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Abstract. For B ⊆ N, the B-free subshift Xη is the orbit closure of the characteristic
function of the set of B-free integers. We show that many results about invariant measures
and entropy, previously only known for the hereditary closure of Xη, have their analogues
for Xη as well. In particular, we settle in the affirmative a conjecture of Keller about a
description of such measures [G. Keller. Generalized heredity in B-free systems. Stoch.
Dyn. 21(3) (2021), Paper No. 2140008]. A central assumption in our work is that η∗ (the
Toeplitz sequence that generates the unique minimal component of Xη) is regular. From
this, we obtain natural periodic approximations that we frequently use in our proofs to
bound the elements in Xη from above and below.
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1. Introduction
1.1. Background. Given B ⊆ N, consider the corresponding set MB = ⋃

b∈B bZ of
the multiples of B and its complement FB = Z \ MB, that is, the set of B-free integers.
We study the dynamics of η = 1FB

∈ {0, 1}Z, that is, of the orbit closure Xη of η under the
left shift σ . The motivation for such studies goes back to the 1930s, when sets of multiples
were investigated from the number-theoretic perspective by Besicovitch, Chowla, Erdős
and others (see [12] and the references therein). In 2010, Sarnak [34] suggested to study the
dynamics of the square-free system, i.e. Xη corresponding to B being the set of squares of
all primes. In this case, η|N is the square of the Möbius function μ, and the aim was to gain
more knowledge about the Möbius function itself. Sarnak formulated a certain ‘program’
for μ2 and indicated how to prove the statements about μ2. Without going into details,
there was a list of properties related both to measure-theoretic and topological dynamics
of Xμ2 . A natural question arose whether analogous results are true for other sets B. The
dynamics of Xη was studied systematically for the first time in [9] in the Erdős case, that is,
when B is infinite and pairwise coprime with

∑
b∈B 1/b < ∞. In this case, the properties

of Xη resemble the properties of Xμ2 . In particular, Xη is hereditary, that is, if x ∈ Xη and
y ∈ {0, 1}Z is such that y ≤ x coordinatewise then y ∈ Xη. In fact, we have

Xη = XB := {x ∈ {0, 1}Z : |supp x mod b| ≤ b − 1 for any b ∈ B}
(XB is called the B-admissible subshift). When we relax the assumptions on B, various
things can happen to Xη, in particular, it may no longer be hereditary. Thus, one often
looks at its hereditary closure X̃η, that is, the smallest hereditary subshift containing Xη.
Such general B-free systems were studied in [7]. We may have Xη � X̃η � XB (see [7]
for various examples).

In this paper, we concentrate on invariant measures on Xη. Let us give now some more
detailed background related to this. In the Erdős case, η turns out to be a generic point for
the so-called Mirsky measure [9] denoted by νη:

1
L

∑
�≤L

δσ�η → νη

(in this case, the above formula can be treated as the definition of νη). In other words, the
frequencies of 0−1 blocks on η exist (in the square-free case, they were first studied by
Mirsky [30, 31], hence the name). In general, η might not be a generic point. However,
it is quasi-generic along any sequence (�i) realizing the lower density of MB (that is,
such that limi→∞(1/�i)|MB ∩ [1, �i]| = lim infL→∞(1/L)|MB ∩ [1, L]| =: d(MB)).
This is a consequence of the deep number-theoretic result of Davenport and Erdős [3] that
the logarithmic density of MB, that is, δ(MB) = limL→∞(1/ln L)

∑
�∈MB∩[1,L](1/�)

always exists and we have

δ(MB) = d(MB) = lim
K→∞ d(MBK

) where BK = {b ∈ B : b ≤ K} (1)
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Invariant measures for B-free systems revisited 3

(d(A) for A ⊆ Z stands for the natural density: d(A) = limL→∞(1/L)|A ∩ [1, L]|).
Again, we call the resulting measure the Mirsky measure and denote it by νη:

lim
i→∞

1
�i

∑
�≤�i

δσ �η = νη,

see [7]. The following problems, already asked by Sarnak in the square-free case, arise.
• Give a description of the set P(Xη) of all invariant measures on Xη.
• Compute the topological entropy h(Xη) of Xη.
• Determine whether Xη is intrinsically ergodic, that is, whether it has only one measure

of maximal entropy.
The solution to the second problem and the positive answer to the third one in the
square-free case were given by Peckner [32]. However, the proof used the properties of
the squares of primes and it was not clear if it can be extended to a more general setting. It
turned out to be true:

for any B ⊆ N, X̃η is intrinsically ergodic. (2)

This was proved in [22] in the Erdős case (where Xη = X̃η) and then, in [7], for all sets
B ⊆ N. Moreover, the topological entropy h(X̃η) of X̃η is equal to the upper density
of FB:

h(X̃η) = d := d(FB) (3)

and

the measure of maximal entropy on X̃η is of the form M∗(νη ⊗ B1/2,1/2), (4)

where B1/2,1/2 is the symmetric Bernoulli measure on {0, 1}Z and M : ({0, 1}Z)2 →
{0, 1}Z stands for the coordinatewise multiplication (in each case, the proofs were given in
the corresponding paper covering the intrinsic ergodicity in the same class). We also have

h(X̃η) = 0 ⇐⇒ P(X̃η) = {δ0} ⇐⇒ X̃η is uniquely ergodic (5)

(this is true, in general, for hereditary subshifts; for a proof, see [26]).
As for the set of invariant measures, it was shown in [22] that in the Erdős case,

P(X̃η) = {M∗(νη ∨ κ) : κ ∈ P({0, 1}Z)}, (6)

where νη ∨ κ stands for any joining of νη and κ , that is, any probability measure ρ on
({0, 1}Z)2 invariant under σ×2 whose projection onto the first coordinate equals νη and the
projection onto the second coordinate equals κ . Later, in [7], this result was extended to
any set B ⊆ N.

Recall that a central role in the theory of B-free systems is played by the notion of
tautness [12]:

B ⊆ N is taut if for every b ∈ B, we have δ(MB\{b}) < δ(MB).
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4 A. Dymek et al

It was shown in [7] (see Theorem C therein) that for any B ⊆ N, there exists a unique
taut set B′ ⊆ N with MB ⊆ MB′ and νη = νη′ (for more details about B′, see §1.2.3).
In fact, we have

P(X̃η) = P(X̃η′). (7)

Moreover, in [7] (see Corollaries 4.35 and 9.1 therein), the following combinatorial result
on taut sets was proved. Fix B ⊆ N and a taut set C ⊆ N. Let ηC := 1FC

. Then the
following are equivalent:

for each b ∈ B, there exists c ∈ C such that c | b ⇐⇒ ηC ≤ η ⇐⇒ X̃ηC ⊆ X̃η

⇐⇒ ηC ∈ X̃η ⇐⇒ νηC ∈ P(X̃η) ⇐⇒ P(X̃ηC) ⊆ P(X̃η). (8)

In particular, an immediate consequence of this result is a list of conditions equivalent to
B = C, whenever both B and C are taut, see [7, Theorem L].

