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The statistics of the velocity gradient tensor in turbulent flows is of both theoretical
and practical importance. The Lagrangian view provides a privileged perspective for
studying the dynamics of turbulence in general, and of the velocity gradient tensor
in particular. Stochastic models for the Lagrangian evolution of velocity gradients
in isotropic turbulence, with closure models for the pressure Hessian and viscous
Laplacian, have been shown to reproduce important features such as non-Gaussian
probability distributions, skewness and vorticity strain-rate alignments. The recent fluid
deformation (RFD) closure introduced the idea of mapping an isotropic Lagrangian
pressure Hessian as the upstream initial condition using the fluid deformation tensor.
Recent work on a Gaussian fields closure, however, has shown that even Gaussian
isotropic velocity fields contain significant anisotropy for the conditional pressure
Hessian tensor due to the inherent velocity–pressure couplings, and that assuming
an isotropic pressure Hessian as the upstream condition may not be realistic. In this
paper, Gaussian isotropic field statistics is used to generate more physical upstream
conditions for the recent fluid deformation mapping. In this new framework, known
isotropy relations can be satisfied by tuning the free model parameters and the original
Gaussian field coefficients can be directly used without direct numerical simulation
(DNS)-based re-adjustment. A detailed comparison of results from the new model,
referred to as the recent deformation of Gaussian fields (RDGF) closure, with existing
models and DNS shows the improvements gained, especially in various single-time
statistics of the velocity gradient tensor at moderate Reynolds numbers. Application
to arbitrarily high Reynolds numbers remains an open challenge for this type of
model, however.

Key words: isotropic turbulence, turbulent flows, turbulence modelling

1. Introduction
The statistics of velocity gradients in isotropic turbulence is of both practical

and theoretical importance in the study of turbulent flows (Sreenivasan & Antonia
1997; Wallace 2009). The hypothesis of approximate local isotropy at sufficiently
high Reynolds number (Kolmogorov 1941) provides an important framework for
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exploring the universality of small-scale statistics, including velocity gradients, across
a wide range of flows. It is well accepted that the dynamics of turbulence, including
velocity gradients, can be better understood in a Lagrangian frame following the flow
(Falkovich, Gawedski & Vergassola 2001; Toschi & Bodenschatz 2009). Also, in many
practical situations, the velocity gradient along Lagrangian or inertial particle paths
determines the dynamics of sub-Kolmogorov-scale objects immersed in turbulent
flows, such as the deformation and break-up of bubbles and immiscible drops
(Biferale, Scagliarini & Toschi 2010; Maniero et al. 2012; Biferale, Meneveau &
Verzicco 2014), the stretching of polymers (Balkovsky, Fouxon & Lebedev 2000;
Chertkov 2000; Bagheri et al. 2012), the rotation rate and nutrient uptake of small
swimming organisms (Batchelor 1980; Pedley & Kessler 1992; Karp-Boss, Boss &
Jumars 1996; Parsa et al. 2012; Chevillard & Meneveau 2013) and haemolysis in red
blood cells (Arora, Behr & Pasquali 2004; Behbahani et al. 2009; De Tullio et al.
2012), among other applications.

Meanwhile, from a theoretical perspective, the statistics of velocity gradients
and increments in isotropic turbulence are key ingredients in exploring internal
intermittency and multi-fractality (Kolmogorov 1962; Oboukhov 1962; Parisi &
Frisch 1985; Meneveau & Sreenivasan 1991). In recent decades, the Lagrangian view
of intermittency in turbulence has become a topic of increasing interest (Falkovich
et al. 2001; Toschi & Bodenschatz 2009). The energy cascade has been posed in the
Lagrangian frame (Meneveau & Lund 1994; Yu & Meneveau 2010) and Lagrangian
multi-fractality has been explored (Boffetta, De Lillo & Musacchio 2002; Chevillard
et al. 2003; Biferale et al. 2004, 2008; Arnèodo et al. 2008). While analysis methods
for dynamical systems are often impractical because of the high-dimensionality of
turbulent flows (Frisch 1995), tools such as finite-time Lyapunov exponents are useful
in the Lagrangian frame for studying chaotic advection (Ottino 1989) and coherent
structures (Haller 2000; Haller & Yuan 2000; Green, Rowley & Haller 2007; Haller
2015). In addition to the velocity gradient, the coarse-grained or perceived velocity
gradient has been used to explore scale-dependent properties of small-scale turbulence
(Chertkov, Pumir & Shraiman 1999; Pumir, Bodenschatz & Xu 2013).

The evolution of velocity gradients along Lagrangian paths contains two unclosed
terms requiring models: the deviatoric part of the pressure Hessian and the viscous
Laplacian. Removal of these two terms results in the restricted Euler equation, which
has the unfortunate property of leading to a finite-time singularity (Vieillefosse
1982, 1984; Cantwell 1992). The term driving the singularity is the quadratic
self-amplification of velocity gradients that is kinematic in nature. The unclosed terms
are evidently responsible for opposing the restricted Euler singularity. A number of
studies have shed some light on the dynamics of velocity gradients along Lagrangian
paths, exploring invariant spaces and the unclosed terms (Nomura & Post 1998;
Martin et al. 1998b; Ooi et al. 1999; Lüthi, Holzner & Tsinober 2009; Lawson &
Dawson 2015).

Meanwhile, as reviewed in Meneveau (2011), attempts at closure models for
the ordinary differential equation (ODE) governing the Lagrangian evolution of
the velocity gradient tensor have enjoyed some success. The addition of a linear
relaxation term eliminates the singularity for some initial conditions, but not for all
(Martin, Dopazo & Valino 1998a). Girimaji & Pope (1990) introduced a model for the
pressure Hessian and viscous Laplacian designed to reproduce log-normal statistics
for the pseudo-dissipation by construction. Jeong & Girimaji (2003) constructed
a nonlinear relaxation model for the viscous Laplacian using the trace of the
inverse Cauchy–Green tensor, neglecting the deviatoric part of the pressure Hessian.
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Chevillard & Meneveau (2006) and Chevillard et al. (2008) used the insight of
Jeong and Girimaji’s viscous Laplacian and the tetrad model of Chertkov et al.
(1999) to introduce the recent fluid deformation (RFD) approximation, providing
closure for both the viscous Laplacian and the deviatoric part of the pressure Hessian.
The underlying concept in the RFD model is that the conditional pressure Hessian
can be approximated by considering an initially isotropic tensor subjected to fluid
deformation for a short time using a constant velocity gradient. It was demonstrated
that the RFD closure was able to prevent the singularity and the resulting system
could thus reproduce many well-known velocity gradient characteristics, including
trends over a small range of moderate Reλ (Chevillard & Meneveau 2006; Chevillard
et al. 2008; Chevillard & Meneveau 2011). Increasing the Reynolds number further,
however, led to unphysical results, which were studied in some detail (Martins-Afonso
& Meneveau 2010). Meanwhile, Suman & Girimaji (2009, 2011) have worked on
a similar modelling approach for the Lagrangian velocity gradient evolution in
compressible flows.

Wilczek & Meneveau (2014) took a different approach to closure, using a Gaussian
fields (GF) assumption to compute directly the conditional averages of the deviatoric
part of the pressure Hessian and viscous Laplacian in incompressible, isotropic
turbulence. When using the resulting pressure Hessian from the GF model, however,
Wilczek & Meneveau (2014) found that the model was too weak to prevent the
singularity. To make the model work, the Gaussian-derived coefficients were tuned
empirically using stochastic estimation based on DNS data. The resulting enhanced
Gaussian fields (EGF) closure with the fitted parameters provided good predictions
of velocity gradient statistics, rivalling those of the RFD model.

The GF closure thus elucidated an important point, that even in an isotropic
Gaussian velocity field, the conditional pressure Hessian tensor is not an isotropic
tensor. In this paper, we propose that the initial conditions for a recent-deformation
closure are better represented by those of an isotropic Gaussian velocity field than by
assuming an isotropic tensor, as in the RFD closure. With this insight, we develop
a new pressure Hessian and viscous Laplacian model based on a recent-deformation
mapping closure for incompressible turbulence that assumes the initial condition of
the mapping to be an isotropic Gaussian velocity field.

More detailed background on the RFD and GF/EGF closures is presented briefly in
§ 2. Following that, the new model based on recent deformations of Gaussian fields is
introduced and explained in § 3. After a brief explanation in § 4 of numerical methods
for the stochastic ODEs and for the DNS data to which results are compared, an
examination of results is given in § 5. The results of the new model are compared
alongside RFD and EGF results with DNS data, and afterward appropriate conclusions
are drawn.

2. Background
In this section, the equations for the Lagrangian evolution of the velocity gradient

tensor are briefly summarized. After that, the closure approach based on the Fokker–
Planck equation for the velocity gradient is reviewed. Within this paradigm, the prior
RFD and GF closure models are explained.

2.1. Lagrangian velocity gradient evolution
In this paper, we consider incompressible, Newtonian fluids with arbitrary solenoidal
forcing. The gradient of the incompressible Navier–Stokes equations gives the
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evolution equation for velocity gradient tensor, Aij = ∂ui/∂xj,

dAij

dt
=−AikAkj − P ij + ν∇2Aij + fij, (2.1)

where d/dt= ∂/∂t+uk(∂/∂xk) represents the material derivative, P ij= ∂2p/∂xi∂xj is the
symmetric pressure Hessian tensor and fij is the trace-free gradient of the forcing. The
first term on the right-hand side is the nonlinear self-amplification term, which leads
to a finite time singularity in the restricted Euler dynamics (Vieillefosse 1982, 1984;
Cantwell 1992). While this self-amplification term is closed, the pressure Hessian
and viscous Laplacian terms are unclosed, requiring information from neighbouring
Lagrangian trajectories.

