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Abstract. We show that the birational classification in positive characteristic of smooth Fano three-
folds X with Picard number 1 is the same as in characteristic zero. In particular, there are no exotic
such Fanos; as a consequence of the classification, X is shown to be liftable without ramification to
characteristic zero and to contain a line. The main techniques employed are those of Ekedahl and of
Mori and Takeuchi.
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Introduction

In characteristic zero, Fano 3-folds X can be classified along the following lines,
worked out by Mori and Takeuchi [M], [T]; their arguments represent a simplifi-
cation of those due to Iskovskikh and Shokurov [I 1,2], [Sh 1,2].

(1) Kodaira vanishing shows that Hi(OX) = 0 and Hi(O(�KX)) = 0 for
i > 0.

(2) An elementary argument involving (essentially) varieties of minimal degree
shows that the index r of X is at most 4, and that if r = 4 (resp. r = 3) then
X �= P3 (resp. X �= Q2 ,! P4).

(3) For �(X) = 1 and r > 1, the complete list was made by Iskovskikh;
for r = 2 he assumed that if H is the positive generator of NS(X), then j H j

contains a smooth member. This assumption was subsequently shown by Fujita to
be unnecessary (in all characteristics). Also, when r > 2 Megyesi (unpublished)
has classified these varieties and shown that they are liftable to characteristic zero.

(4) For �(X) = 1 and r = 1 (‘primitive and of the first species’), the first point
is to show that j�KX j has a memberH with at worst RDPs;H is then a K3 surface
(cf. [Sh 1]). Then Saint-Donat’s theorems about linear systems on K3’s [SD] can
be used to show that if degX > 8, then X is an intersection of quadrics.

(5) Then consideration of respectively triple projection from a general point
and double projection from a conic (which, after Mori, can be best understood
as respectively a double projection followed by a flop and ordinary projection
followed by a flop) leads to the inequality degX 6 24 (equivalent to g 6 13,
where g = 1

2c
3
1(X) + 1 is, as usual, the genus of a curve section). Moreover, the

analysis of the triple projection (involving a comparison of the various kinds of

PREPROOFS: HANS: PIPS No.: 103472 MATHKAP
comp3864.tex; 8/05/1997; 6:57; v.5; p.1

https://doi.org/10.1023/A:1000158618674 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000158618674


238 N. I. SHEPHERD-BARRON

extremal rays with the results of computing certain intersection numbers) shows
thatX is covered by conics, and then double projection from a general conic (which
is an ordinary projection followd by a flop) excludes the possibilities g = 11 and
g = 13. Moreover, the analysis of this conic projection shows that X contains
a line. Taken together, the two kinds of projection give a birational classification
(that is, a detailed description of various birational equivalences between Fano’s
of different degrees) [T]. Since this approach does not require the existence of
lines to be proved a priori, it gives a substantial simplification of the classification
(Shokurov’s proof [Sh 2], [R 1] that lines exist is complicated). Iskovskikh [I3, I4]
and Cutkosky [C] have also given other derivations of this birational classification
using extremal rays and flops; however, they start by assuming the existence of
lines (in [I3] and [C]) or lines and conics (in [I4]), rather than prove it using this
part of Mori theory.

(6) The analysis of the coneNE(X) and his description of extremal rays permits
a classification if �(X) > 2 [MM]. This depends upon the fact, established in (5),
that if r = � = 1, then X contains a surface swept out by lines, so that for any
smooth curve C on X , BlC X is not Fano.

Step (5) is the main part of the classification and depends upon a number of
other results, for example

(i) Grauert-Riemenschneider vanishing;
(ii) a description of flops;
(iii) the facts that X is not covered by lines, and that through a generic point P of

X there is a finite (non-zero) number of conics and only finitely many rational
quartic curves that are singular at P .

The aim of this paper is to establish (1)–(5) in characteristic p > 0; Kollár has
already shown that extremal rays on smooth threefolds have the same description
in char. p as in char. 0 [K3], except that conic bundles and pencils of del Pezzo
surfaces may have wild behaviour. The additional arguments can be summarized
as follows.

(1) By combining ideas of Ekedahl [E] with the elaboration developed by Kollár
[K1] of bend-and-break techniques we prove a large piece of Kodaira vanishing (in
particular, enough to show that �K has at least as many sections as are predicted
by Riemann–Roch; a priori, j �K j may be empty).

(2) Following a suggestion by Mori, we overcome the failure of Bertini’s the-
orem by considering generic members of linear systems rather than geometric
generic members; this forces the consideration of linear systems on normal K3-
like surfaces that are not geometrically normal, but there are no difficulties. This
enables us to dispose of those Fano 3-folds for which Bs j �Kj is not empty and
to deal with the singularities arising from the projections just as in characteristic
zero. The arguments are modifications of Mori’s [M] in characteristic zero.

(3) IfX is cut out by quadrics, then in odd characteristic a monodromy argument
shows that it is not covered by lines. This is needed because double projection from
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a point P on a line breaks down. When � = 1 this is extended to characteristic
2. The Hoffman–Singleton graph proves relevant at this point; it does not seem to
have appeared in the context of algebraic geometry before.

Now assume that r = � = 1.

(4) Double projection from a general point P collapses only finitely many
curves. The arguments of Mori and Takeuchi then carry over without change to
show that g 6 13 and that there is a conic through P .

(5) Projection from a generic conic also collapses only finitely many curves.
(6) Conic bundles and del Pezzo fibrations behave sufficiently well (although

there is a subtlety involving del Pezzo fibrations in characteristic 2).
(7) If g > 7, then we get a birational description as in characteristic zero.
(8) We use this description to prove that H1(
1

X) is generated by the Chern
classes of divisors. We then deduce that H2(�X) = 0, so that X can be lifted,
without ramification, to characteristic zero.

(9) Once the variety can be lifted to characteristic zero the existence of lines is
immediate. This result is crucial in Mori and Mukai’s classification of Fano 3-folds
of Picard number at least 2.

On the other hand, Mukai has given a complete biregular classification of
embedded primitive Fano 3-folds of the first species. Given a Fano 3-fold with 11 6=
g 6 12, he constructs a vector bundle to embed the variety in some homogeneous
space G=P , where P is a maximal parabolic. I have not checked whether or to
what extent this carries over to all characteristics. Perhaps it is worth pointing out
in this context that in characteristic p there are no exotic homogeneous spaces of
Picard number 1. The reason is that if P is a maximal parabolic andP0 = Pred, then
Lie(P ) contains Lie(P0), while Lie(P0) is a maximal Lie sub–algebra of Lie(G).
Hence the morphismG=P0 ! G=P is a power of the geometric Frobenius, so that
G=P0 and G=P are conjugate varieties.

Mukai has also given a simple proof of the degree bound 11 6= g 6 12,
independent of any classification (birational or biregular), using the moduli of
curves and K3 surfaces. However, this depends on proving that for a smooth
hyperplane section S, the versal deformation space of the pair (X;S) maps onto
the space of polarized deformations of S, which in turn depends on knowing that
H1(
1

X) is spanned by algebraic classes. This is not clear a priori in positive
characteristic (except as a consequence of the Tate conjecture).

Finally, the classification when � > 2 is left open, although some of the results
used by Mori and Mukai in characteristic zero are established here (such as the
existence of lines when r = � = 1 and the analysis of conic bundles and del Pezzo
fibrations).
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1. Kodaira vanishing

THEOREM 1.1 IfX is a Fano variety of arbitrary dimension, then the irregularity
q(X) is zero.

Proof. Let � : X ! A be the Albanese mapping, and letD be an ample divisor
on A. By the cone theorem, there are finitely many rational curves C1; : : : ; Cn
on X such that for any curve � on X , there are rational numbers m1; : : : ;mn

with � �
P
miCi. Since � collapses every rational curve, we have � : ��D =P

miCi : �
�D = 0. Then � collapses �, so that � is constant. �

COROLLARY 1.2 If X is a Fano 3-fold, then �(OX) > 1:
Proof. H1(OX) is the tangent space to Pic0 X andH2(OX) is the obstruction

space. By Theorem 1.1 dim Pic0 X = 0, and the Corollary follows. �

THEOREM 1.3 IfX is a Fanon-fold, but possibly with local complete intersection
(lci) singularities, then through any smooth point x of X there is a rational curve
L with L : (�KX) 6 n+ 1.

Proof. Kollár has shown [K1] that ifC is a curve and f : C ! X is a morphism
such that f(C) does not lie in the singular locus of X , then

dim
[f ]

Mor(C;X) > degf�(�KX) + n : �(OC):

So we can bend-and-break just as usual, using the fact that �KX is ample. �

THEOREM 1.4 Suppose that X is a normal lci Fano 3-fold and that D 2 Pic X
is ample. Then H1(O(�D)) = 0 if either p > 5 or X is smooth and D : c2 > 0.

Proof. Assume that H1(X;O(�D)) 6= 0. By Serre vanishing, we may assume
thatH1(X;O(�pD)) = 0. Take a non-zero class � 2 H1(O(�D)). Then �p = 0,
so that by [E] there is a morphism � : Y ! X which is a torsor under some
�p-group scheme overX; here, Y is reduced and irreducible with lci singularities,
deg� = p and !Y �= ��O(KX � (p� 1)D).