Last but not least, let us mention some results related to the subset Pe(X̃η) of the
ergodic measures on X̃η. It was shown in [23] that P(X̃η) is a Poulsen simplex (that is,
a non-trivial simplex with dense subset of ergodic measures with respect to the weak-star
topology) whenever h(X̃η) > 0. Recall that the density of ergodic measures implies the
arcwise connectedness of the set of invariant measures [29] (the latter property was proved
to hold in a hereditary setting wider than just B-free systems in [20]). Recently, a yet
stronger result was obtained by Konieczny, Kupsa and Kwietniak [21]: namely,

the subset Pe(X̃η) of ergodic measures on X̃η is entropy-dense in P(X̃η), (9)

that is, for any μ ∈ P(X̃η), there exist μn ∈ Pe(X̃η) such that μn → μ weakly
and the measure-theoretic entropies h(X̃η, σ , μn) of (X̃η, σ , μn) converge to the
measure-theoretic entropy h(X̃η, σ , μ) of (X̃η, σ , μ).

Clearly, if Xη is hereditary, all of the above results apply to Xη = X̃η. We study
analogous questions and prove the analogues of (2)–(9) for Xη in the non-hereditary case.
For a summary of our results, see §1.3.

1.2. Notation and main objects

1.2.1. Dynamics. We say that (X, T ) is a topological dynamical system if T is a
homeomorphism of a compact metric space X. We equip X with the Borel sigma-algebra.
The set of all probability Borel T-invariant measures will be denoted by P(X, T ) (or just
P(X) if T is clear from the context). The subset of ergodic measures will be denoted
by Pe(X, T ) or Pe(X). For each choice of μ ∈ P(X), the triple (X, T , μ) is called
a measure-theoretic dynamical system. Given two measure-theoretic dynamical systems
(X, T , μ) and (Y , S, ν), we say that (Y , S, ν) is a factor of (X, T , μ) whenever there
exists a measurable map π : X → Y (defined μ-almost everywhere (a.e.)) such that the
image π∗(μ) of μ via π equals ν and π ◦ T = S ◦ π μ-a.e.

Both in the measure-theoretic and in the topological setting, there is a notion of
entropy that describes the complexity of a given system. The measure-theoretic entropy
of (X, T , μ) is denoted by h(X, T , μ). We skip its lengthy definition and refer the reader,
for example, to [5]. For a topological dynamical system (X, T ), the topological entropy is
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denoted by h(X) or h(X, T ). We will mostly deal with 0–1 subshifts, that is, (X, σ), where
X ⊆ {0, 1}Z is closed and invariant under the left shift σ : {0, 1}Z → {0, 1}Z. In this case,
the topological entropy is easy to define: if pn(X) is the number of distinct blocks of
length n appearing on X, then h(X) = limn→∞(1/n) log2 pn(X). If X is the orbit closure
of x ∈ {0, 1}Z, we will write pn(x) instead of pn(X). There is the following variational
principle (valid in general, not only for subshifts): h(X, T ) = supμ∈P(X,T ) h(X, T , μ). In
the case of subshifts, there is always at least one measure μ realizing the supremum from
the variational principle. If this measure is unique, we say that X is intrinsically ergodic.

Given a topological dynamical system (X, T ) and a point x ∈ X, we say that x is a
generic point for μ ∈ P(X, T ) if (1/L)

∑
�≤L δT �x → μ weakly. We say that x ∈ X is

quasi-generic for μ along (�i) if (1/�i)
∑

�≤�i
δT �x → μ weakly.

Given two measure-theoretic dynamical systems (Xi , Ti , μi), i = 1, 2, we say that
ρ ∈ P(X1 × X2, T1 × T2) (with X1 × X2 equipped with the product sigma-algebra)
is a joining of (X1, T1, μ1) and (X2, T2, μ2), whenever μi = (πi)∗(ρ) for i =
1, 2 (πi will always denote the projection onto the ith coordinate, we will also
use similar notation for projections onto more than one coordinate). We write
then ρ = μ1 ∨ μ2 or ρ ∈ J ((X1, T1, μ1), (X2, T2, μ2)). We always have μ1 ⊗ μ2 ∈
J ((X1, T1, μ1), (X2, T2, μ2)). In fact, if (Yi , Si , νi) is a factor of (Xi , Ti , μi) via a factor
map Fi , i = 1, 2 and ρ = ν1 ∨ ν2, then there exists ρ̂ ∈ J ((X1, T1, μ1), (X2, T2, μ2))

such that (Y1 × Y2, S1 × S2, ρ) is a factor of (X1 × X2, T1 × T2, ρ̂) via F1 × F2 (for
example, the so-called relatively independent extension of ρ has such a property). Last
but not least, for S : (X1, T1, μ1) → (X2, T2, μ2), we will denote by �S the graph joining
of (X2, T2, μ2) and (X1, T1, μ1) given by �S(A2 × A1) = μ1(S

−1A2 ∩ A1) for any
measurable A1 ⊆ X1, A2 ⊆ X2. (Note that usually �S stands for the joining of T1 and T2

where the coordinates are written in the opposite order.) For more information on joinings,
we refer the reader to [11].

1.2.2. Toeplitz systems. A sequence x ∈ {0, 1}Z is called Toeplitz if for each i ∈ Z, there
exists s ∈ N such that x(i + sk) = x(i) for all k ∈ Z. A Toeplitz subshift is the orbit closure
of a Toeplitz sequence under the left shift. Any Toeplitz subshift is minimal [35] (the orbit
of each point is dense). For each symbol a ∈ {0, 1} and any s ∈ N, we set

Per(x, a, s) := {i ∈ Z : x(i + sk) = a for all k ∈ Z}.
The s-periodic part of x is defined to be the set of positions

Per(x, s) := Per(x, 0, s) ∪ Per(x, 1, s).

A Toeplitz sequence x is called regular if

lim
r→∞ d

( ⋃
s≤r

Per(x, s)

)
= 1.

(Notice that this is equivalent to the usual definition via the so-called period structure.)
The remaining Toeplitz sequences are called irregular. For any regular Toeplitz sequence,
the corresponding Toeplitz subshift is uniquely ergodic, see [13, Theorem 5]. For more
information on Toeplitz sequences, we refer the reader, for example, to the survey [4].
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6 A. Dymek et al

1.2.3. B-free systems. Since the notation differs a bit between various papers related to
B-free systems that are crucial for this work, we need to make certain adjustments.

Subshifts. First, let us recall the main subshifts that are of our interest. Given B ⊆ N, we
consider

Xη = {σkη : k ∈ Z} ⊆ XB = {x ∈ {0, 1}Z : |supp x mod b| ≤ b − 1 for each b ∈ B},
where supp x = {n ∈ Z : x(n) = 1} stands for the support of x. They are called the B-free
subshift Xη and the B-admissible subshift XB corresponding to the set B. Moreover,
the so-called hereditary closure X̃η of Xη is given by X̃η = M(Xη × {0, 1}Z), where
M : ({0, 1}Z)2 → {0, 1}Z stands for the coordinatewise multiplication of sequences (this
is equivalent to defining X̃η as the smallest hereditary subshift containing Xη). Since XB

is hereditary, we have

Xη ⊆ X̃η ⊆ XB.

Usually, we will assume that B is primitive, that is, for any b, b′ ∈ B, if b | b′, then b = b′.
This assumption has no influence on the studied dynamics since MB = MBprim , where
by Bprim, we will denote the maximal primitive subset of B.

