Since there are at most X finite subsets of Em, \G'\ g X. Now let 

Em+i = E(IEmUGUG') U Em U ^ U f f 

= if(/^m U G U G0. 

Then £m + i and i f m + i satisfy (a) through (e). Em+i was obtained by looking 
at E' = Em\J G\J G', taking the image IE>, and then applying (5) to get a 
direct summand IEaE,) required in (b). To insure (c), it is not sufficient to 
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take Em+i = E(IE>). We must also throw in E'. However, since ®aeE' Fa maps 
into IE{iEo> ÏEm+1 = IEUE>)- We get (a) since \E'\ C X, and (d) and (e) are 
insured by including G and G' in £m + i . Then if 

00 CO 

E = U En and <£ = H if, , 
n=0 n=0 

(b) and (c) insure that M = IE © X)*^ x^R and (d) insures that XE = 
FE C\ XD so /^ = colim^ F. 

COROLLARY. Let M be an Hk-related flat R-module. Then proj. dim (M) ^ 
k + 1. 

Proof. If fe = — 1, it is well-known that Af is projective. Otherwise, by 
Lazard [3], M is a direct limit of finitely generated frees. By the theorem, 

M = lim Fa © Z> 
>E 

where L is free, each Fa is finitely generated free, and |£ | ^ X*. By Osofsky [5], 
proj. dim. (lim Fa) ^ k + 1, so proj. dim. (Af) ^ k + 1. 

We remark that step (1) of the proof of the theorem plus the standard 
argument (as in [6] for example) shows that any K-related module is a direct 
union (direct limit) of X finitely generated (finitely presented) modules plus 
a free. 
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