The incompressibility constraint, i.e. that the velocity gradient tensor should be
trace free, can be incorporated by evaluating the trace of the velocity gradient
evolution equation, which yields the pressure Poisson equation, Pkk = 2Q, where
Q ≡ −(1/2)Ak`A`k. Solving the pressure Poisson equation and twice taking the
gradient leads to (Ohkitani & Kishiba 1995)

P ij(x, t)= 2
3

Q(x, t)δij +
∫∫∫

P.V.

Q(x+ r)
2πr3

(
δij − 3

rirj

r2

)
dr. (2.2)

The isotropic part of the pressure Hessian is local and closed, while the deviatoric
part of the pressure Hessian, P(d)

ij , is non-local and depends on the structure of the
surrounding flow. Decomposition into isotropic and deviatoric parts gives

dAij

dt
=−

(
AikAkj + 2

3
Qδij

)
− P(d)

ij + ν∇2Aij + fij. (2.3)

This tensor equation represents 9 differential equations for the 9 components of the
velocity gradient tensor, of which 8 are independent.

The velocity gradient tensor can be written as a sum of symmetric and anti-
symmetric parts, Aij = Sij +Ωij, where Sij = (Aij + Aji)/2 is the strain-rate tensor and
Ωij = (Aij − Aji)/2 is the rotation-rate tensor, which can be related to the vorticity,
ωi=−εijkΩjk. Using this decomposition on the Lagrangian evolution equation (Nomura
& Post 1998),

dSij

dt
= −

(
SikSkj − 1

3
Sk`Sk`δij

)
−
(
ΩikΩkj − 1

3
ΩikΩkjδij

)
−P(d)

ij + ν∇2Sij + f (s)ij , (2.4)

dΩij

dt
=−(SikΩkj +ΩikSkj)+ ν∇2Ωij + f (a)ij , (2.5)

where f (s)ij = ( fij + fji)/2 and f (a)ij = ( fij − fji)/2 are the symmetric and anti-symmetric
parts of the forcing, respectively. In this way, we can separately view the evolution of
the vorticity and the strain rate, although the strong coupling in the nonlinear term is
evident.
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2.2. Stochastic model
In order to model the Lagrangian evolution of the velocity gradient, a stochastic
representation is taken (Girimaji & Pope 1990; Chevillard et al. 2008; Wilczek &
Meneveau 2014). The main idea is to split the unclosed terms into conditional means
and fluctuations about these means, e.g. P ij = 〈P ij|A〉 + P ′ij. The conditional means
can be closed through statistical approximations, while the fluctuations are modelled
using Gaussian white noise. The resulting Langevin equation is

dAij =
[
−(AikAkj + 2

3 Qδij)− 〈P(d)
ij |A〉 + 〈ν∇2Aij |A〉

]
dt+ dFij, (2.6)

which provides a model for the Lagrangian velocity gradient dynamics provided
the two conditional averages and the stochastic noise term can be specified. The
stochastic forcing term, dFij = bijk` dWkl, is built on a tensorial Wiener process,
〈dWij〉 = 0, 〈dWij dWk`〉 = δikδj` dt, with diffusion tensor Dijk` = bijmnbk`mn. This forcing
term includes contributions both from large-scale forcing, i.e. for forced isotropic
turbulence, and from fluctuations in the unclosed terms away from their conditional
means, i.e. the ‘neighbouring eddy’ interpretation of Chevillard & Meneveau (2006),
although the latter may be expected to be the dominant effect.

Furthermore, this tensorial stochastic ODE can be decomposed into symmetric and
anti-symmetric components, as in (2.4) and (2.5),

dSij =
[
−(SikSkj − 1

3 Sk`Sk`δij)−
(
ΩikΩkj − 1

3ΩikΩkjδij
)

− 〈P(d)
ij |S,Ω〉 + 〈ν∇2Sij|S,Ω〉

]
dt+ dF(s)

ij , (2.7)

dΩij = [−(SikΩkj +ΩikSkj)+ 〈ν∇2Ωij|S,Ω〉] dt+ dF(a)
ij . (2.8)

In this system, Ωij has three independent variables with the requirement to remain
anti-symmetric and Sij has five independent variables with the requirement to remain
symmetric and trace free. The symmetric and anti-symmetric stochastic forcing terms,
in this view, can be chosen to be independent of each other and to obey these
constraints. The details of the stochastic forcing term are given in appendix A.

The stochastic modelling approach produces the evolution equation for the single-
time probability density function (PDF) for the velocity gradient tensor,

∂f (A ; t)
∂t

= − ∂

∂Aij

([
−
(

AikAkj + 2
3
Qδij

)
− 〈P(d)

ij |A 〉 + 〈ν∇2Aij|A 〉
]

f (A ; t)
)

+ 1
2

Dijk`
∂2f (A ; t)
∂Aij∂Ak`

. (2.9)

This Fokker–Planck equation for the PDF evolution matches that which can be
constructed from (2.3), by adding stochastic forcing to represent the fluctuation of
the unclosed terms.

2.3. Recent fluid deformation closure
The central idea in the RFD closure approach (Chevillard & Meneveau 2006) is to
introduce a coordinate mapping based on material volume deformation in the recent
Lagrangian history. Defining a Lagrangian trajectory as a map, Tt0,t :X ∈R3 7→ x∈R3,
from an initial condition X at time t0 to a position x at a later time t, then the
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Lagrangian trajectory evolves according to dxi/dt = ui(x, t), with initial condition
xi(t0) = Xi, where the velocity field, u(x, t), is a solution to the incompressible
Navier–Stokes equations with appropriate boundary and initial conditions.

The evolution of an infinitesimal fluid volume in the vicinity of x can be described
by the deformation tensor, Dij = ∂xi/∂Xj, which is the sensitivity of the trajectory to
initial position and evolves as dDij/dt=AikDkj with initial condition Dij(X, t0)= δij. The
general solution to this equation involves the time-ordered exponential, but with the
approximation that the velocity gradient is constant for short time,

D(x, t;X, t0)≈ exp[A(x, t)(t− t0)]. (2.10)

Instead of directly attempting to close the conditional averages in (2.6), first, the
approximate fluid deformation tensor is used to strain the coordinate system,

〈P ij |A〉 =
〈

∂2p
∂xi∂xj

∣∣∣∣A
〉
≈ ∂Xk

∂xi

〈
∂2p

∂Xk∂X`

∣∣∣∣A
〉
∂X`
∂xj
= D−1

ki 〈P̃k`|A〉D−1
`j , (2.11)

where P̃ ij represents an approximation for the pressure Hessian at a previous time
along the Lagrangian path and D−1

ij = ∂Xi/∂xj≈ (exp[−A(x, t)(t− t0)])ij. This is akin to
assuming the pressure to be approximately constant along pathlines for a short time (in
the sense of conditional averages on A), so that the changes in the conditional pressure
Hessian are due entirely to the relative movement of neighbouring fluid trajectories
induced by the local velocity gradient. In this way, the closure of the conditional
pressure Hessian requires the specification of initial conditions of the pressure Hessian
upstream along the Lagrangian path.

The strongest assumption in the RFD model comes next, in assuming the initial
condition for the mapping, i.e. the upstream conditional pressure Hessian, to be an
isotropic tensor,

〈P̃ ij |A〉 ≈ 1
3 〈P̃kk|A〉δij, (2.12)

which gives
〈P ij|A〉 ≈ 1

3 C−1
ij 〈P̃kk|A〉. (2.13)

where C−1
ij = D−1

ki D−1
kj is the inverse of the left Cauchy–Green tensor. The trace of

(2.13),
2Q= 〈Pkk|A〉 ≈ 1

3 C−1
kk 〈P̃``|A〉, (2.14)

upon substitution, allows for the final form,

〈P ij|A〉 ≈ 2Q
C−1

ij

C−1
kk

. (2.15)

This form of the conditional pressure Hessian is appealing due to its simplicity and
the intuition that the statistical bias of the pressure Hessian is related to the recent
deformation of fluid particles by the velocity gradient tensor. However, as will be
recalled later, even isotropic Gaussian velocity fields contain anisotropic contributions
for the conditional pressure Hessian, casting some doubts regarding (2.12) above.