(One can also construct Y as follows. The class � corresponds to a non-split
extension E of O(�D) by OX . The vanishing of �p means that F �E = ~E , say,
splits. Set P = P(E), which has a section X0 corresponding to the description of E
as an extension. Put U = P�X0; this is just the torsor corresponding to � under
the line bundle O(�D), regarded as a G a -group scheme, and as such is an affine
line bundle. Put ~P = P( ~E); then ~P contains a sectionX1 that maps to a copy of Y in
P which is disjoint from X0. The advantage of the torsorial description, however,
is that it makes it clear, even if X is singular, that Y is a Cartier divisor on P so that
all information about Y that we need (mainly a description of !Y and ��OY ) can
be derived from the adjunction formula.)

(N.B. If X were non-normal, then this non-trivial torsor Y might be non-
reduced, and the argument that follows would not apply. In fact, Reid [R] has
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constructed non-normal del Pezzo surfaces in char. p on which Kodaira vanish-
ing fails, and if p = 2 or 3 then some of his examples even have hypersurface
singularities.)

Note that from the description above of !Y , Y is Fano. Choose a smooth point
y on Y . By Theorem 3 there is a rational curve C through y with C : (�KY ) 6 4.
Hence ��((p� 1)D�KX) : _C 6 4, so that p 6 3. Note also that this bound means
that we can assume that D is a maximal counterexample to Kodaira vanishing, in
thatH1(X;O(�c1� rD)) = 0 andH1(X;O(�sD)) = 0 for all r > 1 and s > 2.

Assume now that X is smooth and D : c2 > 0. Also, we know that ��OY has
an increasing filtration whose graded pieces areOX ;OX(D); : : : ;OX((p� 1)D).
(This is proved by Ekedahl [E], and is derived from the description of Y as a
subvariety of the affine bundle U above.) So from Riemann-Roch and the inequal-
ities �(OX) > 1; D : c2 � 0, we get �(OY ) > �(OX). Then h2(OY ) >

h2(OX ), so that h2(OX(rD)) > 0 for some r > 1. Serre duality now gives
h1(OX (�(c1 + rD))) > 0, contrary to the maximality of D. �

COROLLARY 1.5 If X is a smooth Fano threefold, then

(1) Hi(OX) = 0 for i > 0 and �(OX) = 1.
(2) Pic X has no torsion.
(3) �alg

1 (X) = 1.
(4) h0(O(�KX)) > c1(X)3=2 + 3:

Proof. (1) By Corollary 1.2, Theorem 1.4 and the Riemann–Roch theorem, it
follows that H1(O(nK)) = 0 for all n > 1. Then by Serre duality and Corollary
1.2, we see that 0 = h1(O(K)) = h2(O) > h1(O), which proves (1).

Suppose thatD 2 Pic X withnD = 0 andD 6= 0. By (1) and R–R,�(O(D)) =
1, so that h2(O(D)) = 1. Via Serre duality, this gives a contradiction to Theorem
1.4, and so proves (2).

Suppose that Y ! X is a finite étale cover of degree n. Then Y is Fano, so that
by (1) n = 1. This proves (3).

(4) is now a consequence of Riemann–Roch. �

2. Linear systems on K3-like surfaces

In this section we consider connected projective surfaces F defined over the func-
tion field K of some k-variety. F will be normal, but possibly not geometrically
normal.

DEFINITION. F is K3-like if in addition !F �= OF and H1(OF ) = 0.

Recall that the notion of RDP makes sense in the context of arbitrary normal
excellent 2-dimensional schemes.
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PROPOSITION 2.1 Suppose that F is K3-like and has only RDPs, and that H is
a nef and big Cartier divisor on F . Then H1(O(�H)) = 0.

PROPOSITION 2.2 Suppose that F is K3-like with only RDPs, that H is ample
and that Bs jHj is not empty and is defined over k.

(1) If H2
> 4, the base locus is isomorphic to P1

K .
(2) If H2 = 2, then the base locus is a single RDP, F embeds into P(1; 1; 1; 2; 3)

as a (2; 6) complete intersection and H = O(1).

Proof. Over an algebraically closed field these results are well known. One
proof of them depends upon the fact that if E is a rank two vector bundle on the
minimal resolution f : eF ! F with c1(E)

2 � 4c2(E) > �2, then the Riemann–
Roch theorem shows that dim Hom(E;E) > 3, so that, by the Cayley–Hamilton
theorem, E has a non-zero nilpotent endomorphism. This proof carries over to
the present context, where eF is a regular scheme rather than a smooth surface. For
example, ifP is aK-rational RDP in the base locus, letZ denote the corresponding
fundamental cycle on eF . There is then a non-split extension E of O(f�H � Z)
by O, and Reider’s arguments show that case (2) holds. (Recall that the defining
property ofZ is thatZ2 = �2 and thatZ :A 6 0 for any curveA contracted by f .)�

We shall apply these results when K is the function field of the anti–canonical
system j �KX j of a Fano 3-fold X , F is the generic member of j �KX j and jHj
is the complete linear system cut out on F by j �KX j (via Corollary 1.5).

The next three sections deal with the separate cases where j�Kj has base points
or defines a morphism that is not birational or defines a morphism that is birational.

3. The base locus of j �KX j

In this section Bs j �KX j is assumed to be non–empty. The aim is to describe X
under this hypothesis; the arguments are taken over almost unchanged from Mori’s
notes covering the case of characteristic zero, which in turn simplify Shokurov’s
arguments [Sh 1] by using the geometry of extremal rays. We give most of the
details since these notes are unpublished.

LEMMA 3.1 j �KX j is not composite with a pencil.
Proof. Omitted; the proof is as in Mori’s notes or [Sh 1]. �

THEOREM 3.2 (1) The generic member of j �KX j is K3-like.
(2) H1(O(�KX)) = 0 and h0(OX(�KX)) =

1
2(�KX)

3 + 3.
(3) The geometric generic member of j �Kj is reduced and irreducible.
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Proof. Put H = �KX and jHj = D0 + jDj, where D0 is the fixed part.
According to Abhyankar, there is a sequence of blow-upsXi+1 ! Xi with smooth
centres Ci and exceptional divisor Ei whose composite � : eX ! X resolves the
base locus. That is, if �i+1 : eX ! Xi+1 is the composite and Fi = ��i+1Ei, then
we can write

��D = eD +
X

niFi;

where ni > 1, j eDj has no base points and
P
niFi is the fixed part of j��Dj.

Now consider the generic member eF of j eDj. By Lemma 3.1, this is a regular
K-scheme that is geometrically reduced and irreducible, where K is the function
field of jHj. Let F be its image inX
K and eF ! F 0 ! F the Stein factorization.
Since K eX � ��KX +

P
aiFi, where ai = 1 if Fi maps to a curve in X , we see

that KeF � (���D0 �
P
(ni � ai)Fi)jeF : Hence

KF 0 �
�
���D0 �

X
(ni � 1)Fi

�
jF 0 ;

where the sum is over those i for which Fi maps to a curve inX . In particular,KF 0

is anti–effective or zero.
DefineG = ��HjeF andL = KeF+G. So by Proposition 2.1Hi(OeF (�G)) = 0

for i > 1. Then

h0(OeF (L)) = �(OeF (L)) = 1
2L : (L�KeF ) + �(OeF ):

We also know that h0(OeF ( eF )) = h0(O eX( eF ))� 1, since H1(O eX) = 0, so that

h0(OeF (L)) > h0(O eX( eF ))� 1 = h0(OX(H))� 1 > 1
2H

3 + 2;

where the last inequality comes from Corollary 1.5. Hence

1
2H

3 + 2 6
1
2

� eD +
X

aiFi

�
: eD :��H + �(OeF ):

Since eD = ��H �
P
niFi � ��D0, we see that

1
2H

3 + 2 6
1
2

�
��H +

X
(ai � ni)Fi � ��D0

�

:
�
��H �

X
niFi � ��D0

�
: ��H + �(OeF ):

Now for all divisorsA;B onX we haveFi : ��A : ��B = 0, and alsoFi : Fj : ��A =
0 unless both i = j and Fi maps to a curve in X , in which case ai = 1. Hence

1
2H

3 + 2 6 1
2H : (H �D0)

2 +
X

ni(ni � 1)F 2
i : �

�H + �(OeF );
where the sum is over those i such thatFimaps to a curveCi inX . ThenF 2

i : �
�H =

Ci :H and the Hodge index theorem on a general member of jnHj forn� 0 shows
that H : (H �D0)

2
6 H3, so that

�(OeF ) > 2:
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Since KF 0 is anti-effective or zero, it follows readily that F 0 is K3-like and
that F 0 = F . This proves the first part of the theorem. Also, it follows that all
the inequalities above are in fact equalities, and in particular that D0 = 0 and
h0(OX (H))� 1 = 1

2H
3 + 2. The second part of the theorem now follows, and the

third is an immediate consequence of the first. �

LEMMA 3.3 If X is a P2-bundle over P1 and is Fano, then Bs j �KX j is empty.
Proof. Write X = P(O �O(a)�O(b)) with 0 > a > b and let C = P(O(b))

be the most negative section. Let F be the class of a fibre and D the tautological
class. ThenKX � �3D+(a+ b�2)F , so that 0 < (�KX) : C = 3b�a� b+2.
Thus a = b = �1 or a = b = 0. In the first case �K � 3D + 4F and jD + F j

has no base locus, and in the second �K � 3D + 2F and jDj has no base locus.
In each case Bs j �Kj is empty. �

THEOREM 3.4 Assume that Bs j �KX j is non–empty. Then either

(1) X �= S � P1, where S is a del Pezzo surface of degree 1 or
(2) X �= BlC Y , where Y ,! P(1; 1; 1; 2; 3) as a hypersurface of degree 6 and

C = Y \ (1) \ (1) is a smooth elliptic curve.