In fact, there are also some other interesting subshifts of XB that we will discuss in
a later paragraph. Let us now give an overview of the most important classes of sets B

appearing in the literature. We say that B ⊆ N is:
• Erdős if B is infinite, pairwise coprime and

∑
b∈B(1/b) < ∞;

• Besicovitch if d(MB) exists;
• taut if for every b ∈ B, we have δ(MB\{b}) < δ(MB);
• Behrend if δ(MB) = 1.
Recall (see [7, Theorem 3.7]) that any non-trivial Behrend set contains an infinite pairwise
coprime subset. Moreover, B is taut if and only if cA �⊆ B for any Behrend set A and any
c ∈ N, see [12].

Given B ⊆ N, we can now define the following.
• B′ := (B ∪ C)prim, where

C = {c ∈ N : cA ⊆ B for some Behrend set A}.
The set B′ is called the tautification of B, and it is the unique taut set such that
νη = νη′ (see [7, 6] for more details about B′).

• B∗ := (B ∪ D)prim, where

D = {d ∈ N : dA ⊆ B for some infinite pairwise coprime set A}.
The set B∗ corresponds to the unique minimal subshift Xη∗ of Xη (see [17,
Corollary 5]). By [17, Lemma 3(c)], B∗ does not contain a scaled copy of an infinite
pairwise coprime subset. Thus, B∗ does not contain a scaled copy of a Behrend set
and, hence, B∗ is taut (for another proof, see [14, Lemma 3.7]). Moreover, η∗ is a
Toeplitz sequence (see [14, Theorem B]) with a subsequence of (lcm(B∗

K))K≥1 being
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its period structure, which in particular means that η∗ is a regular Toeplitz sequence if
and only if

lim
K→∞ d(Z \ Per(η∗, lcm(B∗

K)) = 0. (10)

(We will not need the notion of a period structure of a Toeplitz sequence, so let us skip
it here and refer the reader to [4].)

We have

Xη∗ ⊆ Xη′ ⊆ Xη, (11)

see [6, Remark 3.22] for the first inclusion, and [24, (27)] for the second one. Note also
that it was shown earlier that Xη∗ ⊆ Xη, see [17, Corollary 1.5]. We have

(B′)∗ = B∗. (12)

Indeed, X(η′)∗ is the unique minimal subshift of Xη′ , while Xη∗ is the unique minimal
subshift of Xη. Hence, since Xη′ ⊆ Xη, it follows that X(η′)∗ = Xη∗ . This is equivalent to
(12) by [7, Theorem L], cf. (8).

Basic algebraic objects. There are also certain important objects of algebraic nature
related to B:
• the product group G := ∏

b∈B Z/bZ;
• the canonical embedding 
 : Z → G given by 
(n) = (n, n, . . .);
• the subgroup H := 
(Z);
• the rotation R = R
(1) : H → H given by R(h) = h + 
(1);
• the window associated to B, given by W := {h ∈ H : hb �= 0 for each b ∈ B}, and

the closure of its interior, which we denote by W := int(W);
• the coding function ϕA : H → {0, 1}Z for A ⊆ H , given by ϕA(h)(n) = 1 ⇐⇒ h +


(n) ∈ A; note that ϕA ◦ R = σ ◦ ϕA; in particular, we will use

ϕ := ϕW and ϕ := ϕW ;

note that η = ϕ(
(0));
• the subset of admissible sequences with only one residue class mod each b ∈ B

missing:

Y := {x ∈ {0, 1}Z : |supp x mod b| = b − 1 for each b ∈ B} ⊆ XB;

• the function θ : Y → G ‘reading’ the (unique) missing residue class mod each b ∈ B,
which is given by θ(y) = h ⇐⇒ supp y ∩ (bZ − hb) = ∅ for b ∈ B.

All these objects can be defined just as well for B′ and B∗. We will use the superscripts
′ and ∗ to indicate which of them we mean. For example, we have H ′ = 
′(Z) where

′ : Z → G′ and similarly

W ′ := {h ∈ H ′ : hb �= 0 mod b for each b ∈ B′} and W ′ = int(W ′).

Also, we will write ϕ′ for ϕ′
W ′ and ϕ′ for ϕ′

W ′ .

Remark 1.1. Notice that the meaning of W ′ differs from the one used in [17]: Keller used
W ′ for int(W), which we denote as W .
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Group homomorphisms. By [17, Lemma 1.2], there is a continuous surjective group
homomorphism

H ,H ∗ : H → H ∗

given by the unique continuous extension of the map 
(n) �→ 
∗(n) to H . In fact, the
following lemma provides a direct formula for H ,H ∗ (by the definition of B∗, for each b∗,
there exists b ∈ B such that b∗ | b).

LEMMA 1.2. Let h ∈ H . Then H ,H ∗(h)b∗ = hb mod b∗ for any b ∈ B and any b∗ ∈ B∗
such that b∗ | b. In particular, H ,H ∗(h)b = hb for any b ∈ B ∩ B∗.

Proof. Let (nk)k≥1 be such that limk→∞ 
(nk) = h. Fix b ∈ B. Then nk mod b = hb for
sufficiently large k ≥ 1. Therefore, nk mod b∗ = hb mod b∗ for any b∗ such that b∗ | b.
The assertion follows by the continuity of H ,H ∗ .

Moreover, it was shown in [17, Lemma 1.4] that

H ,H ∗(W) = W ∗ and H ,H ∗(H \ W) = H ∗ \ W ∗. (13)

It follows that

ϕ(h) = ϕ∗(H ,H ∗(h)). (14)

Indeed, ϕ∗(H ,H ∗(h))(n)=1 if and only if H ,H ∗(h) + 
∗(n)=H ,H ∗(h + 
(n))∈W ∗,
which is equivalent to h + 
(n) ∈ W due to (13).

More subshifts. We will also need:

Xϕ := ϕ(H)

and

[ϕ, ϕ] := {x ∈ {0, 1}Z : ϕ(h) ≤ x ≤ ϕ(h) for some h ∈ H }. (15)

The subshift Xϕ first appeared in [19] (under the name MG
W ) and was later studied in [14].

The set [ϕ, ϕ] that may not be a subshift (it is σ -invariant, but is not necessarily closed)
was introduced in [17]. If B is primitive, then ϕ(H) ⊆ [ϕ, ϕ] ⊆ Xϕ by [17, Theorem 1.1],
so in particular,

Xϕ = [ϕ, ϕ]. (16)

Moreover, if B is taut, then by [17, Corollary 1.2], we have

Xη = Xϕ = [ϕ, ϕ]. (17)

Similar notation to that in (15) will be used for sequences. Given w, x ∈ {0, 1}Z, we set

[w, x] := {σmy ∈ {0, 1}Z : w ≤ y ≤ x, m ∈ Z}.
Again, this may not be a subshift; one can consider its closure [w, x] if necessary.
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Remark 1.3. Let us comment here on the codomain of θ . Since θ is defined on whole Y, in
general, we cannot say much more than that θ(y) ∈ G. It was shown in [7, Remark 2.45]
that θ(Y ∩ X̃η) ⊆ H . However, this is not sufficient for us: we need to think of θ as of a
function from (at least) Y ∩ [ϕ, ϕ] to H. We will show that

θ(Y ∩ X̃ϕ) = θ(Y ∩ Xϕ) ⊆ H .