The RFD model treats the viscous Laplacian in the same way,

〈ν∇2Aij|A〉 ≈ ν ∂Xp

∂xk

〈
∂Aij

∂Xp∂Xq

∣∣∣∣A
〉
∂Xq

∂xk
= νD−1

pk

〈
∂Aij

∂Xp∂Xq

∣∣∣∣A
〉

D−1
qk , (2.16)
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and assumes that the conditional Hessian of the velocity gradient tensor is likewise
an isotropic tensor, 〈

∂Aij

∂Xk∂X`

∣∣∣∣A
〉
= 1

3
〈∇2

XAij|A〉δk`, (2.17)

which yields

〈ν∇2Aij|A〉 ≈ C−1
kk

3
ν〈∇2

XAij|A〉. (2.18)

Then taking a linear relaxation model (Martin et al. 1998a) for the initial upstream
conditions of the conditional viscous Laplacian,

〈ν∇2Aij|A〉 ≈−C−1
kk

3
Aij

T
. (2.19)

In this way, the recent deformation provides a physically motivated mechanistic
approach to introduce nonlinearity in the viscous Laplacian term, which is helpful in
removing the finite-time singularity (the Cauchy–Green tensor is exponential rather
than linear). Chevillard & Meneveau (2006) and Chevillard et al. (2008) argue that
the proper relaxation time scale, T , for the viscous Laplacian is the integral time
scale, and that the proper time scale for the recent deformation is the Kolmogorov
time scale, t− t0= τη. In this way, the model introduces Reλ∼ (T/τη) effects. Indeed,
certain intermittency trends are reproduced by this model (Chevillard & Meneveau
2006) at moderate Reλ, but continuing to increase Reλ beyond a certain threshold leads
to increasingly unphysical results (Martins-Afonso & Meneveau 2010). Nonetheless,
the RFD closure provides a model that reproduced many of the known trends of
velocity gradient statistics at moderate Reλ, and continues to be useful for studying
velocity gradient statistics (Moriconi, Pereira & Grigorio 2014).

2.4. Gaussian fields closure
Wilczek & Meneveau (2014) took a different approach to closing the conditional
averages. They assumed that the velocity field has joint-Gaussian N-point PDFs with
prescribed spectral (two-point) statistics (the pressure field constructed from such a
velocity field is not Gaussian). They computed the conditional averages using this
approximation by employing the characteristic functional of a Gaussian velocity field
and obtaining an exact analytical result for the conditional pressure Hessian for a
Gaussian velocity field

〈P(d)
ij |A〉Gaussian = α

(
SikSkj − 1

3 Sk`S`kδij
)+ β (ΩikΩkj − 1

3Ωk`Ω`kδij
)

+ γ (SikΩkj −ΩikSkj), (2.20)

where

α =−2
7
, β =−2

5
, γ = 6

25
+ 16

75f ′′(0)2

∫
f ′(r)f ′′′(r)

r
dr, (2.21a−c)

with f (r) specifying the longitudinal velocity correlation function in isotropic
turbulence. In this expression, α and β are independent of Reλ while γ is expected to
have weak Reλ dependence through the integral of the correlation function derivatives.
Using a model spectrum at Reλ = 430, a numerical result of γ ≈ 0.08 was obtained
(Wilczek & Meneveau 2014).
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Furthermore, the conditional viscous Laplacian could also be computed for Gaussian
fields (Wilczek & Meneveau 2014),

〈ν∇2Aij|A〉Gaussian = δAij, where δ = ν 7
3

f (4)(0)
f ′′(0)

. (2.22)

Note that δ < 0 for realistic correlation functions, meaning that the Gaussian
approximation leads to a linear damping model as in Martin et al. (1998a) for
the viscous Laplacian. Numerical evaluation using a model spectrum at Reλ = 430
gave the result δ ≈−0.65/τη. Using the above Gaussian-derived functional form but
invoking in addition the balance of enstrophy production and dissipation with its
relationship to skewness, Wilczek & Meneveau (2014) related the coefficient δ to the
velocity derivative skewness, S = 〈(∂u1/∂x1)

3〉/〈(∂u1/∂x1)
2〉3/2,

δ = 7

6
√

15

S

τη
, (2.23)

a result which gave much better agreement with values estimated from DNS at
Reλ = 430, namely δ ≈ −0.15/τη, when using realistic values for the skewness
(non-zero, i.e. non-Gaussian). Because the original Gaussian closure led to a
singularity when integrated numerically, the authors considered an alternative
model in which the functional form of the Gaussian closure was retained but
the coefficients were empirically obtained by estimating them from DNS results:
α =−0.61, β =−0.65, γ = 0.14, δ =−0.15/τη.

With these empirically adjusted coefficients, statistical stationarity was achieved and
many of the known trends for velocity gradient statistics were reproduced with this
approach termed the enhanced Gaussian fields (EGF) closure.

3. Recent deformation of Gaussian fields mapping closure
This section introduces the RDGF closure for the pressure Hessian and viscous

Laplacian terms in the Lagrangian stochastic evolution equation for the velocity
gradient tensor.

3.1. Overview
As summarized before, a strong assumption underlying the RFD approximation was
the assumption that the initial upstream condition of the conditional pressure Hessian
(and viscous Laplacian) are isotropic tensors. Here we relax this strong assumption
and instead assume that the upstream conditional pressure Hessian is that of an
isotropic Gaussian velocity field. In this way, (2.12) is modified as follows

〈P̃ ij|A〉 ≈ 1
3 〈P̃kk|A〉δij + 〈P̃(d)

ij |A〉Gaussian (3.1)

where the latter term is evaluated using (2.20). Similarly for the viscous term, the
conditional Hessian of the upstream velocity gradient is no longer assumed isotropic,
and (2.17) is modified to include the anisotropic contributions from the Gaussian
closure. The same mapping as in the RFD model is applied to convert the upstream
initial conditions to the resulting closure. Figure 1 illustrates the overall procedure
for constructing the model for the pressure Hessian. A similar procedure is used for
the viscous Laplacian.
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Recent deformation map

x, t

FIGURE 1. (Colour online) Schematic illustrating the main elements of the RDGF
model for the conditional pressure Hessian. The viscous Laplacian model is constructed
analogously.

We name this approach the recent deformation of Gaussian fields (RDGF) model.
In the sense of this nomenclature, the term ‘Gaussian fields’ is used to refer to the
Gaussian velocity field along with its associated (non-Gaussian) pressure field. For
the pressure Hessian, the recent deformation mapping is applied to the pressure field
derived from Gaussian velocity field.

The underlying phenomenology of the RDGF model is that approximate turbulence
statistics can be developed efficiently by a mapping of Gaussian statistics. This
motivation is similar to the spatial distortion applied to Gaussian evaluations of
conditional means for scalar Laplacian terms used in the mapping closures (Chen,
Chen & Kraichnan 1989; Kraichnan 1990; Pope 1991), as well as the multiscale
turnover Lagrangian map procedure of Rosales & Meneveau (2008) to generate
non-Gaussian synthetic turbulence fields. It should be noted that, despite some
similarity, many important and technical details differ between the present approach
and these previous works.

The linear diffusion model of Martin et al. (1998a) forms the basis for all three
models considered in detail here: RFD, EGF and RDGF. The linear diffusion model
follows the same assumptions as the restricted Euler model (i.e. ignoring the deviatoric
part of the pressure Hessian), while adding a linear relaxation term to model the
viscous damping of velocity gradients. The RFD model adds the additional effect
of recent fluid deformation in biasing the statistics of the pressure Hessian and
viscous Laplacian. On the other hand, the EGF model computes the deviatoric part of
the pressure Hessian (and the linear viscous diffusion coefficient) by approximating
the turbulent velocity field as a Gaussian velocity field, an approximation with
well-known limitations. The RDGF model includes the Gaussian approximation but
adds the additional influence of the recent fluid deformation.

3.2. Model details
The model for the unclosed terms along the Lagrangian path at point x (time t)
involves applying the Gaussian fields approximation at the upstream point X (time
t− τ ). For the deviatoric part of the pressure Hessian, using (2.20),

〈P̃(d)
ij |A〉Gaussian = α

(
SikSkj − 1

3 Sk`S`kδij
)+ β (ΩikΩkj − 1

3Ωk`Ω`kδij
)

+ γ (SikΩkj −ΩikSkj), (3.2)
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where (2.21) provides the numerical values of the parameters for Gaussian fields.
In appendix B, an analytical evaluation of γ using Batchelor interpolation for
the second-order structure function is presented (Batchelor 1951). The result,
γ = 86/1365 ≈ 0.063, does not deviate much from the previous numerical result
(Wilczek & Meneveau 2014).

Similarly, the Gaussian fields approximation for the upstream Hessian of the
velocity gradient uses the results of appendix C,〈

ν
∂2Aij

∂Xp∂Xq

∣∣∣∣A
〉

Gaussian

= δ

[
T ijδpq + T iqδjp + T ipδjq

− 2
21
(Sjqδip + Sjpδiq + Spqδij)

]
, (3.3)

where

δ = ν 7
3

f (4)(0)
f ′′(0)

, T ij = 23
105

Aij + 2
105

Aji, Sij = 1
2
(Aij + Aji). (3.4a−c)

It can be easily shown that contraction with δpq recovers (2.22) and contraction with
δij, δip, or δiq causes the term to vanish in accordance with incompressibility. Following
Wilczek & Meneveau (2014), i.e. (2.23), the enstrophy balance is used to determine
δ in appendix D,

δ = Ckk

3
7

6
√

15

S

τη
, (3.5)

where the typical value of S =−0.6 can be used.
Then, the conditional pressure Hessian and velocity gradient Hessian are mapped

from X to x along the trajectory. The deformation tensor used for the mapping, Dij=
∂xi/∂Xj, is approximated by assuming that the velocity gradient is constant for the
short time span τ , i.e. (2.10). Using (2.11) with the new upstream conditional pressure
Hessian in (3.1),