Proof. By Theorem 3.2 a generic member F of jHj = j �KX j is K3-like, and
jHj cuts out a complete linear system jDj on it. Clearly Bs jDj = Bs jHj 
K as
subschemes ofX
K , so that by Proposition 2.2 eitherF embeds in P(1; 1; 1; 2; 3)
as a (2; 6) complete intersection or Bs jHj is, as a scheme, a copy � of P1.

In the first case X then embeds in P = P(1; 1; 1; 1; 2; 3) as a (2; 6) complete
intersection. Since j �KX j = jOX(1)j has base points, X must pass through the
singular locus of P, which contradicts the smoothness of X . So the first case is
impossible.

So consider the second case, and put f : V = Bl�X ! X with exceptional
divisor E. Let � : V ! eY be the Stein factorization of the morphism defined by
j � KV j. Since on F there is a pencil of genus one curves C with C :H = 1,
the strict transforms of these curves are collapsed by �, so that eY is a surface (by
Lemma 3.1) and the induced morphism E ! eY is birational.

Next, I claim that g = 4. For this, some intersection numbers are required. We
have (H �E)3 = 0, so that H3 + 2 = 4 deg�. Since by definition H3 = 2g � 2,
it follows that g = 2 deg�. Also, HjF � � + gA, where A is a genus one curve,
so that H :� = g � 2. This proves the claim.

Note that (H �E)2 : E = H2 : E � 2H :E2 + E3 = 3 deg�� 2 = 4, so thateY = Y is a surface of degree 4 in P5.
Suppose now that the map E ! Y is not an isomorphism. Then it contracts a

negative section � on E and Y is a quartic cone. Since �KV � ��O(1), we get
�KV � F1 + � � �+ F4, where Fi is the inverse image of a line. Then H has index
4, while H :� = 2. Hence E ! Y is an isomorphism.
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Let Y ! P1 be the map corresponding to E ! �; then the composite V ! P1

factors through X , say via a morphism  : X ! P1 of which � is a section. Since
X is Fano, there is an extremal ray R on X whose associated contraction contrR
does not factor through  . Then contrR cannot contract a divisor to a point, and so
is of type E1 or D or C .

Let � be a negative section on Y and m a fibre of the map Y ! P1. Put Z =
f��

�� and D = f��
�m. Let ` be an extremal curve of minimal degree spanning

R. Then D : ` > 0, since contrR does not factor through �, and 1 6 H : ` 6 3,
e.g. from the classification of extremal rays. If H : ` = 3, then contrR makes X
a P2-bundle over P1, which contradicts Lemma 3.3. So H : ` 6 2. There are two
cases to consider:

(a) E �= F2 . Then H � Z + 3D. If Z : ` < 0, then R is of type E1 and Z is
the divisor contracted by contrR; then Z : ` = �1 and KX : ` = �1, which is
absurd. So Z : ` > 0, so that �KX : ` > 3, which is impossible. So this case
cannot happen.

(b) E �= F0 . ThenH � Z + 2D; since both Z and D move in their linear equiva-
lence classes, we have Z : ` > 0 andD : ` > 0. Hence Z : ` = 0 and D : ` = 1,
and contrR makesX a P1-bundle over a smooth surface S, say. By considering
both X ! S and  : X ! P1, it is easy to see that X �= S � P1; since X
is Fano and Bs j�KX j is not empty, it follows thatS is del Pezzo of degree 1.�

Convention. HenceforthX will denote a Fano 3-fold (of Picard number�(X) =
�) on which j �Kj has no base points, and so defines a morphism � : X ! Y

where Y ,! Pg+1. We shall also assume that X is of index 1; Megyesi has shown
that if not, then X is classified exactly as in characteristic zero.

4. The morphism defined by j �Kj

PROPOSITION 4.1 If � is not birational, then deg� = 2 and Y is a 3-fold of
minimal degree g � 1 in Pg+1. This occurs if and only if one of the following
conditions holds:

(i) g = 2, Y = P3 and X is the double cover of P3 branched in a sextic.
(ii) g = 3, Y is a quadric and X is the double cover of Y branched in a quartic

section.
(iii) g > 4 and Y is a P2-bundle over P1. Moreover, � > 2 and there is a morphism

X ! P1 whose fibres are del Pezzo surfaces of degree 2.

Proof. Exactly as in char. zero. �

PROPOSITION 4.2 If � is birational, then it is an isomorphism onto its image and
the image is projectively normal.
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Proof. This is proved exactly as in characteristic zero, using Noether’s theorem
on canonical curves. �

PROPOSITION 4.3 If j �Kj is very ample, then there are four possibilities:

(i) g = 3 and X is a quartic 3-fold in P4;
(ii) g = 4 and X is a quadro-cubic complete intersection in P5;
(iii) g > 5, the intersection Y of the quadrics containingX is a P3-bundle over P1

and the induced map X ! P1 exhibits a pencil of cubic surfaces on X;
(iv) g > 5 and X is an intersection of quadrics.

Proof. Just as in characteristic zero. �

COROLLARY 4.4 If �(X) = 1 and g > 5, then j � Kj is very ample and the
anti–canonical model of X is cut out by quadrics. �

5. Coverings by lines

In this section X is Fano of index one and is anti-canonically embedded in Pg+1

as an intersection of quadrics.
We shall show that if p 6= 2, then X is not covered by lines. This is crucial for

making multiple projection from a general point. In characteristic zero this is easy,
but in general there can be too many lines. For example, the Fermat quartic 3-foldX
in characteristic 3 has such a covering; ifP is a general point onX , then the tangent
space to X at P meets X with multiplicity 3, and then projecting this intersection
from P shows that that are lines on X through P . This behaviour turns out to be
closely related to the fact that the embedding of X in P4 is not Lefschetz. Recall
that a general pencil of hyperplane sections in a Lefschetz embedding is Lefschetz,
in the sense that the singular members have just one singular point, a node, and the
general member is smooth. A point P is Lefschetz if there is a hyperplane section
that is smooth away from P and has a node at P . If the characteristic is odd (or
zero) or the dimension is even, then the embedding is Lefschetz and some member
of every Lefschetz pencil is singular if and only if a general point (or if some point)
is Lefschetz [SGA 7]. Since we are dealing with 3-folds, characteristic 2 be more
delicate and is discussed in Section 7.

PROPOSITION 5.1 Fix P 2 X , and let � : eX = BlP X ! X be the blow-up with
exceptional divisor E �= P2. Let L � jOE(2)j be the system of conics cut out by
j �K eX j = j �KX � 2P j. Then the base points of L correspond to the lines on X
through P , and there are four possibilities:

(i) L has a smooth member (in which case P is a Lefschetz point);
(ii) L has a fixed line, or is empty (when there is a plane in X through P );
(iii) L has a unique base point (in which case there is a unique line in X through

P );
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(iv) p = 2 and L is the set of all double lines in E.

Proof. This is an elementary and well known consequence of X being cut out by
quadrics. �

THEOREM 5.2 (1) If p 6= 2, then the embedding is Lefschetz and in a general
pencil some member is singular.

(2) If p = 2, then either a general point is Lefschetz or X is a wild conic bundle
over a surface or L is the set of double lines in E.

Proof. Assume that the result is false; then either (ii) or (iii) of 5.1 holds.
If (ii) holds, then as P moves on X we get a 1-dimensional family fMtgt2T of

planes on X . Let ` be a line in one of these planes M ; then (�KX) : ` = 1, so that
(NM=X : `)M = �2, by adjunction. But this contradicts the fact that M moves.

If (iii) holds, let T be an irreducible projective surface in the Hilbert scheme of
lines onX , � : L! T the universal family and� : L! X the canonical projection.
If T is chosen appropriately, then � is dominant and generically one-to-one (so
either birational or purely inseparable).

Suppose that � is not finite; then there is an irreducible curve � � L such that
�(�) is a point Q, say. Then �(�) cannot be a point, and so it is a curve �, say.
Put � = ��1(�). Then �(�) is a cone with vertex Q. Since X is smooth at Q,
�(�) is the cone Ĉ over an irreducible plane curve C . Since X is an intersection
of quadrics, C is a conic. Let ` � Ĉ be a generator. Since (�KX : `) = 1, we get
Ĉ : ` = �1, by adjunction. This contradicts the fact that `moves in a 2-dimensional
family on X .

Hence � is finite and purely inseparable. After iterating the Frobenius, we get
morphisms X ! L(n) ! T (n) for some n � 0. Then the morphism X ! T (n)

exhibits the lines parametrized by T as spanning an extremal ray, say R. But then
the classification of extremal rays shows that contrR makesX a wild conic bundle.
This can only happen if p = 2. �

THEOREM 5.3 Assume that p 6= 2. Then X is not covered by lines.
Proof. Take a Lefschetz pencil fStgt2T on X and let S be a geometric generic

member. Each St is birationally K3, and so cannot carry a pencil of smooth rational
curves, so that if X carries a 2-dimensional family of lines, then every St has a
non-zero but finite number of lines. Fix a prime ` 6= p, and let x be the class in
H2(S;Q`(1)) of a line on H .