In the first equality, ‘⊇’ follows from X̃ϕ ⊇ Xϕ . For the converse inclusion, consider
y ∈ Y ∩ X̃ϕ and x ∈ Xϕ = ϕ(H) with y ≤ x. Notice that ϕ(H) ⊆ XB since supp ϕ(h)

misses the residue class −hb modulo b for each b ∈ B and XB is closed. Thus, supp x

misses at least one residue class for each b ∈ B. Due to y ∈ Y and y ≤ x, the support
of x misses exactly one residue class for each b, namely the same as supp y. This yields
θ(y) = θ(x) ∈ θ(Y ∩ Xϕ).

To see θ(Y ∩ Xϕ) ⊆ H , we fix b ∈ B and x ∈ Xϕ = ϕ(H). Then there exists a
sequence (ϕ(hn)) which converges to x, and (by definition) we have ϕ(hn)|−(hn)b+bZ = 0.
Since H is compact, we can assume that (hn) has a limit h ∈ H . In particular, there exists
n0 ∈ N with (hn)b = hb for all n ≥ n0. This yields ϕ(hn)|−hb+bZ = 0 for all n ≥ n0 and
thus x|−hb+bZ = 0. For x ∈ Y ∩ Xϕ , it follows that −hb is the unique residue class modulo
b that supp x misses. Since b ∈ B was arbitrary, we obtain θ(x) = h ∈ H .

1.2.4. Dynamical diagrams. The aim of this section is to introduce a certain language
related to diagrams involving dynamical systems and factoring maps between them. It
will allow us to summarize some of our results on diagrams, which, in turn, can help to
understand the structure of some more complicated proofs since the diagrams are easier
to ‘glue together’ than the assertions written in the form of sentences. We will use the
language of category theory. Namely, we consider the category where:
• the objects are triples of the form (X, T , PX), where (X, T ) is a topological dynamical

system and ∅ �= PX ⊆ P(X); if PX = P(X), we skip it and write (X, T ) instead of
(X, T , P(X));

• a morphism from (X, T , PX) to (Y , S, PY ) is a map f : (X, T , PX) → (Y , S, PY )

such that there exist X0 ⊆ X where X0 is T -invariant with μ(X0) = 1 for any μ ∈ PX,
f : X0 → Y , f∗(PX) ⊆ PY and S ◦ f = f ◦ T on X0.

Any graph whose vertices are the above-defined objects and whose arrows denote
morphisms is called a dynamical diagram.

Remark 1.4. We identify two morphisms f , g : (X, T , PX) → (Y , S, PY ), whenever f
and g agree on a subset X0 ⊆ X that is of full measure for every measure μ ∈ PX.

Definition 1.5. We define the composition of morphisms f : (X, T , PX) → (Y , S, PY )

and g : (Y , S, PY ) → (Z, R, PZ) as the composition g ◦ f . Notice that such a definition is
correct in view of Remark 1.4. Indeed, let f : X0 → Y and g : Y0 → Z, where μ(X0) = 1
for every μ ∈ PX and ν(Y0) = 1 for every ν ∈ PY . Then the composition g ◦ f is defined
on X0 ∩ f −1(Y0) and μ(X0 ∩ f −1(Y0)) = 1 for any μ ∈ PX.

Definition 1.6. We will say that a dynamical diagram commutes if for any choice of
(X, T , PX) and (Y , S, PY ) in this diagram, the composition of morphisms along any
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10 A. Dymek et al

path connecting (X, T , PX) with (Y , S, PY ) does not depend on the choice of the path,
including the trivial (zero) path.

Remark 1.7. In the definition of commutativity, we implicitly assume that our diagram
includes, for each vertex (X, T , PX), the identity map id : (X, T , PX) → (X, T , PX). To
increase the readability of the diagrams, we will skip the corresponding arrow in our
figures. Notice that this means in particular that whenever a dynamical diagram of the
form

(X, T , PX)
f

�
g

(Y , S, PY )

is commutative, then g ◦ f = idX a.e. with respect to any μ ∈ PX and f ◦ g = idY a.e.
with respect to any ν ∈ PY . Note that usually, diagrams with loops do not appear in the
context of commutative diagrams in category theory—they will however appear in the
present paper.

Remark 1.8. In a commutative diagram for any pair of its vertices (X, T , PX), (Y , S, PY ),
there is at most one morphism f : (X, T , PX) → (Y , S, PY ). Notice also that any linear
dynamical diagram is automatically commutative (by a linear diagram, we mean any
diagram whose underlying undirected graph consists of vertices arranged in a line). The
same applies to any dynamical diagram that is of the form of a directed tree (a graph whose
underlying undirected graph is a tree, that is, a connected acyclic undirected graph).

Definition 1.9. We will say that a morphism f : (X, T , PX) → (Y , S, PY ) is surjective if
f∗(PX) = PY . We will say that a dynamical diagram is surjective if every morphism in

this diagram is surjective. If (X, T , PX)
f−→ (Y , S, PY ) is surjective, we will sometimes

just say that (the morphism) f is surjective. Notice that this notion is not the same as the
surjectivity of the map f : X → Y .

Remark 1.10. (Cf. Remark 1.7) Any commutative dynamical diagram that is a loop is
automatically surjective. For example, if

(X, T , PX)
f

�
g

(Y , S, PY )

is a commutative dynamical diagram, then it is surjective. Indeed, PX = id∗(PX) =
g∗(f∗(PX)) ⊆ g∗(PY ) ⊆ PX, so, in fact, PX = g∗(PY ). By the same token, PY = f∗(PX).

Example 1.11
(1) Suppose that B ⊆ N is taut. Then νη ∈ P(Xη ∩ Y ) by [7, Theorem H], so P(Xη ∩

Y ) �= ∅. Thus,

(Xη ∩ Y , σ)
θ−→ (H , R)

ϕ−→ (Xη, σ)

is a dynamical diagram. Its subdiagram (Xη ∩ Y , σ)
θ−→ (H , R) is surjective (by the

unique ergodicity of (H , R), we have θ∗(ν) = mH ∈ P(H) for any ν ∈ P(Xη ∩ Y )),
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while (H , R)
ϕ−→ (Xη, σ) is not surjective unless Xη is uniquely ergodic (cf.

Corollary G in §1.3.1).
(2) The dynamical diagram

({0, 1}Z, σ)
σ

�
σ

({0, 1}Z, σ)

does not commute: indeed, σ ◦ σ �= id (except at the four fixed points of σ 2).
Notice, however, that if we equip each vertex with ∅ �= P ⊆ {δ0, 1

2 (δ...10101... +
δ...01010...), δ1}), then

({0, 1}Z, σ , P)
σ

�
σ

({0, 1}Z, σ , P)

becomes a commutative dynamical diagram (and thus it is surjective by
Remark 1.10).