〈P ij|A〉 = 1
3 〈P̃``|A〉C−1

ij + D−1
mi 〈P̃

(d)
mn|A〉GaussianD−1

nj , (3.6)

where (3.2) is substituted for the deviatoric part of the pressure Hessian. The trace of
this equation gives

2Q= 〈Pkk|A〉 = D−1
mk 〈P̃

(d)
mn|A〉D−1

nk + 1
3 〈P̃``|A〉C−1

kk . (3.7)

Solving (3.7) for 〈P̃kk|A〉, and substituting into (3.6), the resulting closure is

〈P ij|A〉 = 2Q
C−1

ij

C−1
kk

+Gij −
C−1

ij

C−1
kk

G``, (3.8)

where
Gij = D−1

mi 〈P̃
(d)
mn|A〉GaussianD−1

nj , (3.9)

using (3.2) with (2.21). Similarly for the viscous Laplacian, using (2.16) with the new
upstream conditional viscous Hessian (3.3) leads to

〈ν∇2Aij|A〉 = δ
(
T ijC

−1
kk + 2T ikB

−1
kj − 4

21 B−1
ik Skj − 2

21 B−1
k` Sk`δij

)
, (3.10)

where B−1
ij =D−1

ik D−1
jk is the inverse of the right Cauchy–Green tensor and T and S are

given in (3.4).
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3.3. The resulting model
The resulting stochastic ODE model for the Lagrangian velocity gradient dynamics is

dAij =
[
−
(

AikAkj −
C−1

ij

C−1
kk

tr(A2)

)
−
(

Gij −
C−1

ij

C−1
kk

tr(G)

)
+ Vij

]
dt+ bijk` dWk`, (3.11)

where the contribution of the deviatoric part of the back-in-time pressure Hessian is

Gij = D−1
mi

[− 2
7

(
SmkSkn − 1

3 Sk`S`kδmn
)− 2

5

(
ΩmkΩkn − 1

3Ωk`Ω`kδmn
)

+ 86
1365(SmkΩkn −ΩmkSkn)

]
D−1

nj , (3.12)

and the contribution of the viscous Laplacian is

Vij = 7

6
√

15

Ckk

3
S

τη

(
T ijC

−1
kk + 2T ikB

−1
kj −

4
21

B−1
ik Skj − 2

21
B−1

k` Sk`δij

)
, (3.13)

with S =−0.6 and

Sij = 1
2(Aij + Aji), Ωij = 1

2(Aij − Aji), T ij = 23
105 Aij + 2

105 Aji. (3.14a−c)

The recent deformation is described by

D−1
ij = [exp(−Aτ)]ij, C−1

ij = D−1
ki D−1

kj , B−1
ij = D−1

ik D−1
jk , (3.15a−c)

and the diffusion coefficient tensor of the stochastic forcing term is

bijk` =−1
3

√
Ds

5
δijδk` + 1

2

(√
Ds

5
+
√

Da

3

)
δikδj` + 1

2

(√
Ds

5
−
√

Da

3

)
δi`δjk. (3.16)

Note that the present model does not use the coefficients estimated from DNS. Instead,
the coefficients are used as derived from the Gaussian field statistics.

In some sense, this model can be seen as a generalization of both RFD and GF
closures. To recover the RFD model, first the back-in-time deviatoric component of the
pressure Hessian should be removed, Gij= 0, i.e. α= β = γ = 0. Then, including only
the isotropic part of (3.3), gives ν∇2Aij= δ(C−1

kk /3)Aij, and the coefficient should be set
to δ=−1/T , where T is the integral time scale. This approximately corresponds to the
RFD model at τK/T =−7S /6

√
15≈ 0.18. To recover the GF model, the deformation

tensor should be set to identity, Dij = δij.

3.4. Parameters and constraints
The model now contains three parameters that have yet to be determined: Ds, Da
and τ . As discussed in more detail in appendix A, the stochastic forcing term, dFij=
bijk` dWk`, can be split into symmetric and anti-symmetric parts, each with its own
amplitude. This can be thought of as separately forcing (2.7) and (2.8). The amplitudes
of the symmetric and anti-symmetric stochastic forcing tensors, Ds and Da, are two
parameters that must be set to fully specify the model.

Additionally, the time interval of the mapping, τ , must be set. In keeping with the
RFD phenomenology, it is expected that this should be τ ∼ O(τη). The RFD model

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

55
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.551


398 P. L. Johnson and C. Meneveau

used τ = τK , where τK is an input Kolmogorov time scale, but a posteriori evaluation
at τK/T = 0.1 reveals that the actual Kolmogorov time scale produced by the model
is τη≈ 2.0τK . Therefore, the effective time interval was τ ≈ 0.5τη, based on the actual
velocity gradient statistics produced by the model.

The three free parameters can be set by a choice of three constraints. First, without
loss of generality, considering the evolution of the dimensionless velocity gradient
tensor, 〈SijSij〉τ 2

η = 1/2. This constraint effectively guarantees that the definition
of δ in terms of τη is consistent. For the other two constraints, it is desirable
to pick relationships for isotropic turbulence with analytical derivation, which can
be considered a priori constraints. It is natural, then, to pick the two Betchov
relations (Betchov 1956), 〈Q〉 = 〈R〉 = 0 where R = (−1/3)AijAjkAki. In light of the
aforementioned dimensionless form of the equation, the former can be rephrased as
〈ΩijΩij〉τ 2

η = 1/2.
The determination of the three parameters using the three constraints can be

posed as a three-dimensional root-finding problem. The appropriate values for
the parameters were found empirically by numerical solutions of the model (see
§ 4.1 below for details) using Broyden’s method (Press et al. 1992). The procedure
involved iteratively adjusting Ds, Da, and τ and evaluating sufficiently converged
statistics of 〈SijSij〉, 〈ΩijΩij〉 and 〈R〉 from the numerical solutions of the model until
the constraints were satisfied with the desired accuracy (four decimal places). The
iterative method for determining the correct model parameters converges toward

Ds = 0.1014/τ 3
η , Da = 0.0505/τ 3

η , τ = 0.1302τη. (3.17a−c)

The mapping time is considerably shorter than that of RFD closure because the
additional deviatoric part of the pressure Hessian was added to the RFD model,
which was by itself already strong enough to counter the singularity with τ ≈ 0.5τη.

4. Numerical methods
4.1. Stochastic differential equation solver

The three models introduced in the previous sections (RFD, EGF and RDGF)
can be advanced numerically as a system of stochastic ODEs. A second-order
predictor–corrector method is used for time advancement. Time steps of size
dt/τη = 0.04, 0.02 and 0.01 are compared to verify discretization convergence.
Ensembles of 216 trajectories are advanced for 1000τη to achieve convergence of
desired statistical quantities (up to fourth-order moments). Without loss of generality,
τη = 1 was used for all runs. The Fortran simulations were performed in serial and
run on a desktop machine, taking a few hours to complete.

4.2. Direct numerical simulation database
The Johns Hopkins Turbulence Databases isotropic dataset (Li et al. 2008; Perlman
et al. 2007) provided the DNS statistics used for most of the comparisons in this
paper. The dataset contains the simulation results from a Reλ = 430 simulation of
Navier–Stokes with forcing at the two lowest wavenumbers. The pseudo-spectral
simulation provided a 10243 resolution on a (2π)3 cubic domain. Time advancement
was accomplished via the second-order Adams–Bashforth scheme and de-aliasing was
done with 2

√
2/3 truncation and random phase shift. In a few cases, the comparisons

are supplemented with another DNS at Reλ = 160 using the same simulation code.
Important parameters for the simulations are given in table 1. It is worth noting
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FIGURE 2. (Colour online) Sample trajectories of (a) longitudinal and (b) transverse
velocity gradient components from the RDGF mapping closure. Three different trajectories
are shown, represented by three different colours.

N Reλ ε ν η τη 1t kmaxη

2563 160 0.112 1.2× 10−3 1.11× 10−2 0.104 5× 10−4 1.34
10243 430 0.093 1.85× 10−4 2.87× 10−3 0.045 2× 10−4 1.39

TABLE 1. Numerical details for simulations used in this paper.

that RFD model with τK/T = 0.1 has been equated with Reλ = 150 (Chevillard et al.
2008). Reaching Reλ = 430 requires τK/T ≈ 0.035, which is outside the range for
which RFD model produces results with reasonable accuracy. Therefore, in this paper,
we use τK/T = 0.1 for the RFD simulations, the value at which the RFD model
seems to perform the best.

5. Results
5.1. Longitudinal and transverse components

Figure 2 illustrates the output of the RDGF mapping closure by plotting sample
trajectories of longitudinal and transverse velocity components over an interval of
20τη. Because of the stochastic forcing, the paths appear rough, even at the scale of
the Kolmogorov time scale. Nonetheless, such stochastic models can be useful when
their statistical behaviour provides a good model for Lagrangian velocity gradient
statistics in isotropic turbulence.