If x is not monodromy invariant, then by [SGA 7], there is a vanishing cycle
� 2 H2(S;Q`(1)) such that x : � 6= 0. Let � denote the reflection in �, so that
�(x) 6= x. Since �(x) is the image of x under some Galois conjugation, �(x) is a
line on H . Hence x : �(x) = 0 or 1. This gives x : (x + (�:x)�) = 0 or 1, so that
(x : �)2 = 2 or 3. But x : � 2 Q` , which by quadratic reciprocity is impossible if
` = 5 or 19. Thus every line in S is monodromy invariant.

So suppose that l � S is a Galois-invariant line. We shall show that l is defined
overK = k(�), where � is the generic point of T . For this, we can replaceK be any
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separable extension of itself. In particular, we can assume that S� has a K-point.
Put �L = OS(l) and G = Gal( �K=K). So �L 2 (PicS)G. Now the locally finite
group scheme PicS� is étale overK , so that �L is defined over the separable closure
Ksep ofK . NowH2(G; (Ksep�)) = 0, by Tsen’s Theorem, so that the Hochschild–
Serre spectral sequence gives an isomorphism PicS� ! (PicS� 
Ksep)G. Hence
there is a line bundle L on S� such that �L �= L
 �K . A nonzero section of L then
defines a K-rational divisor D such that l = D 
 �K . Then the Zariski closure
of D in the threefold maps to a subvariety L of X such that L meets a general
hyperplane in a line. But then L is a plane, so that X is covered by planes. Then
NL=X

�= O(n), with n > 0, and �KX jL �= O(1). However, this contradicts the
adjunction formula. 2

Remark. If p = 2, then there are Fano 3-folds that are wild conic bundles (i.e.,
conic bundles all of whose fibres are double lines), and these are covered by lines.

We shall sharpen these results when �(X) = 1, but to do this we shall need a
version of Grauert–Riemenschneider vanishing.

6. Grauert–Riemenschneider vanishing

In this section we shall prove an ad hoc version of G.–R. vanishing which is enough,
for example, to make double projection from a point to work.

PROPOSITION 6.1 Suppose that V is a smooth threefold, that jDj = j �KV j has
no base points and that the Stein factorization � : V ! Y of the morphism defined
by jDj is birational. Assume also that Hi(V;OV ) = 0 for i > 0.

Then Y has Gorenstein singularities, !V = ��!Y and Ri��OV = 0 for i > 0.
Proof. We have D � ��H for some ample H . Since � is birational, it is clear

that !V = ��!Y .
Let S be the generic member of jDj defined over the function field K of jDj.

Since jDj has no base points, S is a regular scheme, and is clearly K3-like. By
abuse of notation, we shall not distinguish between V and V 
K .

Consider the exact sequence

0 ! OV ((n� 1)D)! OV (nD)! OS(nD)! 0:

NowH1(S;OS(nD)) = 0 for all n 2 Z, by Proposition 2.1 (the vanishing theorem
for K3 surfaces with RDPs), so that H1(V;OV ((n � 1)D)) � H1(V;OV (nD))
for all n 2 Z. Since H1(OV ) = 0, it follows that H1(V;OV (nD)) = 0 for all
n > 0. Also, H0(S;OS(nD)) = 0 for all n < 0, so that H1(V;O((n � 1)D)) ,!
H1(V;O(nD)) for all n < 0. Hence H1(V;O(nD)) = 0 for all n, and then by
Serre duality H2(V;O(nD)) = 0 for all n.

There is a Leray spectral sequence

E
pq
2 = Hp(Y; (Rq��OV )
OY (nH))) Hp+q(V;OV (nD)):

comp3864.tex; 8/05/1997; 6:57; v.5; p.12

https://doi.org/10.1023/A:1000158618674 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000158618674


FANO THREEFOLDS IN POSITIVE CHARACTERISTIC 249

Take n � 0; then E
pq
2 = 0 for all p > 0, by Serre vanishing. It follows that

H0(Y; (Rq��OV )
OY (nH)) �= Hq(V;OV (nD)) for all q, so thatRq��OV = 0
for q > 0.

Since !V = ��!Y , it follows that Rq!V = 0 for q > 0 and ��!V = !Y , and
now Kempf’s proof [KKMS] that in char. zero rational singularities are Cohen-
Macaulay goes through to give the result. �

Remark We shall use this result when V is the blow-up of an embedded Fano
3-fold along either a line or a conic or a point lying on no line.

7. The case �(X) = 1

In Sections 7–10 we assume that �(X) = 1, in addition to the hypotheses of
Section 5. This enables us to get the answers to the questions of projective geometry
that must be solved to give the birational classification.

THEOREM 7.1 If p 6= 5, then X is not covered by lines.

Proof. Assume that X is covered by lines. By Theorem 5.2(2) a general point
of X is Lefschetz, so that every member S of a general pencil of hyperplane
sections of X has at most finitely many singularities, all of which are nodes. So S
is birationally K3, and so cannot carry a pencil of lines. Hence every hyperplane
section of X contains a line. Let S be a general such section, and l a line in S
(so that in particular l is a general line on X). Since � = 1, X is not a wild conic
bundle, and so the proof of Proposition 5.2 shows that a general point on l lies on
another line in X , so that there is an irreducible surface � � X swept out by lines
through l.

Put jHj = j �KX j and let � : V = BllX ! X be the blow-up. Note that by
construction, a general member S of j H � l j is smooth, so that if eS is its strict
transform on V , then eS ! S is an isomorphism.

A general member of jH � lj = j �KV j meets � set-theoretically in a union of
lines (as is easy to see), including l; besides l, these lines are disjoint, sinceX is cut
out by quadrics. Also, jH � lj defines a birational morphism  : V !W ,! Pg�1,
with Stein factorization � : V ! Y , say. By cutting down to a curve section and
using Noether’s theorem in the usual well known way, we show that W = Y . Say
C = �(�); then a general hyperplane section of W cuts C transversely and has
nodes there, since by Proposition 6.1 Ri��OV = 0 for i > 0 and for a geometric
generic point x 2 C the fibre ��1(x) is, as a set, a copy of P1. Then � is a minimal
resolution near x. Note also that the transform e� of � is, over a neighbourhood of
x, the whole exceptional locus of �.

Then by Artin’s result, that the ideal sheaf defining the fundamental cycle of
a rational surface singularity is generated by the maximal ideal of the singularity,
IC :OV = Ie� over a neighbourhood of x. Thus if S0 is a general section of Y ,

with ��1(S0) = eS, then eS \ e� is a reduced sum of lines. So if S = �( eS), then
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S :� = ml + l1 + � � � + ln, where m > 1 and l1; : : : ; ln are lines on S distinct
from l that meet l and are disjoint from each other. Note that since C is embedded
in Pg�1, the Galois group of k(P(g�1)_) permutes the points of C \ S0 transitively,
so that l1; : : : ; ln are Galois conjugate.

Since Pic X = Z[�K], we have � � dH for some d 2 N. Computing inter-
section numbers on the K3 surface S gives d = �2m + n and d = m � 2.
Hence

d2 : degX = �2m2 � 2n+ 2m:n = 4d2 + 6d:

Since degX > 8 and is even, we get d = 1 and degX = 10 (i.e. g = 6). Hence
if L is any other line on S that meets l, we have 1 = L :H jS= L :� jS=
L : (3l+

P
li) > 3, so that fl1; : : : ; lng is the complete set of lines in S that meet l.

Note that any monodromy invariant configuration on S supports a very ample
divisor, since �(X) = 1, and so is connected. So l is conjugate to some (and hence
all) of the li. Hence if �_ is the dual graph of the configuration � formed by the
lines on S, then the Galois group acts transitively on the vertices of �_. So from
the values of m and n, it follows that every vertex meets just 7 others. Moreover,
since 3l +

P
li is a hyperplane section, every line except l; l1; : : : ; l7 meets just

one of the li. So �_ has no squares or triangles and is of diameter 2. It follows
easily that �_ has 50 vertices. Moreover, �_ is regular of valency 7 (for this and
other definitions, see BCN], p. 434). Since any 2 adjacent (resp. non-adjacent) ver-
tices have 0 (resp. 1 ) common neighbours, �_ is strongly regular with parameters
(�; k; �; �) = (50; 7; 0; 1). Then by [loc. cit., Theorem 1.3.1, p. 8] the eigenvalues
of the adjacency matrix M (which is defined with zeroes down the diagonal, so
that the intersection matrix A is given by A = M � 2I) has eigenvalues 7; 2;�3
with respective multiplicities 1; 28; 21. HenceA has eigenvalues 5; 0;�with multi-
plicities 1; 28; 21. Hence rankA = 22, so that S is supersingular, and all eigen-
values of A are �5. Since on any supersingular surface the intersection pairing
on the Néron-Severi group is unimodular away from p, and there is no even
unimodular Z-lattice of rank 22 and signature (1; 21), we have p = 5, contrary
to assumption. �

Remark. (i) The properties of �_ described above characterize it as theHoffman-
Singleton graph HS [BCN, p. 391]. The obvious question is whether there is a
K3 surface S (necessarily supersingular in characteristic 5) containing an HS
configuration of lines. However, this cannot occur, since [loc. cit.] HS contains 5
disjoint 5-cycles, and the existence of this on a K3 surface S is impossible, since
for example c2(S) = 24. Moreover, the lattice L generated by the vertices of HS,
where each vertex has self-intersection�2, turns out to have discriminant�5, while
on any supersingular K3 surface in char. p the Néron–Severi group has discri-
minant �p2� , where � is the Artin invariant. Hence NS(S) cannot be embedded
in L.
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However, the double cover S of P2 branched in the Fermat sextic C contains a
copy of Aut(HS), namely a split extension of G = PSU3(F25) by h�i, where � is
the involution of G given by FrobF25 [loc. cit.].