(3) If B ⊆ N is taut, then

(Xη, σ , {νη})
ϕ−1

�
ϕ

(H , R)

is a commutative dynamical diagram (and thus it is surjective by Remark 1.10).
Indeed, ϕ : (H , R, mH ) → (Xη, σ , νη) is a measure-theoretic isomorphism, see [9]
for the Erdős case and [7, Theorem F] for the taut case. The map ϕ−1 can be replaced
with θ (recall that for taut B, we have νη(Xη ∩ Y ) = 1, so θ is well defined νη-a.e.
on Xη).

(4) The diagram

(({0, 1}Z)2, σ×2, {νη ∨ κ : κ ∈ P({0, 1}Z)}) M−→ (X̃η, σ)

is clearly a dynamical diagram (as M ◦ (σ × σ) = σ ◦ M everywhere). It is linear,
hence commutative. Moreover, it is surjective by (6).

1.3. Summary. In this section, we present our main results. They are divided into three
groups:
• results about invariant measures;
• combinatorial results related to the notion of tautness;
• entropy results.
We also discuss how to interpret some of them in terms of dynamical diagrams and indicate
the main steps in their proofs.

1.3.1. Main results: invariant measures. In [17], Keller formulated a conjecture on the
form of P(Xη). Let us restate it using our notation.

Conjecture 1. [17, Conjecture 1] Let B ⊆ N be such that η∗ is a regular Toeplitz sequence.
Then for any ν ∈ P(Xϕ), there exists ρ ∈ P(H × {0, 1}Z, R × σ) such that for any
measurable A ⊆ Xϕ ,

ν(A) =
∫

H×{0,1}Z
1A(ϕ(h) + x · (ϕ(h) − ϕ(h))) dρ(h, x).
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In other words, for each ν ∈ P(Xϕ), we have ν = (MH )∗(ρ) for some ρ ∈ P(H × {0, 1}Z,
R × σ), where MH : H × {0, 1}Z → [ϕ, ϕ] is given by

MH (h, x) = ϕ(h) + x · (ϕ(h) − ϕ(h)).

Notice that each ρ ∈ P(H × {0, 1}Z, R × σ) is a joining of mH with some measure
κ ∈ P({0, 1}Z), that is, ρ = mH ∨ κ . Our motivation for writing this paper was to prove
the above conjecture. In fact, we will prove not only that all σ -invariant measures on Xϕ are
of the form (MH )∗(mH ∨ κ), but also that the opposite inclusion holds and that P(Xη) =
P(Xϕ). Thus, we not only settle Keller’s conjecture, but also answer his question from
[17] about the existence of invariant measures supported on Xϕ \ Xη (there are no such
measures). The following theorem that captures all of this is our main result.

THEOREM A. For any B ⊆ N such that η∗ is a regular Toeplitz sequence, we have

P(Xη) = P(Xϕ) = {(MH )∗(mH ∨ κ) : κ ∈ P({0, 1}Z)}.
An auxiliary result, used to prove Theorem A, but also interesting on its own, is another

description of the set P(Xη) = P(Xϕ).

THEOREM B. (Cf. (6)) For any B ⊆ N such that η∗ is a regular Toeplitz sequence, we
have

P(Xη) = P(Xϕ) = {N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)},
where N : ({0, 1}Z)3 → {0, 1}Z is the map given by N(w, x, y) = w + y · (x − w) and
νη∗�νη is the joining of νη∗ with νη for which the pair (η∗, η) is quasi-generic along any
sequence (�i) realizing the lower density of MB.

Remark 1.12. Note that it is non-trivial that (η∗, η) is quasi-generic under σ × σ along
(�i) realizing the lower density of MB—this will be shown in course of the proof of
Theorem B. In fact, we will describe the limit measure, see Lemma 2.3. Notice also that
once a pair (x, y) ∈ {0, 1}Z is quasi-generic under σ × σ for some measure ρ, then ρ is
(σ × σ)-invariant. Moreover, x and y are quasi-generic (along the same subsequence) for
the marginals of ρ and thus, ρ is a joining of its marginals.

THEOREM C. (Cf. (7), recall also (11)) For any B ⊆ N such that η∗ is a regular Toeplitz
sequence, we have P(Xη) = P(Xη′).

1.3.2. Main results: tautness and combinatorics

PROPOSITION D. (Cf. (8)) Let B ⊆ N. Suppose that C ⊆ N is taut. Then the following
are equivalent:
(a) (∀b∈B ∃c∈C c | b) and

(∀c∈C ∃b∗∈B∗b∗ | c);
(b) η∗ ≤ ηC ≤ η;
(c) XηC ⊆ Xη;
(d) ηC ∈ Xη;

(a′) (∀b′∈B′∃c∈C c | b′) and
(∀c∈C ∃b∗∈B∗ b∗ | c);

(b′) η∗ ≤ ηC ≤ η′;
(c′) XηC ⊆ Xη′;
(d′) ηC ∈ Xη′;
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(e) νηC ∈ P(Xη);
(f) P(XηC) ⊆ P(Xη);

(e′) νηC ∈ P(Xη′);
(f′) P(XηC) ⊆ P(Xη′).

Given B ⊆ N, let

T aut (B) := {C ⊆ N : C is taut and XηC ⊆ Xη}.
Consider the following partial order ≺ on T aut (B):

C1 ≺ C2 ⇐⇒ XηC1
⊆ XηC2

.

Clearly, B′, B∗ ∈ T aut (B). Moreover, B∗ is the smallest element of T aut (B). Indeed,
if C ∈ T aut (B), then Xη∗ ⊆ XηC since Xη∗ is the unique minimal subset of Xη. As an
immediate consequence of Proposition D (more precisely, by (c) ⇐⇒ (c′)), we obtain the
following.

COROLLARY E. For any B ⊆ N, B′ is the largest element of T aut (B) with respect to ≺.

1.3.3. Main results: entropy. Last, but not least, we prove some results on the entropy
of B-free systems.

THEOREM F. (Cf. (3)) For any B ⊆ N, we have h(Xη) ≥ d − d
∗
, where d = d(FB) and

d
∗ = d(FB∗). If additionally Xη∗ is uniquely ergodic (in particular, if η∗ is a regular

Toeplitz sequence), then h(Xη) = d − d∗, where d∗ = d(FB∗).

COROLLARY G. (Cf. (5)) For any B ⊆ N such that η∗ is a regular Toeplitz sequence, we
have

h(Xη) = 0 ⇐⇒ P(Xη) = {νη} ⇐⇒ Xη is uniquely ergodic

(note that if the above holds, then νη = νη∗).

Remark 1.13. In Corollary G, the second equivalence is true without any assumption on
η∗. It seems open whether there exists B such that η∗ is an irregular Toeplitz sequence
with h(Xη) = 0 and P(Xη) being not a singleton, cf. Remark 1.14 below.

THEOREM H. (Cf. (2) and (4)) For any B ⊆ N such that η∗ is a regular Toeplitz
sequence, the subshift Xη is intrinsically ergodic. The measure of maximal entropy equals
N∗((νη∗�νη) ⊗ B1/2,1/2).

THEOREM I. (Cf. (9)) For any B ⊆ N such that η∗ is a regular Toeplitz sequence, the
ergodic measures are entropy-dense in P(Xη).