The probability density functions for the longitudinal velocity derivative, A11, and
transverse velocity derivative, A12, are shown in figure 3. The RFD, EGF and RDGF
closures are compared with DNS results at the two different Reynolds numbers. The
negative skewness expected for A11 and the symmetry expected for A12 are reflected by
all three models. The RFD results appear much too close to Gaussian when compared
with DNS results. The longitudinal velocity gradient distributions (top row of figure)
from the EGF and RDGF models are better than that of RFD in terms of deviation
from Gaussian behaviour. For the transverse component, the RFD and EGF results
appear similar, being between Gaussian and the DNS results. The RDGF mapping
closure provides a much better match for the A12 PDF. The trends suggest that the
RDGF model may provide an even better fit for DNS data at slightly lower Reλ, but
we refrain from any iterative matching with any particular precise value of Reλ as we
are mostly interested in overall trends.
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FIGURE 3. (Colour online) Single component PDFs for longitudinal (a–c) and transverse
(d–f ) velocity components. Three models are compared: (a,d) RFD, (b,e) EGF,
(c, f ) RDGF mapping closure. Solid grey line denotes Gaussian, dashed line shows
DNS results at Reλ = 430, dotted line shows DNS at Reλ = 160 and solid line with
markers shows the model result.

〈A3
11〉

〈A2
11〉3/2

〈A3
12〉

〈A2
12〉3/2

〈A4
11〉

〈A2
11〉2

〈A4
12〉

〈A2
12〉2

RFD −0.44 0.0 3.2 4.3
EGF −0.31 0.0 6.5 6.3
RDGF −0.45 0.0 4.7 6.8
Reλ = 160 −0.52 0.0 5.9 9.4
Reλ = 430 −0.60 0.0 8.5 13.2

TABLE 2. Skewness and kurtosis values for longitudinal and transverse velocity gradient
components from each model compared with DNS.

As a compact comparison, table 2 records the skewness and flatness factors of
the above PDFs. All three models significantly underpredict the magnitude of the
negative skewness for A11, although the RFD and RDGF mapping closures are much
closer than the EGF closure. The flatness factors for the longitudinal and transverse
components help quantify the tendency of the model to reproduce the fattened tails
of the PDFs in figure 3. For the longitudinal component, the EGF model appears to
give the closest match, while RDGF is slightly closer for the transverse component.
In each case, the flatness factors are too low, as was probably already evident
in the above figures. It appears that the trend produced by the RFD and RDGF
mapping closures, namely, that the longitudinal component has lower flatness than
the transverse component, reflects the DNS trend. Indeed, as was discussed above,
these results for RDGF could be seen as somewhat more appropriate for matching
the DNS results at even lower Reynolds number.
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〈SijSij〉
〈ΩijΩij〉

−〈SijSjkSki〉/3
〈ωiSijωj〉/4

15〈A2
11〉

2〈SijSij〉
−35/2〈A3

11〉
〈ωiSijωj〉

RFD 1.143 1.76 1.00 1.76
EGF 0.486 0.52 1.00 0.46
RDGF 1.000 1.00 1.00 1.00

TABLE 3. Results for competing models in terms of reproducing known isotropic relations.

5.2. Isotropic relations
Table 3 compares the extent to which each of the models is able to reproduce
important isotropy relations. Each ratio is equal to unity for isotropic turbulence. The
first ratio, 〈SijSij〉/〈ΩijΩij〉, represents the ratio of strain-rate magnitude to vorticity
magnitude produced by the model and is equal to unity since by construction (adjust-
ment of forcing parameters), 〈Q〉= 0. The second ratio, (−〈SijSjkSki〉/3)/(〈ωiSijωj〉/4),
represents the balance between strain production and vorticity production and is equal
to unity if 〈R〉 = 0, also expected due to the adjustment of forcing parameters.
The identities are all satisfied within numerical error showing that the numerical
tuning of the three parameters (Ds, Da and τ ) is very accurate. This represents
a significant advantage of the RDGF mapping closure, seeing that the earlier
RFD model slightly overemphasizes strain-dominant and strain-production-dominant
regions while the EGF model significantly overemphasizes rotation-dominant and
rotation-production-dominant regions. All three models satisfy the relation between
dissipation and the longitudinal velocity derivative variance. It should be noted that
the values in table 3 from the RFD and EGF models could be improved if their
Ds = Da constraint was removed and the two forcing coefficients tuned separately.
This would allow one extra degree of freedom in tuning, which could be used to
satisfy one, but not both, of the Betchov relations.

5.3. Enstrophy and dissipation
The probability density distributions (PDFs) of enstrophy and dissipation in isotropic
turbulence (Meneveau & Sreenivasan 1991; Bershadskii, Kit & Tsinober 1993; Donzis,
Yeung & Sreenivasan 2008) provide another useful test for comparing Lagrangian
velocity gradient models. Figure 4 compares the dissipation (a–c) and enstrophy
(d–f ) PDFs of the RFD (a,d), EGF (b,e) and RDGF (c, f ) models with the DNS
results at two Reλ values. The RFD model appears to produce exponential tails
(straight lines on the log-linear plot) rather than stretched exponential. The EGF
model is much improved for the dissipation and enstrophy PDF, appearing somewhat
closer to the characteristic stretched-exponential shape. The RDGF model provides
the best agreement with both dissipation and enstrophy distributions, displaying the
stretched-exponential shape for both. It should be kept in mind that the EGF and
RDGF do not have explicit Reynolds number dependence. Again, as a qualitative
observation, the RDGF model gives results that may appear even more realistic for
lower Reλ.

5.4. Vorticity and strain rate
One of the well-known features of velocity gradient statistics in turbulent flows is
the non-trivial alignment of the vorticity vector with respect to the three eigenvectors
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FIGURE 4. (Colour online) PDFs of dissipation (a–c) and enstrophy (d–f ) normalized
by their mean values for RFD (a,d), EGF (b,e), RDGF (c, f ). Solid lines with symbols
indicate model results and DNS results are shown with dashed (Reλ = 430) and dotted
(Reλ = 160) lines.

of the strain-rate tensor (Ashurst et al. 1987). The vorticity tends to align more
closely with the strain-rate eigenvector associated with the intermediate eigenvalue.
Meanwhile, the vorticity tends to be more perpendicular with respect to the strain-rate
eigenvector of the smallest eigenvalue. The alignment distribution between the
vorticity and the eigenvector of the largest strain-rate eigenvalue tends to be fairly
uniform in comparison.

Figure 5(a–c) show the PDFs for the cosines of the angles between vorticity and
strain-rate eigenvectors. The DNS results at Reλ = 430 are used for comparison
here; these statistics show virtually no dependence on Reλ. All three models mimic
the well-known trend outlined above. The RFD model slightly underpredicts the
anti-alignment of vorticity with the smallest strain-rate eigenvalue, while displaying
a slight preference toward anti-alignment for the largest eigenvalue. The EGF
consistently underpredicts the alignment biases seen in the DNS results. It appears
that the RDGF model obtains the best agreement overall.

Lund & Rogers (1994) introduced the measure −1 6 s∗ 6 1 using the eigenvalues
of the strain-rate tensor,

s∗ =− 3
√

6Λ1Λ2Λ3

(Λ2
1 +Λ2

2 +Λ2
3)

3/2
, (5.1)

which compares the relative magnitudes of each of the three strain-rate eigenvalues
taking into account that they must add up to zero. Figure 5(d) reports the PDFs for
the three models considered here, shown in comparison to DNS results (Reλ = 430).
It is well known that turbulent velocity gradients are biased toward s∗ > 0, i.e. more
distortion toward disk-like fluid elements (Lund & Rogers 1994; Meneveau 2011). All
three models reflect this trend. The RFD model overpredicts the bias toward positive
s∗, while the EGF model underpredicts it. The RDGF model appears to produce results
in closest comparison with DNS.
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FIGURE 5. (Colour online) Probability distribution functions for the cosine of the
angle between vorticity and the strain-rate eigenvectors: (a) RFD, (b) EGF, (c) RDGF.
(d) Probability density functions for s∗, as defined in (5.1), for the three models compared
with DNS results and Gaussian field statistics.

〈s∗〉 〈Λ1〉τη 〈Λ2〉
〈Λ1〉 〈cos(θ1)〉 〈cos(θ2)〉 〈cos(θ3)〉

RFD 0.441 0.400 0.270 0.428 0.663 0.374
EGF 0.190 0.421 0.123 0.500 0.597 0.377
RDGF 0.347 0.392 0.224 0.473 0.656 0.317
DNS 0.371 0.366 0.231 0.484 0.659 0.311

TABLE 4. Various mean values for strain-rate and vorticity measures.

Table 4 compares ensemble averages for some of these vorticity and strain-rate
statistics, helping quantify the above discussion. Additionally available from this
table is the ratio of average strain-rate eigenvalues, for which the RDGF models also
provides good predictions.

5.5. Dynamics in the Q–R plane
Another salient feature of turbulent velocity gradient statistics is the teardrop-shaped
contours of the joint-probability density function for the Q and R invariants (Soria
et al. 1994; Blackburn, Mansour & Cantwell 1996; Chong et al. 1998; Ooi et al.
1999). Figure 6 compares such joint PDFs from the three models with DNS results
(Reλ = 430). Each model reproduces to some extent the features in the DNS results,
most notably the teardrop shape.
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FIGURE 6. (Colour online) Logarithmically scaled joint-probability density function for
the invariants Q and R as given by (a) RFD, (b) EGF, (c) RDGF and (d) DNS.