(ii) As already noted, the Fermat quartic 3-fold in characteristic 3 is a Fano with
� = r = 1 which is covered by lines. Another example is the double cover in char.
5 of P3 branched in the Fermat sextic. I do not know whether there are any other
examples, although of course the genus could be at most 5.

NOTATION. Henceforth X will be a Fano 3-fold with � = 1 that is embedded in
Pg+1 by jHj = j �KX j and cut out by quadrics. P will denote a general point on
X , so that in particular P lies on no line, and � : eX = BlP X ! X will be the
blow-up at P , with exceptional divisor E. We denote the Stein factorization of the
morphism  : eX ! Y defined by the linear system j eH j = j �K eX j (that is, the

double projection from P ) by � : eX ! X1. Sometimes we shall abuse the notation
by also regarding � as a rational map on X .

COROLLARY 7.2 (1) j eHj has no base points and � collapses just the strict
transforms of the curves of degree d with multiplicity 2d at P .

(2) Assume that g > 6. Then either Y is of minimal degree in Pg�3 or X1 ! Y

is an isomorphism.
(3) If g > 6, then a general member of j �K eX j is K3, maybe with nodes.
Proof. For (1) there is nothing to do and (2) is an immediate consequence of

Noether’s theorem on canonical curves. For (3) it is enough to exclude 5.1(iv).
Suppose that this does happen. Then Y is normal and deg� 6 2, while � induces
a morphism from E that is of degree 4. This is impossible. �

LEMMA 7.3 Suppose that g > 6. Then the natural map

� : H0( eX;O(�K eX))! H0(E;OE(�K eX))
has maximal rank. In particular, E is embedded as a Veronese surface if g > 8.

Proof. Suppose that � is neither injective nor surjective. Then j eH � Ej is not
empty; letD denote a general member of it. We haveD = G+ rE with r > 0 and
G reduced and irreducible.

Let F denote a general member of j eHj; this is a K3 surface, maybe nodal, by
Corollary 7.2(3). There is an exact commutative diagram

H0(O eX( eH)) - H0(OE( eH)) - H1(O eX(D)) - 0

H0(OF ( eH)

?

- H0(OF\E( eH))

?

- H1(OF ( eH))

?

- 0
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(cf. [R 1, p. 29]). It follows that � is surjective ifH1(OF (�DjF )) = 0. For this,
it will suffice to show that DjF is numerically connected.

There are three cases to consider.

(a) Assume that G is not contracted by �.
Then F jG moves in a big linear system with no base points, so that for general
F we haveF :G = pmA, whereA is reduced and irreducible. Since deg� 6 2,
it follows that pm = 1. Define � = F :E; then DjF = A+ r�.
Now suppose that DjF = C1 + C2, with Ci > 0. We can then assume
that C1 = A + a� and C2 = (r � a)�. Since (DjF ) :� = 2, we see that
C1 : C2 = (r � a)(A :� � 2a) = (r � a)(2r + 2 � 2a) > 0, so that DjF is
numerically connected.

(b) Assume that G is contracted by � and that g 6= 7. Then there is an equality
(H � 2E)2 : (H � (3 + r)E) = 0, so that H3 = 4(3 + r). Now H3 6= 12, so
that r > 1. Then H3

> 16, so that dim ker � > 2. Then G moves in a pencil,
while � is generically finite, so that we can chooseG not to be contracted.

(c) Assume that G is contracted and that g = 7. Since G is contracted, it can-
not move, and so dim j eH � Ej = 0. Then j��H � 2Ej cuts out a base
point free linear system of dimension 3 on the Veronese surface E. Since
(��H � 2E) : E :G = 6 and the image of G is irreducible, we get a contra-
diction to the fact that the singular locus of the image of E under � (which is
the image of the Veronese surface in P5 under projection from a disjoint line)
is the union of three lines, so reducible. �

COROLLARY 7.4 (1) If g > 8, then the only curves contracted by� are the conics
through P .

(2) If g = 7, then in addition � contracts the quartic curves (maybe reducible)
that are singular at P .

(3) If g = 6, then also � contracts the unique sextic rational curve that is triple
at P .

Proof. This is a consequenceof the projective geometry of the Veronese surface.
For example, if g = 7, then the Veronese surface E is mapped by a 4-dimensional
linear system, and such a system either is very ample or maps a conic 2-to-1 onto
a line. �

PROPOSITION 7.5 If g > 6, then � contracts at most finitely many curves.
Proof. If not, then � collapses a divisor D that meets E. Since no curve in E

is contractible, the image of D is a curve, say W . Strictly Henselize at the generic
point of W ; then we get an RDP, so that IW :O eX = O(�Z), where Z =

P
niDi

is the fundamental cycle, by Artin’s theorem. But D is irreducible, so that the
Di are Galois conjugate. Then the ni are equal. Since a fundamental cycle is not
multiple, Z = D.
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Now return to the global context and letC denote the fibre of � over a geometric
generic point of W . Then the properties of fundamental cycles show that D :C =
�2.

Write D � x(�K eX) � yE, where x; y are integers. Pushing down to X

shows that x > 0, while the immobility of D shows that y > 0. Recall that
E :C > 0 and (�K eX) : C = 0, while the contraction shows that (�K eX)2 :D = 0.
Since (�K eX)3 = 2g � 10 and (�K eX)2 : E = 4, we get 0 = (�K eX)2 :D =

x(�K eX)3 � 4y, so that (g � 5)x� 2y = 0.
Thus y(E :C) = 2. Now consider the various possibilities separately.
(1) E :C = 2. Then the Veronese surface E is mapped to a singular quartic

surface E1. Then by Lemma 7.3, either g = 7 and E is singular along a line or
g = 6 and E1 is singular along three concurrent lines. Since D is irreducible, it is
mapped to one of these lines. Then a general member of j�K eX j cutsD in a scheme
that is the fundamental cycle of an RDP, so that (�K eX) :D2 = �2. However,

(�K eX) :D2 = x2(�K eX)3 � 2xy(�K eX)2 : E + y2(�K eX) : E2;

so that
�2 = x2(2g � 10)� 8xy � 2y2:

Substituting y = x(g � 5)=2 gives

4 = x2(g � 5)(g � 1);

which is absurd.
(2) E :C = 1. Since E meets every component of C , C is reduced and irre-

ducible. As in (1), a general member of j �K eX j cuts D in a number of copies of
C; sinceD :E is a plane curve of degree y, it follows that (�K eX) :D � yC . Then

�4y = (�K eX) :D2 = x2(2g � 10)� 8xy � 2y2:

Substituting y = 2 and (g � 5)x = 2y gives an immediate contradiction. �

COROLLARY 7.6 If g > 6, then there are at most finitely many conics through
a general point P of X and at most finitely many quartic curves singular at P
(including reducible curves). �

8. Projection from a conic

In this section too we assume that �KX generates Pic X and that X is an inter-
section of quadrics. We shall assume also that X is covered by conics, so that if C
is a general conic on X and P is a general point on C , then it is a general point on
X . Let � : X� = BlC X ! X be the blow-up along C with exceptional divisor F .
Put H� = �KX� ; then jH�j has no base points. We let � : X� ! X1 be the Stein
factorization of the morphism defined by jH�j.
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LEMMA 8.1 (1) The normal bundle NC=X is O(a) �O(�a); where a = 0; 1 or
2.

(2) � collapses only the conics meeting C twice, the lines meeting C and, if
a = 2, the negative section of F .

Proof. (1) Since KX : C = �2, it follows that NC=X = O(a) �O(�a). Then
F �= F2a and jH�j cuts out a linear system on F with no base points. Also,
H�jF � D+ 2�, whereD is the tautological class and � is a fibre. Suppose that �
is a negative section (unique if a 6= 0) in F ; then D :� = �a, so that �a+ 2 > 0.

(2) Suppose thatB � X is an irreducible curve collapsed by� and thatB 6= C .
ThenB [C is contained in a copy of P3. SinceX is cut out by quadrics, it follows
that B is as described. It remains to consider curves in F collapsed by �; it is clear
that the only one is �, and then only if a = 2. �

PROPOSITION 8.2 If g > 7, then � collapses only finitely many curves.
Proof. Assume that � collapses a divisor D. We have D � x(�KX�) � yF

where x; y are positive integers. Since (�KX�)2 :D = 0, we get 2y = (g � 4)x.
Suppose that �(D) is a point. Then D2 : (�KX�) = 0, so that

x2(2g � 8)� 8xy � 2y2 = 0:

Substituting 2y = (g � 4)x gives a contradiction.
So �(D) is a curve. Since the general 1–dimensional fibre of � is the strict

transform � of a conic meeting C twice, it follows that F :� = 2 and an argu-
ment involving fundamental cycles shows that D:� = �2. Then y = 1, so that
(g � 4)x = 1, contradicting g > 7. �

Remark. In fact the same result holds if g = 6. For this it is necessary to prove
that the homomorphism H0(OX�(�KX�)) ! H0(OF (�KX�)) has maximal
rank.