1.3.4. Dynamical diagrams viewpoint. In this section, we present a dynamical diagrams
viewpoint on Theorems B, C, A and H. The first three of these results can be formulated
in terms of dynamical diagrams and the structure of the proofs also relies on this notion.
As for Theorem H, the dynamical diagrams serve as a tool in the proof.
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On Theorems B and C. These two results can be proved separately (Theorem C is then
a consequence of Theorem B); however, there is a nice way to treat them together, which
has the additional advantage of slightly shortening the proofs. Recall that by (11), (16) and
(17), we have

[ϕ′, ϕ′] = Xϕ′ = Xη′ ⊆ Xη ⊆ Xϕ = [ϕ, ϕ].

Moreover, under the extra assumption that η∗ is a regular Toeplitz sequence, by
[17, Remark 1.4] and observing (12), we have

P(Xϕ) = P([ϕ, ϕ]) and P(Xϕ′) = P([ϕ′, ϕ′]). (18)

Remark 1.14. The first equality in (18) is actually the main reason for the extra assumption
on η∗ in Keller’s conjecture from [17] (see Remark 1.4 therein). In fact, this goes deeper.
If η∗ is a regular Toeplitz sequence, then P(Xη∗) = {νη∗}, while when we drop the
assumption on η∗, various things can happen to P(Xη∗): it can be a singleton consisting
only of νη∗ , see [18, Theorem 2] (even if η∗ is an irregular Toeplitz sequence!), but
it can also contain some positive entropy measure, see [18, Theorem 1]. Thus, since
Xη∗ ⊆ Xη, we cannot expect to obtain a consistent description of P(Xη) without imposing
any restrictions on η∗. We will use the fact that the Toeplitz sequence η∗ is regular very
frequently in our proofs.

Continuing our argument from (18), we obtain for a regular Toeplitz sequences η∗ that

P([ϕ′, ϕ′]) = P([ϕ′, ϕ′]) = P(Xϕ′) = P(Xη′)

⊆ P(Xη) ⊆ P(Xϕ) = P([ϕ, ϕ]) = P([ϕ, ϕ]). (19)

Therefore, the assertions of Theorems B and C are equivalent to the following two
inclusions:

P([ϕ, ϕ]) ⊆ {N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)} ⊆ P(Xϕ′). (20)

Consider the following diagram:

(({0, 1}Z)3, σ×3, {(νη∗�νη) ∨ κ : κ ∈ P({0, 1}Z)})

([ϕ, ϕ], σ)

(Xϕ′ , σ)

N

id

(DB,C)

and notice that the assertions of Theorems B and C are equivalent to (DB,C) being a
surjective commutative dynamical diagram. Indeed:
• (DB,C) is a dynamical diagram if and only if the maps N and id are morphisms, which

implies the second inclusion in (20) holds.
Notice that by (19), the map id is a morphism if and only if P([ϕ, ϕ]) = P(Xϕ′). Therefore,
id is then automatically surjective.
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• (DB,C) is in addition surjective if and only if the morphism N is surjective, which
implies the first inclusion in equation (20) holds.

Moreover, if both inclusions in (20) hold, then by (19), we obtain the equality
{N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)} = P([ϕ, ϕ]) = P(Xϕ′), which implies that N and
id are surjective morphisms.

On Theorem A. Having proved Theorem B first, to prove Theorem A, we will only need
to show that

{N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)} = {(MH )∗(mH ∨ κ) : κ ∈ P({0, 1}Z)}.

Let ϕ ⊗ ϕ : H → ({0, 1}Z)2 and (ϕ ⊗ ϕ)(h) = (ϕ(h), ϕ(h)). Consider the following
diagram:

(H × {0, 1}Z, R × σ)

(({0, 1}Z)3, σ×3, {(νη∗�νη) ∨ κ : κ ∈ P({0, 1}Z)})

(Xη, σ)

MH

(ϕ ⊗ ϕ) × id

N

(DA)

Then:
• if (DA) is a commutative diagram, then

{(MH )∗(mH ∨ κ) : κ ∈ P({0, 1}Z)} ⊆ {N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)}

(indeed, by the commutativity, ‘travelling’ via MH is the same as ‘travelling’ first via
(ϕ ⊗ ϕ) × id and then via N);

• if (DA) is surjective, then

{N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)} ⊆ {(MH )∗(mH ∨ κ) : κ ∈ P({0, 1}Z)}

(indeed, we can travel up from N∗((νη∗�νη) ∨ κ) to (νη∗�νη) ∨ κ via N, then again
up by (ϕ ⊗ ϕ) × id, that is, use the surjectivity of (ϕ ⊗ ϕ) × id and finally use that
MH = N ◦ ((ϕ ⊗ ϕ) × id) as (DA) commutes).

In other words, the assertion of Theorem A follows from Theorem B and the commutativity
and the surjectivity of (DA).
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In fact, Theorems A, B and C can be summarized using a single diagram, namely:

(H × {0, 1}Z, R × σ)

(({0, 1}Z)3, σ×3, {(νη∗�νη) ∨ κ : κ ∈ P({0, 1}Z)})

([ϕ, ϕ], σ)

(Xϕ′ , σ)

(ϕ ⊗ ϕ) × id

N

id

MH

Notice that if we prove that the above diagram is a commutative and surjective dynamical
diagram, then indeed we get:
• P(Xϕ′) = P(Xη′) = P(Xη) = P([ϕ, ϕ]);
• P(Xη) = {N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)}

= {(MH )∗(mH ∨ κ) : κ ∈ P({0, 1}Z)}.

On Theorem H. The main idea of the proof of Theorem H is to equip the diagram

(H × {0, 1}Z, R × σ)
MH−−→ (Xη, σ)

(which is surjective by Theorem A) with an ‘intermediate’ vertex:

(H × {0, 1}Z, R × σ)
�−→ (H × {0, 1}Z, R̃)

�−→ (Xη, σ),

where R̃ is a certain skew product over R : H → H and the maps � and � are morphisms
defined later. We prove then that h(H × {0, 1}Z, R̃) = d − d∗ (which equals to h(Xη)

by Theorem F) and prove the intrinsic ergodicity of (H × {0, 1}Z, R̃). For the details,
see §4.2.

2. Invariant measures
Before we begin working on the description of P(Xη), let us concentrate on Xη itself.
Keller [17] proved that for any taut set B, the subshift Xη is in a way ‘hereditary’. We
rephrase his result in the following way.

PROPOSITION 2.1. For any B ⊆ N, we have Xη ⊆ [η∗, η] ⊆ Xϕ . In particular, if B is
taut, Xη = [η∗, η] = Xϕ .

Proof. Clearly, ϕ(
(0)) = η ∈ [η∗, η]. Moreover, by [17, Corollary 1.4], we have
η∗ = ϕ(
(0)). Thus, [η∗, η] ⊆ [ϕ, ϕ]. This yields

Xη ⊆ [η∗, η] ⊆ [ϕ, ϕ] = Xϕ .

By [17, Corollary 1.2], if B is taut, we have Xη = Xϕ , which completes the proof.
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2.1. Proof of Theorems B and C

2.1.1. (DB,C) is a (commutative) dynamical diagram. We will need a certain lemma from
[2] about ‘lifting’ quasi-generic points to joinings. We formulate it here for Z-actions,
while the original version is more general (the result is true for actions of countable
cancellative semigroups and arbitrary Følner sequences).