The RFD results are too compact, lacking sufficient excursions far from the mean,
as also seen previously for the single component PDFs in figure 3. One also observes
a less prominent high-probability filament descending down the positive R branch of
the Vieillefosse line. The EGF model results are more accurate in their depiction of
the high-probability region along the Vieillefosse line but a less realistic aspect of the
EGF results is the exaggerated higher probability in the positive Q region compared
to the negative Q region. This feature is evidently responsible for the EGF model’s
departure from 〈Q〉 = 0 (the EGF also does not reproduce 〈R〉 = 0). As mentioned
previously, adapting the RDGF forcing scheme (tuning Ds and Da separately) to the
EGF could be used to satisfy one, but not both, of the Betchov relations.

The results from the RDGF mapping closure share some of these strengths and
weaknesses. For the RDGF, the low-probability contours remain too compact, although
less so than in the case of the RFD model. The shape of the high-probability regions
closely mirror those for the DNS. In addition, there is some promising spread for
the low-probability contours into the high positive Q regions. However, overall, the
details of the low-probability contours (the tails of the joint distribution) still represent
a challenge for all three models.
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Neglecting the stochastic forcing for the moment, the dynamical equations for Q
and R are (Ooi et al. 1999)

dQ
dt
=−3R+ AijP

(d)
ji − νAij∇2Aji,

dR
dt
= 2

3
Q2 + AijAjkP

(d)
ki − νAijAjk∇2Aki. (5.2a,b)

The dynamics in probability space can be recovered thus from conditional averaging,〈
dQ
dt

∣∣∣∣Q, R
〉
=−3R+ 〈AijP

(d)
ji |Q, R〉 − ν〈Aij∇2Aji|Q, R〉, (5.3)〈

dR
dt

∣∣∣∣Q, R
〉
= 2

3
Q2 + 〈AijAjkP

(d)
ki |Q, R〉 − ν〈AijAjk∇2Aki|Q, R〉. (5.4)

These equations represent average velocities in the Q–R probability space which,
when multiplied with the local probability density, represent fluxes in probability
space. They are evaluated based on DNS as well as from the three models. In order
to compare them under similar conditions, averages are evaluated as an a priori test,
by evaluating the model results from an ensemble of DNS trajectories. In practice,
we found that the most significant effect of this approach (as opposed to sample the
statistics along model evaluations) was to increase the domain in Q–R space where
the average velocities could be obtained.

Figure 7 shows the Q–R-space velocities attributed to the pressure Hessian term for
the three models compared with DNS results (Reλ = 430). The primary action of the
RFD pressure Hessian is to oppose the restricted Euler motion along the Vieillefosse
tail. In fact, the magnitude of the pressure Hessian opposing the restricted Euler
singularity along the Vieillefosse tail is too strong in comparison with the DNS data.
As previously noted (Chevillard et al. 2008), the RFD pressure Hessian lacks the
right-to-left motion seen in the DNS and the other two models. This elucidates the
shortcoming of the upstream isotropic assumption for the pressure Hessian tensor. In
fact, it is a significant contribution of the Gaussian form of the pressure Hessian that
it adds this right-to-left tendency due to the deviatoric component of the tensor.

The EGF pressure Hessian tends to oppose the singularity with smaller magnitude
than the DNS results indicate, while the RDGF opposes with slightly larger magnitude
than DNS. While the right-to-left motion is captured by the EGF and RDGF closures,
a few more subtle features of the DNS results are not. First, the relatively ambient
region of positive R near Q= 0 has an unphysically active right-to-left motion in the
EGF and RDGF closures. Secondly, the DNS results indicate opposition to restricted
Euler along the left side of the Vieillefosse line, which is not replicated by the EGF or
RDGF closures. Other subtle differences and similarities may be noted, but the above
discussion summarizes the most important trends noticeable.

The velocities in Q–R space from the viscous Laplacian are shown in figure 8 for
each of the models compared with DNS. All the models produce the same structure:
the viscous Laplacian damps the velocity gradient, thus trajectories are pushed toward
the origin in Q–R space. Note that the DNS results show some slight deviation from
pure damping structure. For example, near Q= 0 for R> 0, there is an upward trend
in the streamlines instead of proceeding straight toward the origin. Each of the models
fail to capture this effect. Thus, updating the upstream conditions of the conditional
viscous Hessian produces minimal changes in the behaviour of the closure. It appears
that the upstream isotropic assumption of RFD model for the viscous term produces
relatively more accurate results than was the case for the pressure Hessian.
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FIGURE 7. (Colour online) Thick lines with arrows represent ‘streamlines’ in the Q–R
plane due to the deviatoric part of the pressure Hessian. Thin lines represent contours
for the velocity magnitude in the Q–R plane. Results are as given by (a) RFD, (b) EGF,
(c) RDGF mapping closure and (d) DNS.

In terms of magnitude, the RFD model is too strong. The EGF model produces
good agreement with DNS in magnitude for the Q < 0, R > 0 region near the
Vieillefosse tail, while it is too weak in the Q> 0, R< 0 region. The RDGF model
has magnitudes in good agreement with DNS for Q > 0, R < 0 but is too strong in
the Q< 0, R> 0 along the Vieillefosse tail.

The above Q–R-space analysis shows advantages of the EGF and RDGF closures
over the RFD closure. Of particular importance is that the RFD pressure Hessian does
not have a strong tendency to decrease R. The structure of the deviatoric pressure
Hessian from the Gaussian fields provides this effect. Furthermore, the RFD model’s
overprediction of magnitude for both of the unclosed terms results in the overly
compact joint-PDF contours seen in figure 6.

5.6. Correlation coefficients

It is interesting to compare the a priori success of each model in terms of correlation
coefficients for the deviatoric part of the pressure Hessian and the viscous Laplacian.
For the deviatoric part of the pressure Hessian, the correlation coefficient is defined
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FIGURE 8. (Colour online) Thick lines with arrows represent streamlines in the Q–R plane
due to the viscous Laplacian. Thin lines represent contours for the velocity magnitude
in the Q–R plane, non-dimensionalized by powers of 〈SijSij〉. Results are as given by
(a) RFD, (b) EGF, (c) RDGF and (d) DNS.

as

ρP(d) =
〈P(d),DNS

ij P(d),model
ij 〉√

〈P(d),DNS
mn P(d),DNS

mn 〉〈P(d),model
pq P(d),model

pq 〉
. (5.5)

A similar correlation coefficient is also defined for the viscous Laplacian. These are
computed using eighth-order finite differencing from an ensemble of 10 million points
in the DNS results.

Table 5 shows the resulting correlation coefficients. Included also is the original
GF closure of Wilczek & Meneveau (2014), which did not provide a statistically
stationary solution but rather succumbs to the finite-time singularity similar to the
restricted Euler model. Overall, the viscous Laplacian models are more successful
than the pressure Hessian models. The RFD model has the lowest a priori correlation
coefficients for both closures. The difference between the GF and EGF model in
table 5 is minimal.

The RDGF model actually shows slightly lower correlation for its pressure Hessian
model, indicating that the effect of the recent deformation on the Gaussian structure
is perhaps not as helpful as one might have hoped. Perhaps the real advantage of
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ρP(d) ρ∇2A

RFD 0.23 0.41
GF 0.43 0.60
EGF 0.43 0.60
RDGF 0.37 0.61

TABLE 5. Correlation coefficients for three models with DNS results at Reλ = 430.

the recent deformation is that the magnitude is increased without abandoning the
analytical coefficients (i.e. α =−2/7, β =−2/5). The effect is that the singularity is
avoided without recourse to DNS-tuned coefficients.

5.7. Computational cost
It is useful to mention that these three models are not equal in terms of computational
cost. The above results were computed using a Fortran 90 code executed on a single
processor. A minimal code involving only time advancement of the velocity gradient
tensor without any statistical calculations was timed for the three models. It was found
that, per time step, the RFD model requires approximately 1.5 times longer than the
EGF model, while the RDGF model takes approximately 2.5 times longer. It is worth
noting, however, that the RFD and RDGF models were found to run smoothly and
accurately with a time step of dt = 0.04τη, while the EGF model required a time
step of dt = 0.01τη to avoid a singularity. Even with such a small time step, the
stochastic system exhibited rare rogue trajectories that had an overwhelming effect
on the flatness factors, preventing convergence in a reasonable amount of time (e.g.
trajectories advanced for 1000τη). We note that Wilczek & Meneveau (2014) used an
even smaller time step of dt = 0.001τη. Therefore, the computational cost advantage
of EGF model is not realized. The RFD model does have a computation cost per time
step approximately 40 % smaller than that of the RDGF model.

6. Conclusions
In this paper, a new closure, the recent deformation of Gaussian fields (RDGF)

mapping closure, for the pressure Hessian and viscous Laplacian along Lagrangian
trajectories in turbulent flow is introduced. The new closure benefits from the insights
of both the RFD and GF closures. The GF closure calculations are applied for the
initial upstream conditions of the conditional pressure Hessian and viscous Laplacian,
before performing a recent fluid deformation mapping to complete the closure. The
coefficients for Gaussian fields can be used and three remaining free parameters
related to forcing and time scale are constrained so that the model reproduces known
exact statistical relations. The stochastic forcing for this model is also generalized
from that used for the previous models so that the magnitude of the symmetric and
anti-symmetric forcings can be applied independently.