9. Rational Gorenstein singularities and flops

In characteristic zero it is known that given a rational Gorenstein 3-fold singularity
(Y; P ), either it is a double point of a hypersurface or a generic section through P
is elliptic, in which case the canonical divisor classKY pulls back to the canonical
class of BlP Y . As a consequence, if Y has a small resolution, then Y is a double
point. Here we prove analogous results in characteristic p.

PROPOSITION 9.1 (1) Suppose that Y is a normal projective Gorenstein 3-fold
having a resolution f : eY ! Y such that f�!eY = !Y . Fix a very ample linear
system jHj and a point P on Y . Let K denote the function field of the system
jH � P j. Let S denote the generic member of jH � P j and ~S its strict transform
on Y . Then S is a normal projectiveK-scheme on which P is either regular or an
RDP or elliptic, in the sense that mS;P!S � (f�! ~S)P .

(2) If f is small, then all singular points of Y are double points.
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Proof. By Abhyankar’s theorem already quoted, we can blow up eY to get a
smooth model Y � on which the ideal sheaf mP :OY � is Cartier. Then we can
assume that Y � = eY , so that eS moves in a linear system with no base points, and
so is a regular projectiveK-scheme. Now the proofs of (1) and (2) are just as given
by Reid; for the sake of convenience, a sketch follows.

We have eS � f�S�E, whereE is the effective Cartier divisor with ideal sheaf
mPOeY , andKeY �= f�KY +Z , whereZ is effective in a neighbourhood of f�1(P ).

Let g : eS ! S be the induced morphism. Then KeS � g�KS + (Z � E)jeS , by
the adjunction formula, so that in a neighbourhood of f�1(P ) there is an inclusion
OeS(g�KS �EjeS) ,! OeS(KeS). Then taking g� gives (1).

For (2), we appeal to (1) and the fact that if (S; P ) is an elliptic Gorenstein
surface singularity of multiplicity at least 3, then BlP S is the canonical model of
the minimal resolution, so that if h : Y1 ! Y is the blow-up at P , then Y1 is normal
and Gorenstein, andKY1 � h�KY , so that the components of the exceptional locus
are divisors with zero discrepancy. However, if there is a small resolution, then any
exceptional divisor has strictly positive discrepancy. �

In our applications, Y will be the anti-canonical model of eX (that is, � : eX ! Y

will be the Stein factorization of the morphism defined by the base–point–free linear
system j �K eX j), where � : eX ! X is the blow-up along either a general point
or, assuming that X is covered by conics, a general conic. We know now that � is
small.

PROPOSITION 9.2 For all singular points Q of Y there is an involution � of
(Y;Q)h that induces �1 on its local class group.

Proof. We use Kollár’s argument, slightly extended to include characteristic 2.
First, henselize at Q. There is a finite morphism f : (Y;Q)h ! (A 3 ; 0)h of degree
2. If f is inseparable, then p = 2 and for any divisor class D 2 Pic U (where
U is a punctured neighbourhood of Q in Y h), we have 2D = f�f�D, so that
2D is principal. Thus the local class group is 2-elementary, and we can take � =
identity. If f is separable, then it is Galois; let � be the covering involution. Then
D + ��D = f�f�D, which is principal, so that ��D � �D. �

COROLLARY 9.3 (1) eX has a smooth flop eX+.
(2) IfE is the exceptional divisor on eX and� is a flopping curve, thenE:� > 0.
(3) If E is the exceptional divisor on eX and E+ its strict transform on eX+,

then (E+)3
6 E3, with equality if and only if eX is isomorphic to eX+, which in

turn happens if and only if eX is Fano.
Proof. (1) For this, we just use Kollár’s argument [K2].
(2) If eX is a point blow-up, then the flopping curves do not lie in E, but do

meet it. If eX is a conic blow-up, then E + (�K eX) = ��(�KX). By Lemma 8.1,
��(�KX) :� > 0 for any flopping curve �, and the result follows.
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(3) We follow an argument of Mori’s. By (2), the class m(E + n(�K eX))
is very ample relative to f : eX ! Y for suitable m and n. Then there exist
B1; B2; B3 2 jmn(�K eX)j and A1; A2; A3 2 jm(E + n(�K eX))j such that the Bi

are disjoint from the flopping locus � and the Ai are disjoint from each other near
�. Then Bi : F :D = B+

i : F
+:D+ for all divisors F;D on eX , so that m3(E3 �

(E+)3) = A1 : A2 : A3 � A+
1 : A

+
2 : A

+
3 . Since E3 � (E+)3 is supported on the

flopping locus, it follows that

m3(E3 � (E+)3) = (A1 : A2 : A3)� � (A+
1 : A

+
2 : A

+
3 )�+

= (A+
1 : A

+
2 : A

+
3 )�+ :

Since A+
1 : A

+
2 is a non-zero cycle supported on �+, unless A1 is disjoint from �

(in which case � is empty), and since D :� = �D+ :�+ for all divisors D on eX
and components � of �, we are done. �

10. Wild fibrations

A conic bundle f : X ! B is wild if every fibre is a double line. A del Pezzo
fibration is wild if the geometric generic fibre is wild, in the sense thatH1(O) 6= 0.

If f : X ! B is a wild conic bundle, then there is no discriminant curve and so
no analogue of the formula �4KB � f�(�KX)

2 +�. In fact it is unclear a priori
whether B need be rational if X is Fano, or even whether it might be of general
type. The next result disposes of this intriguing possibility.

PROPOSITION 10.1 If X is Fano and f : X ! B is a wild conic bundle, then
B �= P2 or P1 � P1.

Proof. Since Hi(OX) = 0 for i > 0, the Leray spectral sequence shows that
Hi(OB) = 0 for i > 0. Since Pic X is torsion–free so is Pic B, and then the
classification of surfaces shows that either B is rational or Kod(B) > 1. Assume
that B is irrational, and fix an ample divisor class D on B. Then D:KB > 0.
Take an irreducible element S of j � Kj (it is clear from Section 3 and 4 that
such an S exists). If V is the normalization of the Stein factorization S1 of S then
KV 6 0 and V ! B is a purely inseparable double cover. Let V ! B ! V (1)

be the corresponding factorization of the geometric Frobenius; we can regard
� : B ! V (1) as the quotient by a foliation O(A) ,! TB . Then ��c1(V

(1)) �
2A + (c1(B) � A) � A � KB , so that D : (A � KB) > 0. Hence the foliation
O(A) ,! TB is independent of the choice of S, so that V is independent of S. In
fact, if S is any member of j �Kj, then it has a unique component S0 dominating
B, and this argument shows that the normalization of S0 is independent of S. This
is clearly impossible, and hence B is rational.

Suppose now that there is a smooth rational curveE onB withE2 = �d 6 �1.
Put W = f�1(E), with induced morphism h : W ! E, and let � denote a
scheme-theoretic fibre of h. If W is not reduced, then since H :� = 2 it follows
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that W = 2U and U is a P1-bundle over E, say with fibre f = �red. Since
NU=X : f = 0, the adjunction formula gives KU : f = �1, which is impossible.
Hence W is reduced.

Let � : fW ! W be the normalization; then there is a factorization fW !

E(�1) ! E of h� through the geometric Frobenius; since ��H is ample and cuts
out O(1) on the geometric generic fibre f of fW ! E(�1), it follows that fW is a
P1-bundle over E(�1). Let C � fW be the curve defined by the conductor ideal;
then

! eW �= ��!W 
O(�C) �= ��O(�H)
 ��h�O(�d);

so that �K eW � ��H + C + 2df . Since f : ��H = 1, it follows that f : C = 1,
so that C = D +

P
rifi, where D is a section and the fi are fibres. Then

0 = D2 + D :K eW + D : ��H + 2d +
P
ri: Since ��H is ample, we see that

2 > 2d+
P
ri, which is impossible if d > 0. �

PROPOSITION 10.2 Suppose that X is a normal Gorenstein 3-fold and that f :
X ! U is a projective morphism to a smooth quasi–projective curve whose
geometric generic fibre Xs is a del Pezzo surface. Then one of the following
statements is true.

(1) Xs is tame (that is, �(OXs
) = 1).

(2) p = 2 and (!Xs
)2 = 1 or 2.

Proof. Note first that Xs is a variety, by Bertini’s theorem.
We shall assume that U is affine and that !U is trivial, and we shall shrink U

tacitly and arbitrarily whenever this may be convenient.
Assume that Xs is wild. Put D = �KX . Then H1(OX(�D)) 6= 0. Pick a

non-zero class � 2 H1(OX(�D)), and pick the least integer n > 1 such that the
image of � in H1(OX(�p

nD)) under the n’th Frobenius is zero. Then there is a
finite and purely inseparable morphism � : Y ! X , where Y is a variety (since X
is normal) with Gorenstein singularities, since � is locally an �pn-bundle in the flat
topology. Moreover, !Y �= ��OX(KX � (pn� 1)D) �= ��OX(�p

nD) and ��OY

has a filtration whose graded pieces are OX ;OX (D); : : : ;OX((p
n � 1)D) [E].