THEOREM 2.2. [2, Theorem 5.16] Let A1, A2 be finite alphabets. If x ∈ AZ

1 is
quasi-generic for ν along (�i) and ν ∨ κ ∈ P(AZ

1 × AZ

2 , σ × σ), then there exists y ∈ AZ

2
such that the pair (x, y) is quasi-generic for ν ∨ κ along some subsequence of (�i).

Let (�i) be a sequence realizing the lower density of MB and suppose that Xη∗ is
uniquely ergodic (in particular, this happens if η∗ is a regular Toeplitz sequence). If the
pair (η∗, η) is quasi-generic along a subsequence (�ij ) of (�i) for some measure, then this
limit measure must be a joining of νη∗ and νη. In fact, we have the following lemma which
we will prove in a moment.

LEMMA 2.3. Let B ⊆ N be such that Xη∗ is uniquely ergodic. Let (�i) be any sequence
realizing the lower density of MB. Then the point (η∗, η) is quasi-generic along (�i) for
(ϕ ⊗ ϕ)∗(mH ).

Remark 2.4. Instead of (ϕ ⊗ ϕ)∗(mH ), we will usually write νη∗�νη. In this subsection,
we will only use that (η∗, η) is quasi-generic along (�i), while the specific form of the limit
measure will be used later. Let us justify here our notation νη∗�νη and show that this is a
certain off-diagonal joining with marginals νη∗ and νη. Indeed, by (14), we have

νη∗�νη = ((ϕ∗ ◦ H ,H ∗) ⊗ ϕ)∗(mH ).

Notice that

S := ϕ∗ ◦ H ,H ∗ ◦ ϕ−1 : ({0, 1}Z, σ , νη) → ({0, 1}Z, σ , νη∗)

is a factoring map. Moreover, for any measurable sets A, B ⊆ {0, 1}Z, we have

�S(A × B) = νη((ϕ
∗ ◦ H ,H ∗ ◦ ϕ−1)−1(A) ∩ B)

= mH ((ϕ∗ ◦ H ,H ∗)−1(A) ∩ ϕ−1(B)) = ((ϕ∗ ◦ H ,H ∗) ⊗ ϕ)∗(mH )(A × B)

= νη∗�νη(A × B).

Recall also that it was shown in [7] that

η and η′ differ along (�i)i≥1 on a subset of zero density, (21)

where (�i)i≥1 is any sequence realizing the lower density of MB′ . Moreover (see the proof
of [7, Lemma 4.11]), any sequence (�i) realizing the lower density of MB′ is also realizing
the lower density of MB. For any such (�i)i≥1, also

(η∗, η′) is quasi-generic for νη∗�νη along (�i), (22)

whenever Xη∗ is uniquely ergodic.
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Let us now prove that (DB,C) is indeed a dynamical diagram (and since it is linear, it is
then commutative by Remark 1.8). Notice that it suffices to show that for any measure of
the form N∗(ρ), where ρ = (νη∗�νη) ∨ κ with κ ∈ P({0, 1}Z), we have N∗(ρ)(Xϕ′) = 1.
To see that this is indeed the case, fix such a measure ρ. It follows by Theorem 2.2 and by
(22) that ρ has a quasi-generic point of the form (η∗, η′, y) with y ∈ {0, 1}Z. Therefore,
z := N(η∗, η′, y) is quasi-generic for N∗(ρ) and thus N∗(ρ)(Xz) = 1. It remains to notice
that η∗ ≤ z ≤ η′. Thus,

Xz ⊆ [η∗, η′] = Xϕ′ ,

where the last equality follows from Proposition 2.1.

Proof of Lemma 2.3. Fix (�i) which realizes the lower density of MB. By a pure measure
theory argument (see the proof of [9, Theorem 4.1]), we only need to prove that

1
�i

∑
n≤�i

δ(σnϕ(
(0)),σnϕ(
(0)))(A × A) → (ϕ ⊗ ϕ)∗(mH )(A × A)

for

A = {x ∈ {0, 1}Z : x|S ≡ 0} and A = {x ∈ {0, 1}Z : x|S ≡ 0},
with S, S ⊆ Z being arbitrary finite sets. By σ ◦ ϕ = ϕ ◦ R and σ ◦ ϕ = ϕ ◦ R, this is
equivalent to proving that

lim
i→∞

1
�i

∑
n≤�i

1ϕ−1(A)×ϕ−1(A)(R
n(
(0)), Rn(
(0))) = (ϕ ⊗ ϕ)∗(mH )(A × A).

The main underlying idea is to approximate ϕ−1(A) and ϕ−1(A) by clopen sets, so that we
can use the ergodicity properties of rotations. We will begin with the right-hand side, as it
is easier (the approximation of the left-hand side requires the use of the Davenport–Erdős
theorem, i.e. (1)).

Approximation of the right-hand side. We have

C := ϕ−1(A) =
⋂
s∈S

R−sWc.

Let, for K ≥ 1,

WK := {h ∈ H : hb �= 0 for all b ∈ BK}.
Let

CK :=
⋂
s∈S

R−sWc
K . (23)

Each WK is clopen and WK ↘ W when K → ∞. Thus, given ε > 0, for K large enough,
we have

mH (C�CK) < ε. (24)
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Recall from (14) that ϕ = ϕ∗ ◦ H ,H ∗ and let

C :=ϕ−1(A)=−1
H ,H ∗((ϕ∗)−1(A))=−1

H ,H ∗
⋂
s∈S

(R∗)−s(W ∗)c =
⋂
s∈S

−1
H ,H ∗(R∗)−s(W ∗)c.

Define W ∗
K in a similar way as WK :

W ∗
K = {h∗ ∈ H ∗ : h∗

b∗ �= 0 for all b∗ ∈ B∗
K}.

Finally, let

CK :=
⋂
s∈S

−1
H ,H ∗(R∗)−s(W ∗

K)c. (25)

Then, for K large enough,

mH (C�CK) < ε. (26)

Notice that

(ϕ ⊗ ϕ)∗(mH )(A × A) = mH (ϕ−1(A) ∩ ϕ−1(A)) = mH (C ∩ C).

Thus, it follows by (24) and (26) that

|(ϕ ⊗ ϕ)∗(mH )(A × A) − mH (CK ∩ CK)| ≤ 2ε

for K sufficiently large.
Approximation of the left-hand side. Let (�i)i≥1 be a sequence realizing the lower

density of MB. By definition,

1
�i

∑
n≤�i

1A×A(ϕ(Rn(
(0))), ϕ(Rn(
(0)))) = 1
�i

∑
n≤�i

1C(Rn(
(0)))1C(Rn(
(0))).