A priori evaluation of the models in terms of correlation coefficients and Q–R-space
velocities reveals the shortcomings of RFD closure: the magnitudes of the unclosed
terms are significantly overestimated and the role of the pressure Hessian in decreasing
the R invariant is absent. These shortcomings are much improved using the conditional
pressure Hessian from Gaussian fields. On the other hand, the exponential nonlinearity
of the recent-deformation tensor allows for more effective prevention of singularities.
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As a result, the RDGF model does not require DNS-tuned coefficients in order to
prevent the singularity. In this way, the RDGF model has the robustness and analytical
closedness of the RFD model while providing a more realistic structure of the pressure
Hessian from the GF closure.

A comparison of various single-time statistics suggests that the RDGF model
can provide excellent results in comparison to the two previous models. However,
by comparison with DNS at Reλ = 430, the quantitative results reveal remaining
shortcomings such as lack of increasing long tails and intermittency. The RDGF
results seem more consistent with lower Reynolds number DNS results. This
highlights one of the major limitations of the current model, that it does not include
a robust way of changing the Reynolds number whereas velocity gradient statistics
are known to depend strongly on Reynolds number. The RFD model does include
a mechanism for increasing the Reynolds number, but only in a very limited range.
In fact, RFD applied for Reλ ≈ 430 is already outside the range where it performs
well. The RDGF mapping closure suffers these same drawbacks as RFD, even if the
skewness factor is adjusted to reflect its (weak) dependence on Reynolds number.

In summary, this paper builds a new closure framework for the conditional pressure
Hessian and viscous Laplacian which leverages insights of previous approaches. It
provides, therefore, a promising direction for future investigations of velocity gradient
statistics in isotropic turbulence. At sufficiently high Reynolds numbers, where
approximate isotropy of small scales is a safe assumption, models for isotropic
turbulence can be applicable for a more general class of turbulent flows, for which
some applications may find efficient access to velocity gradient statistics useful.
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Appendix A. Isotropic tensorial stochastic forcing for symmetric and anti-
symmetric components

In this appendix, the form of the stochastic forcing in (2.6) is established. As
identified in the text, the forcing should have the form dFij = bijk` dWk`, and can be
thought of as a sum of symmetric and anti-symmetric forcing, dFij = dF(s)

ij + dF(a)
ij ,

where dF(s)
ij = (dFij + dFji)/2 and dF(a)

ij = (dFij − dFji)/2. Since dWij represents a
tensorial Wiener process, i.e. 〈Wij〉 = 0 and 〈dWij dWk`〉 = δikδj` dt, then

〈dFij dFk`〉 = bijmnbk`mn dt= Dijk` dt. (A 1)

Therefore, the forcing contributes a variance growth rate of

d〈FijFij〉 = 〈dFij dFij〉 = Dijij dt (A 2)

and furthermore, the symmetric and anti-symmetric variance growth rates are

d〈F(s)
ij F(s)

ij 〉 = 〈dF(s)
ij dF(s)

ij 〉 = 1
2(Dijij + Dijji) dt≡Ds dt. (A 3)

d〈F(a)
ij F(a)

ij 〉 = 〈dF(a)
ij dF(a)

ij 〉 = 1
2(Dijij − Dijji) dt=Da dt. (A 4)
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Here, by definition, Ds and Da represent the growth rate of the variance of symmetric
and anti-symmetric parts of the forcing.

To model isotropic turbulence, the stochastic forcing should be statistically isotropic.
The most general isotropic form for the diffusion tensor is

Dijk` = d1δijδk` + d2δikδj` + d3δi`δjk. (A 5)

Requiring also that the forcing be trace free (incompressibility), then

Diik` = (3d1 + d2 + d3)δk` = 0. (A 6)

Combining this constraint with the two definitions of Ds and Da given above,

Ds = 1
2(Dijij + Dijji)= 3d1 + 6d2 + 6d3, (A 7)

Da = 1
2(Dijij − Dijji)= 3d2 − 3d3, (A 8)

then the system of three equations and three unknowns can be solved for

Dijk` =−Ds

15
δijδk` +

(
Ds

10
+ Da

6

)
δikδj` +

(
Ds

10
− Da

6

)
δi`δjk. (A 9)

The choice of Ds = Da = 15 reduces to the form of Chevillard and Meneveau
(Chevillard et al. 2008) used for the RFD model,

Dijk` =−δijδk` + 4δikδj` − δi`δjk. (A 10)

To implement this forcing, however, the tensor bijk` is necessary, thus the equation
bijmnbk`mn = Dijk` must be solved. Using the general isotropic form

bijk` = b1δijδk` + b2δikδj` + b3δi`δjk, (A 11)

the tensor contractions yield the following system of equations,

d1 = 3b2
1 + 2b1b2 + 2b1b3 =−Ds

15
, (A 12)

d2 = b2
2 + b2

3 =
Ds

10
+ Da

6
, (A 13)

d3 = 2b2b3 = Ds

10
− Da

6
. (A 14)

The solution to this system of equations yields

bijk` =−1
3

√
Ds

5
δijδk` + 1

2

(√
Ds

5
+
√

Da

3

)
δikδj` + 1

2

(√
Ds

5
−
√

Da

3

)
δi`δjk, (A 15)

which reduces to the form of Chevillard et al. (2008) with the choice Ds = Da = 15.
Meanwhile, Wilczek & Meneveau (2014) tuned Ds=Da such that the definition of τη
was consistent between model and numerics.

As shown by Wilczek & Meneveau (2014), the Ds =Da constraint can be derived
by considering the gradient of homogeneous forcing. However, as pointed out in § 2.2,
this stochastic forcing term must represent both the gradient of the large-scale forcing
and the fluctuations of the unclosed terms about their conditional means, the latter
of which is not subject to the above constraint. In the authors’ current view, e.g.
considering (2.7) and (2.8), there is no a priori reason that the strain rate and vorticity
should be forced stochastically with the same amplitude, therefore, the present model
considers Ds and Da to be two independent tuning parameters. In fact, given that
the fluctuations of the pressure Hessian about its conditional mean, P ′ij, must be a
symmetric tensor, it is somewhat realistic to expect Ds >Da.
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Appendix B. Analytical calculation of γ for the Gaussian fields representation of
the conditional pressure Hessian

A key component to both the enhanced Gaussian closure and the recent deformation
of Gaussian fields mapping closure is the representation of a conditional pressure
Hessian using (2.20). While the coefficients α and β were directly evaluated from
the Gaussian fields closure, the last coefficient is determined by the details of the
longitudinal correlation function, (2.21). Calculations are easier using the longitudinal
structure function DLL(r)= 2u2(1− f (r)),

γ = 6
25
+ 16

75D′′LL(0)2

∫ ∞
0

D′LL(r)D
′′′
LL(r)

r
dr, (B 1)

where D′′LL(0) = 2ε/15ν according to the proper viscous range behaviour. Using the
approach of Batchelor (1951), the viscous and inertial range behaviour of the structure
function can be preserved using a blending function,

DLL(r)= C2ε
2/3r2/3F

(
r
γ2η

)
. (B 2)

Here, we assume K41 scaling for the inertial range with Kolmogorov coefficient C2≈
2.0 (Pope 2000). The blending function of Batchelor (1951) is

F
(

r
γ2η

)
=
[

1+
(

r
γ2η

)−2
]−2/3

, (B 3)

where γ2 = (15C2)
3/4 ≈ 13 sets the cross-over point between viscous and inertial

behaviour, recovering the correct viscous range behaviour. With the application of
product rule differentiation, we can write

D′LL(r)= C2ε
2/3r−1/3F1

(
r
γ2η

)
, (B 4)

D′′′LL(r)= C2ε
2/3r−7/3F3

(
r
γ2η

)
, (B 5)

and thus the integral simplifies under the change of variable r̂= r/γ2η,

γ = 6
25 + 12

225 I, (B 6)

where

I =
∫ ∞

0
r̂−11/3F1(r̂)F3(r̂) dr̂, (B 7)

with the derivative functions

F1(r̂)= 2
3 F(r̂)+ r̂F′(r̂), (B 8)

F3(r̂)= 8
27 F(r̂)− 2

3 r̂F′(r̂)+ 2r̂2F′′(r̂)+ r̂3F′′′(r̂). (B 9)

This integrand is plotted in figure 9, from which it is apparent that the integral is
dominated by contributions from the viscous range, i.e. r< 13η. Without considering
the details of the integration, the manipulation so far shows that γ is (approximately)
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FIGURE 9. (Colour online) Integrand in (B 7) plotted in normalized variables r̂ = r/γ2η
with γ2 ≈ 13.

independent of Reλ (neglecting weak Reλ effects on the cutoff scale), and its precise
value is difficult to determine because it will depend heavily on the details of the
blending function used.