(Note that the construction of Y given by Ekedahl is not unique, given that X fails
to be complete. However, the ambiguity in the construction is entirely accounted
for by the existence of non-constant global functions onX; since all such functions
pull back from U , we can avoid all difficulties by shrinking U .)

Let � : eY ! Y be the normalization, so that KeY � ��KY � �, where �
is the codimension 1 part of the subscheme defined by the conductor ideal. Put
~� = � � � : eY ! X , and let eY ~f

�!Ur
Fr
�!U be the Stein factorization. Note

that Fr : Ur ! U is the r’th geometric Frobenius, where 0 6 r 6 n. Let t
be a geometric generic point of Ur and s = Fr(t). Since eY is normal, the fibreeYt = V , say, is a variety, by Bertini’s theorem, that is Cohen–Macaulay and has
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hypersurface singularities in codimension 1. Put L = (~��D)jV , and let � : eV ! V

be the minimal resolution. Then �KeV = pn��L+ e�+ Z , where e�; Z > 0, Z is

contracted by � and e� is the strict transform of the curve defined by the conductor
ideal. Hence �jV = 0 if e� = 0.

CLAIM If e� 6= 0, then p = 2 and (!Xs
)2 = 1.

it Proof of claim. If eV �= P2, then this is obvious. So assume that eV 6= P2; then
there is a ruling eV ! C , where C is a curve of genus g, say. Let F be a fibre. Then

2 = (�KeV ) : F = pn(��L) : F + ( e�+ Z) : F;

so that pn = 2 and e�+Z is vertical. Now eV has a section � with �2
6 g; suppose

first that � is not contracted by �, so that � : ��L > 0 and � : ( e�+ Z) > 0. Then
2 � g > (�KeV ) : � > pn : 1 + 0, so that g = 0 and �2 = 0. However, if eV 6= F0 ,

then there exists � with �2 < 0; hence eV = F0 . Then e�+ Z = 0.
If � is contracted, then it forms part of the exceptional locus of an RDP, since it is

not contained in e�+Z; hence�2 = �2. Then� is disjoint from e�+Z , so that there
is a vertical curveC not contained in e�+Z withC : ( e�+Z) > 0. If C : ��L = 0,
thenC2

6 �2, since the resolution is minimal. Then 0 > �KeV : C = ( e�+Z) : C ,

which is absurd. If C : ��L > 0, then 1 > �KeV : C > ( e�+ Z) : C , which is also
absurd. Hence the claim is established.

Hence we may assume that Y is normal. Note that then Yt is a variety and is a
Cartier divisor on Y , and so has Gorenstein singularities. Let � : Yt ! Xs be the
induced morphism; deg� = pn�r. The filtration above shows that

pr�(OYt) =

pn�1X
i=0

�(OXs
(iD)) = D2(pn + 1)pn(pn � 1)=6 + pr�(OXs

):

By the adjunction formula, !Yt �= ��OX(�p
nD)jYt

�= ��OXs
(�pnD), so

that Yt is a del Pezzo surface whose index is divisible by pn. Then from Reid’s
classification [R 2, 1.1] pn 6 3.

Suppose that pn = 3. Then (!Yt)
2 = deg� : p2n(!Xs

)2 = p3n�r(DjXs
)2. Since

Yt is del Pezzo and !Yt is divisible by 3, Reid’s classification shows that Yt �= P2,
so that r = n = 1 and (DjXs

)2 = 1. Also,

�(OYt) = (DjXs
)2 : 4 : 2=6 + �(OXs

);

which is absurd.
Suppose that pn = 2. Then Yt is del Pezzo and !Yt is divisible by 2, so that

Yt is normal, from Reid’s classification, and is a quadric (maybe a cone). Then
8 = 23�r(DjXs

)2, so that (DjXs
)2 = 2r. Also,

2r�(OYt) = (DjXs
)2:3:2:1=6 + 2r�(OXs

);
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so that �(OXs
) = 0 and (!Xs

)2 = (DjXs
)2 = 2r = 1 or 2. �

COROLLARY 10.3 Suppose that f : X ! U is as in 10:2. Assume that there is a
multiple fibre. Then p = 2, all fibres have multiplicity at most 2 and K2

Xs
= 2 for

a general fibre Xs.
Proof. Suppose that F = mL is a multiple fibre. Then for a geometric gener-

ic fibre Ft, m divides �(OFt), so that Ft is wild. Then p = 2, by 10.2. Also,
mK2

X : L = K2
X : Ft = 1 or 2, by 10.2, so that m = 2 and K2

X : Ft = 2. �

PROPOSITION 10.4 Suppose that f : X ! B is the contraction of an extremal
ray on a smooth 3-fold and that dimB = 1. Then K2

Xt
6 9 for any fibre Xt.

Proof. Suppose that t is a geometric generic point of B, and put Xt = S. By
10.2 and 10.3 we can assume that S is tame and that there are no multiple fibres.

If S is normal, then either it has only RDPs or it is the cone over an elliptic
curve. In the first caseK2

S 6 9, and in the second K2
S 6 3 since S is a divisor on a

smooth 3-fold.
Suppose then that S is not normal and that eS ! S is the normalization. Then eS,

polarized by �KS , is either P2 or a rational cone or a rational scroll or a Veronese
surface, and eS ! S is a projection mapping a conic C to a line L. Since eS has
unibranched singularities, the map C ! L must be one–to–one on geometric
points. Hence either p 6= 2 and C is a double line or p = 2, C is smooth and
C ! L is the Frobenius. Hence if p 6= 2, then either eS is a plane and C a double
line or eS is a rational cone and C is a double generator. In the first case K2

S = 1
and in the second S is the cone over a cuspidal rational curve.

If p = 2 and C is smooth, then either

(a) eS is a plane and C a conic, or
(b) eS is a Veronese surface and C a conic, or
(c) eS is a quadric cone, or
(d) eS is a rational scroll Fa;k , with k 6 2. In cases (a)–(c) K2

S 6 4, while in
case (d) either a = 0 and k = 1 (when eS is a quadric, so that K2

S = 2) or
there are two classes in Pic eS that are invariant under monodromy. This last
possibility, however, contradicts the fact that the contraction of an extremal
ray has relative Picard number equal to 1. �

11. The birational classification when � = 1

In this section X will denote a Fano 3-fold with � = r = 1 and g > 6.

LEMMA 11.1 Suppose that X+ is the flop of either BlP X or (assuming that X
is covered by conics) BlC X , that f : X+ ! B is the contraction of an extremal
ray and that dimB = 1. Then f has no multiple fibres.
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Proof. According to the results of Section 10 we can assume that there is a
double fibre, say F = 2L, and that (H+)2 : L = 1, where H+ = �KX+ . Let
E+ denote the strict transform of the exceptional divisor. Then we can write
L � xH+� yE+ for some integers x; y. Since (H+)3 = 2g� 2s, where s = 5 or
4, and (H+)2 : E+ = 4, we get

1 = (H+)2:L = x(2g � 2s)� 4y;

which is absurd. �

THEOREM 11.2 X is covered by conics, g 6 12 and g 6= 11.
Proof. This exactly follows Takeuchi’s argument [T]. What he does is to carry

out a detailed analysis involving the calculation of intersection numbers and the
consideration of extremal rays on the flop X+ of a point blow-up. This proves in
particular that X+ has an extremal ray whose contraction is not a morphism to
X . This carries over to characteristic p given the results of Section 10 and 11.1
concerning conic bundles and del Pezzo fibrations. The only other difference is that
to prove that g 6= 11, we must show that the flop X+ of the blow-up at a general
point is not a wild conic bundle.

So assume that g = 11; by Takeuchi’s argument there is a conic bundle structure
h : X+ ! S, which we assume wild, where S is a surface with �(S) = 1. By
Proposition 10.1 S �= P2. Let L denote the pull–back to X+ of a line on S and
E+ the strict transform on X+ of the exceptional divisor on X . Let A denote a
fibre of h, with its reduced structure, and put H+ = �KX+ . Then L = H+ �E+

(Takeuchi) so that E+ : A = 1. Hence E+ ! S is purely inseparable. According
to Takeuchi X+ does contain at least one flopping curve `, since the number e
defined by the equation (E+)3 = E3 � e = 1� e is non-zero; by the construction
of the flop, E+: ` < 0, so that E+ contains ` and the normalization of E+ has
Picard number at least 2. Then E+ ! S is not finite, so that E+ contains at least
one of the curvesA. However, KX+ jE+ � 2E+jE+ and so is even; thus H+: A is
even, while we know that H+: A = 1. �

Remark. In characteristic zero Takeuchi proves the existence of lines on X in
the course of considering an extremal ray on the flop of BlC X , whereC is a conic.
In characteristic p this breaks down; even though the enumerative arguments show
that there is a flopping curve on BlC X , this curve could be the negative curve on
the exceptional divisor if NC=X is of type (2;�2). If C is generic in characteristic
zero then its normal bundle is (0; 0), of course.