The integral can be written fully as

I =
∫ ∞

0

[
16
81
(1+ r̂2)−4/3 + 416

81
(1+ r̂2)−7/3 − 304

27
(1+ r̂2)−10/3

− 2080
81

(1+ r̂2)−13/3 + 2560
81

(1+ r̂2)−16/3

]
dr̂
r̂
. (B 10)

To integrate, add(
16
81
+ 416

81
− 304

27
− 2080

81
+ 2560

81

)
(1+ r̂2)−1/3

r̂
= 0, (B 11)

to the integrand and use the change of variables,

ζ = 1+ r̂2,
dζ

2(ζ − 1)
= dr̂

r̂
. (B 12a,b)

As a result, the integral becomes

I = 1
2

∫ ∞
1

[
−16

81
ζ−4/3 − 416

81
ζ−7/3(ζ + 1)+ 304

27
ζ−10/3(ζ 2 + ζ + 1)

+ 2080
81

ζ−13/3(ζ 3 + ζ 2 + ζ + 1)− 2560
81

ζ−16/3(ζ 4 + ζ 3 + ζ 2 + ζ + 1)
]

dζ . (B 13)

Then algebraic simplification

I = 1
2

∫ ∞
1

[
16
81
ζ−7/3 + 432

81
ζ−10/3 − 480

81
ζ−13/3 − 2560

81
ζ−16/3

]
dζ , (B 14)

and completing the power-law integrations results in

I =− 302
91 . (B 15)
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Substitution of this results leads to

γ = 86
1365 ≈ 0.063. (B 16)

Appendix C. Gaussian fields approximation for the conditional Hessian of the
velocity gradient

This appendix details the derivation of (3.3) in the main text, following the method
outlined in Wilczek & Meneveau (2014). The characteristic functional of the turbulent
velocity field,

φu[λ(x)] =
〈

exp
(

i
∫
λi(x)ui(x) dx

)〉
, (C 1)

contains all the statistical information necessary to compute the desired conditional
mean, namely 〈∂2Aij/∂xp∂xq|AAA 〉. To make progress analytically, the turbulent velocity
field is taken to be Gaussian, meaning that all n-point PDFs are joint Gaussian,

φu[λ(x)] = exp
(
−1

2

∫ ∫
λi(x)Bij(x, x′)λj(x′)dx dx′

)
, (C 2)

where Bij is the two-point covariance tensor, which for homogeneous isotropic
turbulence depends only on the separation vector, r= x− x′, and has the form

Bij(x, x′)= Bij(r)= 〈u2
1〉
[

f (r)δij + 1
2 rf ′(r)(δij − r̂ir̂j)

]
, (C 3)

where r = |r| and r̂i = ri/r. In this way the characteristic functional, when assumed
Gaussian for isotropic turbulence, is uniquely specified by the longitudinal velocity
correlation function,

f (r)= 〈u1(x)u1(x+ re1)〉
〈u2

1〉
. (C 4)

With integration by parts, the relationship between the characteristic functional for the
velocity field and that of the velocity gradient field can be shown to be

φA[Λ] = φu[−∇ ·Λ]. (C 5)

Again, with integration by parts, substituting this relationship into the Gaussian
characteristic functional for the velocity field,

φA[Λ(x)] = exp
(
−1

2

∫ ∫
Λik(x)Cijk`(x, x′)Λj`(x′) dx dx′

)
, (C 6)

where

Cijk`(x, x′)= ∂2Bij

∂xk∂x′`
(x, x′)= 〈Aik(x)Aj`(x′)〉, (C 7)

is the covariance tensor for the velocity gradient, which only depends on r= x− x′.
It is computed from the Hessian of the velocity covariance tensor,

Cijk`(r) = − ∂2Bij

∂rk∂r`
= 〈u2

1〉
[(
−3

2
f ′(r)

r
− 1

2
f ′′(r)

)
(δijδk`)+

(
1
2

f ′(r)
r

)
(δikδj` + δi`δjk)

+
(

3
2

f ′(r)
r
− 3

2
f ′′(r)− 1

2
rf ′′′(r)

)
(δijr̂kr̂`)
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+
(
−1

2
f ′(r)

r
+ 1

2
f ′′(r)

)
(δi`r̂jr̂k + δk`r̂ir̂j + δj`r̂ir̂k + δikr̂jr̂` + δjkr̂ir̂`)

×
(

3
2

f ′(r)
r
− 3

2
f ′′(r)+ 1

2
rf ′′′(r)

)
(r̂ir̂jr̂kr̂`)

]
. (C 8)

The desired statistical quantity in this exercise is

ν

〈
∂2Aij

∂xk∂x`

∣∣∣∣A〉= ν lim
r→0

∂2

∂rk∂r`
〈Aij(x+ r)|A (x)〉. (C 9)

Following exactly the steps outlined in Appendix B 2 of Wilczek & Meneveau (2014),

〈Aij(x+ r)|A (x)〉 = Cikj`(r)C−1
km`n(0)Amn, (C 10)

where equality at the origin means

C−1
km`n(0)=

2
15〈u2

1〉f ′′(0)
(−4δkmδ`n − δknδm`), (C 11)

see Appendix B 1 of Wilczek & Meneveau (2014) for details. Combining expressions,

ν

〈
∂2Aij

∂xp∂xq

∣∣∣∣A〉= ν lim
r→0

∂2Cikj`

∂rp∂rq
C−1

km`n(0)Amn. (C 12)

A tedious calculation by twice taking the gradient of (C 8) results in

lim
r→0

∂2Cikj`

∂rp∂rq
= 〈u2

1〉f (4)(0)
[
−(δikδj`δpq + δikδjpδ`q + δikδjqδ`p)

+ 1
6
( δijδk`δpq+ δi`δkjδpq + δi`δkpδjq + δi`δjpδkq + δipδk`δjq + δiqδk`δjp

+ δj`δkpδiq + δj`δipδkq + δijδkpδ`q + δijδ`pδkq + δkjδipδ`q + δkjδ`pδiq )

]
. (C 13)

Substitution of (C 11) and (C 13) into (C 12), followed by a calculation of tensor
contractions, yields

ν

〈
∂2Aij

∂xp∂xq

∣∣∣∣A〉 = 2νf (4)(0)
15f ′′(0)

[(
23
6

Aij + 1
3
Aji

)
δpq +

(
23
6

Aiq + 1
3
Aqi

)
δjp

+
(

23
6

Aip + 1
3
Api

)
δjq −

(
5
6
Ajq + 5

6
Aqj

)
δip

−
(

5
6
Ajp + 5

6
Apj

)
δiq −

(
5
6
Apq + 5

6
Aqp

)
δij

]
, (C 14)

which can be written in the form of (3.3) with (3.4).
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Appendix D. Determination of δ Using the enstrophy balance

Using the result of appendix C, the back-in-time velocity gradient Hessian is given
by

ν

〈
∂2Aij

∂Xp∂Xq

∣∣∣∣A 〉= δ (T ijδpq + T iqδjp + T ipδjq − 2
21

Sjqδip − 2
21

Sjpδiq − 2
21

Spqδij

)
,

(D 1)
where the coefficient δ can be written in terms of the enstrophy dissipation,

δ = ν 7
3

f (4)(0)
f ′′(0)

=−τ 2
η ν

〈
∂ωi

∂Xj

∂ωi

∂Xj

〉
. (D 2)

Note that since the Gaussian fields evaluation is back-in-time, this can be interpreted
as the back-in-time enstrophy dissipation. By definition, the RFD-style mapping used
to generate the approximate back-in-time values keeps velocity gradients constant,
but not velocity Hessians. Therefore, the enstrophy production 〈ωiSijωj〉 is constant
under the mapping but the enstrophy dissipation is not constant. Two choices are thus
available: apply the enstrophy balance for the back-in-time enstrophy dissipation or
try to invert the mapping effect on the enstrophy dissipation to apply the balance at
the present time. It is the opinion of the authors that the second option is desirable,
since it leads to the application of the enstrophy balance at the present time rather
than back-in-time.

Thus, by modelling choice, the relevant enstrophy balance is

〈ωiSijωj〉 = ν
〈
∂ωi

∂xj

∂ωi

∂xj

〉
. (D 3)

To map the enstrophy dissipation forward in time,〈
∂ωi

∂Xj

∂ωi

∂Xj

〉
=
〈
∂xk

∂Xj

∂ωi

∂xk

∂ωi

∂x`

∂x`
∂Xj

〉
=
〈

Ck`
∂ωi

∂xk

∂ωi

∂x`

〉
≈ Ck`

〈
∂ωi

∂xk

∂ωi

∂x`

〉
. (D 4)

In the last step, the value of Ck` is localized by approximation, so that no ensemble
averages are needed to advance the model stochastic equations. Finally, the enstrophy
dissipation tensor is assumed isotropic,〈

∂ωi

∂xk

∂ωi

∂x`

〉
≈ 1

3

〈
∂ωi

∂xj

∂ωi

∂xj

〉
δk`. (D 5)

Substituting, the resulting enstrophy balance is

〈ωiSijωj〉 = 3ν
Ckk

〈
∂ωi

∂Xj

∂ωi

∂Xj

〉
. (D 6)

Using the isotropic relation 〈ωiSijωj〉 = −7S /6
√

15τ 3
η on the left-hand side and the

definition of δ in terms of enstrophy dissipation on the right-hand side, the result is

δ = Ckk

3
7

6
√

15

S

τη
. (D 7)
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The result given by Wilczek & Meneveau (2014) is recovered when the mapping is
removed, Dij = δij, so that Ckk = 3. In this way, the δ coefficient itself depends on
the recent deformation. This provides the convenience of an additional nonlinearity
in the viscous term to prevent unwanted singularities while advancing the stochastic
differential equation.

As a final note, the scaling of δ ∼ τ−1
η contradicts the RFD model for the viscous

Laplacian, which used the integral time scale and thus introduced a Re−1
λ scaling

for the viscous term. While Reλ dependence can be introduced in the present model
through the skewness coefficient, the similar difficulties as encountered by the RFD
model are seen when going to large Reynolds numbers. It is the authors’ view that a
fixed skewness coefficient, S =−0.6, is appropriate for the present model’s the level
of fidelity.
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