COROLLARY 11.3 The birational structure ofX is just as given by Takeuchi and
Mori. That is, via point blow-up (resp. conic blow-up) and flop, the possibilities
for the various values of g are given as follows:
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Point blow-up:
g = 12: X+ is the blow-up of P3 along a smooth rational curve � of degree 6 that
lies on a cubic surface.
g = 10: X+ is a pencil of sextic del Pezzo surfaces over P1.
g = 9: X+ is the blow-up of another Fano of genus 9 along a point.
g = 8: X+ is the blow-up of a cubic threefold along a smooth rational curve of
degree 4.
g = 7: X+ is the blow-up of another Fano of genus 7 along a point.

Conic blow-up:
g = 12: X+ is the blow-up of Q3 along a sextic rational curve.
g = 10: X+ is a conic bundle over P2, which is either wild in characteristic 2 or
has a quartic discriminant locus.
g = 9: X+ is a pencil of sextic del Pezzo surfaces over P1.
g = 8: X+ is the blow-up of another Fano of genus 8 along a smooth conic.
g = 7: X+ is the blow-up of Q3 along a curve of degree 10 and genus 7.

Proof. Exactly as that of Mori and Takeuchi. �

COROLLARY 11.4 X is rational if either g = 7 or g > 9.
Proof. By Corollary 11.3 and the results of Section 10, it is enough to show

that if f : X+ ! P1 is a pencil of sextic del Pezzo surfaces, all of whose fibres L
have �(O) = 1 and are reduced and irreducible, then X+ is rational.

Suppose first that the geometric generic fibre L is not normal. Let Z ! L be
the normalization. Since the singularities of L are unibranched and lie on a smooth
3-fold, Reid’s classification [R] shows that Z ! L is the projection of a rational
scroll F from a point Q coplanar with a conic D on F, the image ` of D on L is a
line and D ! ` is inseparable (so that p = 2). Then the scheme-theoretic generic
fibre X+

K defined over K = k(P1) contains a K-rational line m (recall that X+
K is

embedded in P6); projecting X+
K from m exhibits X+

K birationally as a P1-bundle
over P1

K , so that X+ is rational.
So we can assume that L is normal. Then it has only RDPs.
Suppose that g = 10 and X+ is the flop of a point blow-up BlP X . Let E+

denote the strict transform of the exceptional divisor. Any irreducible flopping
curve � is the transform of a conic through P , so that � : E+ = �1. Since
0 = � : (�KX+) = � : (E+ + L), it follws that L :� = 1, so that � is a section of
f . That is, X+

K has a K-point; projecting from this shows that X+
K is K-birational

to a quintic del Pezzo surface, which is well known to be rational over K (see
[S–B] for a short and easy proof).

Suppose that g = 9 and that X+ is the flop of a conic blow-up BlC X . If there
is an irreducible flopping curve � that is the transform of a conic meeting C in one
point, then we see as above that � is a section of f , so that again X+ is rational.
Otherwise NC=X = (2;�2) and the only flopping curve � is the transform of the
negative section on the exceptional divisorE. ThenE+:� = �2, so thatL :� = 2.
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Assume first that � ! P1 is separable. Suppose that X+
K is smooth. Then the

complement of the lines on X+
K is a torsor T1 under a torus T defined overK , and

there is a Galois extensionL=K such that T1
K L is trivial. SinceK is a C1 field,
H1(L=K; T1(L)) = 0 [S, p.170], so that T1 is trivial. Then X+

K has a K-point and
is K-rational.

IfX+
K is singular, then either it has a double pointQ defined overK or it has two

conjugate points Q1; Q2 of type A1. In the first case projection from Q maps X+
K

to a quartic surface S in P5. Geometrically, there are three possibilities for S, and
in each case S carries a pencil, defined overK , of lines. HenceX+

K isK-birational
to P1

K � Z , where Z is a conic over K . By Tsen’s theorem Z , and so X+
K , is then

K-rational.
In the second case the line m joining Q1; Q2 lies in X+

K and is defined over K .
Projecting from m maps X+

K to a cubic surface in P4, which contains a pencil of
lines defined over K . Then X+

K is again seen to be rational via Tsen’s theorem.
So assume that �! P1 is inseparable. Then p = 2. Assume first that � passes

through a smooth point of L. Put YK = Bl�K X
+
K . Then YK is a quartic del Pezzo

surface containing a K-rational line m, the exceptional divisor. Since YK is an
intersection of two quadrics, projecting YK from m shows that YK is K-rational,
and so X is rational.

If instead � passes through an RDP of L, then X+
K has a K-rational double

point Q. We have already seen that X+
K is K-rational in this case. �

12. Liftability and lines

Of course if H2(�X) = 0 then X is liftable to characteristic zero. However,
h2(�) = h1(
1

X 
 O(�H)), where H = �K; this would vanish if X were
liftable even modulo p2, by Deligne and Illusie’s proof of Kodaira–Akizuki–Nakano
vanishing. Without some assumption of liftability, however, the well known use of
the Cartier operator and the spectral sequences of hypercohomology yields only
that H2(�) is at most 1-dimensional, even if the groups Hi(
j 
 O(�pH)) are
assumed to vanish for i+ j 6 2.

PROPOSITION 12.1 Assume that X+ is a smooth projective 3-fold containing an
anticanonical K3 surface S, thatH1(
1

X+) is generated by algebraic classes (that
is, generated by the first Chern classes of divisors) and that for every non-zero
primititive class D 2 Pic X+, the restriction of D to S is also non-zero and
primitive.

Then H2(�X+) = 0.
Proof. The hypotheses imply that the natural map H1(
1

X+
) ! H1(
1

S) is
injective. Since H0(
1

S) = 0 [R–S], taking cohomology of the exact sequence

0 ! 
1
X+(logS)(�S)! 
1

X+ ! 
1
S ! 0
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shows that H1(
1
X+

(logS)(�S)) = 0. Then H2(�X+(� logS)) = 0, by Serre
duality. Then the cohomology of

0 ! �X+(� logS)! �X+ ! �S ! 0;

with the Rudakov–Shafarevich theorem, gives the result. �

We shall say that H1(
1
X) is algebraic if it is generated by algebraic classes.

LEMMA 12.2 If X;Y are birational smooth projective 3-folds, then H1(
1
X) is

algebraic if and only if H1(
1
Y ) is so. In particular, H1(
1

X) is algebraic if X is
rational.

Proof. By Abhyankar’s theorem already quoted, there is a sequence eX ! X

of blow-ups with smooth centres such that the induced birational map eX ! Y is
a morphism. If H1(
1

X) is algebraic, then so is H1(
1eX), and the Leray spectral

sequence shows that so is H1(
1
Y ). �

PROPOSITION 12.3 Suppose that X is Fano, of index 1 and Picard number 1.
Then H1(
1

X) is generated by algebraic classes.
Proof. By Corollaries 11.3 and 11.4X is either rational or birational to a cubic

3-fold. The result now follows from Lemma 12.2 �

COROLLARY 12.4 Any Fano 3-fold X of Picard number 1 can be lifted to char-
acteristic zero.

Proof. If r > 2, then this has been done by Megyesi (unpublished). If Bs j �
Kj 6= ;, then this follows from Theorem 3.4. If Bs j �Kj = ; and j �Kj is not
very ample, then X is a divisor in a P3-bundle over P1 if X is trigonal and is a
divisor in a line bundle over either P3 or a quadric 3-fold or a P2-bundle over P1;
in these cases the liftability is immediate.

Assume then that j � Kj is very ample. If g 6 5, then X is a complete
intersection in projective space. If g = 6 then its anticanonical ring is Gorenstein
of codimension 3, and so defined by Pfaffians. Then X is a linear section of the
Grassmannian G(2; 5). So suppose that g > 7. By Proposition 12.1 it suffices to
show that �KX restricts to a primitive class on a general K3 section S. Suppose
that it does not; then 2g � 2 = 2dp2 for some integer d. The resulting possibilities
are

(1) g = 10, p = 3 and d = 1 and
(2) g = 9, p = 2 and d = 2.

In case (1), consider the flop X+ of a point blow-up. Let E+ be the strict
transform of the exceptional divisor and S+ the strict transform of a general
element of jH+j = j � KX+ j. Then H+jS+ � 3G � 2E+jS+ for some divisor
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class G on S+. We know that �KX+ � E+ + L, where L is a fibre of a del
Pezzo fibration, so that LjS+ is divisible by 3. Then h0(OX+(L)) = 2, while
h0(OS+(L)) > 4. Then the cohomology of an appropriate exact sequence gives
h1(OX+(�S

+ +L)) > 2. However,OX+(�S
+ +L) �= OX+(�E

+), and taking
the cohomology of

0 ! OX+(�E
+)! OX+ ! OE+ ! 0

gives a contradiction, since H1(OX+) = 0.
In case (2), consider the flop X+ of a conic blow-up, and let E+; S+;H+ be

as in (1). ThenH+jS+ � 2G�E+jS+ for some divisor classG on S+, while X+

has a sextic del Pezzo fibration with fibre L such that H+ � E+ + L. Then LjS+
is divisible by 2, and now the same argument as in (1) can be used. �

COROLLARY 12.5 X contains a line.
Proof. Lines exist in characteristic zero, and so arise in characteristic p by

specialization. �
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