Moreover, for K large enough,

lim
i→∞

∣∣∣∣ 1
�i

∑
n≤�i

1C(Rn(
(0)))1C(Rn(
(0))) − 1
�i

∑
n≤�i

1C(Rn(
(0)))1CK
(Rn(
(0)))

∣∣∣∣
≤ lim

i→∞
1
�i

∑
n≤�i

1C\CK
(Rn(
(0))) ≤ lim

i→∞
∑
s∈S

1
�i

∑
n≤�i

1Wc\Wc
K
(Rn+s(
(0)))

= |S| · lim
i→∞

1
�i

∑
n≤�i

1Wc\Wc
K
(Rn(
(0))) = |S| · lim

i→∞
1
�i

|[1, �i] ∩ (MB \ MBK
)| < ε,

where the second inequality follows from

C \ CK ⊆
⋃
s∈S

R−s(Wc \ Wc
K),

the last equality from

Rn(
(0)) ∈ Wc \ Wc
K ⇐⇒ n ∈ MB \ MBK

https://doi.org/10.1017/etds.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.7


20 A. Dymek et al

and the last inequality is a consequence of the Davenport–Erdős theorem (i.e. (1))—we
use that (�i)i≥1 is a specific sequence and that K is large only for this last inequality.

We will now use similar arguments for CK and CK instead of C and C. We have

lim
i→∞

∣∣∣∣ 1
�i

∑
n≤�i

1C(Rn(
(0)))1CK
(Rn(
(0))) − 1

�i

∑
n≤�i

1CK
(Rn(
(0)))1CK

(Rn(
(0)))

∣∣∣∣
≤ lim

k→∞
1
�i

∑
n≤�i

1C\CK
(Rn(
(0)))

≤ |S| · lim
i→∞

1
�i

∑
n≤�i

1
−1

H ,H∗ ((W ∗)c\(W ∗
K)c)

(Rn(
(0)))

= |S| · lim
i→∞

1
�i

∑
n≤�i

1(W ∗)c\(W ∗
K)c ((R

∗)n(
∗(0)))

= |S| · d(MB∗ \ MB∗
K
) < ε,

where in the second inequality, we used

C \ CK ⊆
⋃
s∈S

R−s−1
H ,H ∗((W ∗)c \ (W ∗

K)c),

the first equality follows from H ,H ∗(Rn
(0)) = (R∗)nH ,H ∗(
(0)) = (R∗)n(
∗(0)),
the second equality is a consequence of

(R∗)n(
∗(0)) ∈ (W ∗)c \ (W ∗
K)c ⇐⇒ n ∈ MB∗ \ MB∗

K

and the last inequality follows by (1), i.e. the Davenport–Erdős theorem (notice that we use
here that Xη∗ is uniquely ergodic, so, in particular, B∗ is Besicovitch and thus the density
of MB∗ along (�i) is just its natural density).

Convergence for clopen sets. After the above reductions, it remains to prove that

lim
i→∞

1
�i

∑
n≤�i

1CK
(Rn(
(0)))1CK

(Rn(
(0))) = mH (CK ∩ CK).

However, both CK and CK are clopen (recall (23) and (25)) and thus the claim follows
directly by the unique ergodicity of R.

2.1.2. (DB,C) is surjective. This part of the proof relies mostly on certain natural periodic
approximations of η and η∗. More precisely, we will need a periodic approximation of η

from above and of η∗ from below.
For each K ≥ 1, we set BK := {b ∈ B : b ≤ K} and B∗

K = {b∗ ∈ B∗ : b∗ ≤ K}. We
define ϕK : H → {0, 1}Z by

ϕK(h)(n) = 1 ⇐⇒ (Rnh)b �= 0 for all b ∈ BK .
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Recall that there is a continuous group homomorphism H ,H ∗ : H → H ∗ with
ϕ(h) = ϕ∗(H ,H ∗(h)), see (14). We define ϕ

K
: H → {0, 1}Z by

ϕ
K

(h)(n) =
{

ϕ(h)(n) if n ∈ Per(ϕ(h), lcm(B∗
K)),

0 otherwise,

=
{

1 if n ∈ Per(ϕ∗(H ,H ∗(h)), 1, lcm(B∗
K)),

0 otherwise.

Note that for every h ∈ H , we have

ϕ
K

(h) ≤ ϕ(h) ≤ ϕ(h) ≤ ϕK(h). (27)

LEMMA 2.5. For any K ≥ 1, the functions ϕK and ϕ
K

depend on a finite number of
coordinates. In particular, they are continuous.

Proof. For ϕK , the assertion is clear by the very definition. Let us now turn to ϕ
K

. To
shorten notation, we will write h∗ = H ,H ∗(h) and s∗ = lcm(B∗

K). We will show that
Per(ϕ∗(h∗

1), 1, s∗) = Per(ϕ∗(h∗
2), 1, s∗) whenever h∗

1 and h∗
2 agree on B∗

K . Since there
exists L ∈ N such that every b∗ ∈ B∗

K divides some b ∈ BL, by Lemma 1.2, it then follows
that ϕ

K
(h) is determined by (hb)b∈BL

. To see that Per(ϕ∗(h∗), 1, s∗) depends only on
B∗

K , take h∗
1, h∗

2 ∈ H ∗ = 
∗(Z) with (h∗
2 − h∗

1)b∗ = 0 for all b∗ ∈ B∗
K . Then there exists

a sequence (nk) with 
∗(nk) → h∗
2 − h∗

1 and lcm(B∗
K) = s∗ | nk . We notice that

Per(ϕ∗(h∗
1 + 
∗(nk)), 1, s∗) = Per(σnkϕ∗(h∗

1), 1, s∗) = Per(ϕ∗(h∗
1), 1, s∗) − nk

= Per(ϕ∗(h∗
1), 1, s∗),

since Per(ϕ∗(h∗
1), 1, s∗) is an s∗-periodic set. In particular, for every j ∈Per(ϕ∗(h∗

1), 1, s∗),
we get ϕ∗(h∗

1 + 
∗(nk))(j) = 1 for all k. Since h∗
1 + 
∗(nk) converges to h∗

2,
and ϕ∗ is coordinatewise upper semicontinuous, this yields ϕ∗(h∗

2)(j) = 1 for all
j ∈ Per(ϕ∗(h∗

1), 1, s∗) and hence Per(ϕ∗(h∗
1), 1, s∗) ⊆ Per(ϕ∗(h∗

2), 1, s∗). By the
symmetry between h∗

1 and h∗
2, the converse inclusion follows from the same argument,

thus proving the claim.

Similar to [ϕ, ϕ], we define [ϕ
K

, ϕK ] := {x ∈ {0, 1}Z : ϕ
K

(h) ≤ x ≤ ϕK(h) for some
h ∈ H }.
LEMMA 2.6. The set [ϕ

K
, ϕK ] ⊆ {0, 1}Z is a subshift.

Proof. That [ϕ
K

, ϕK ] is closed follows immediately from the continuity of ϕK and ϕ
K

.
In addition, it is σ -invariant as

ϕK ◦ R = σ ◦ ϕK and ϕ
K

◦ R = σ ◦ ϕ
K

.

Indeed, the first equality holds as ϕK is a coding of orbits of points in H with respect to
{h ∈ H : hb �= 0 for all b ∈ BK}. The second equality follows from the definition of ϕ

K
in

terms of ϕ, the equality ϕ ◦ R =σ ◦ ϕ (since ϕ is a coding) and Per(σx, s)= Per(x, s)−1
for x in the orbit closure of a Toeplitz sequence.
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We set ηK := ϕK(
(0)) = 1FBK
and η

K
:= ϕ

K
(
(0)). Then η

K
≤ η∗ ≤ η ≤ ηK

(this is a special case of (27) for h = 
(0)).

LEMMA 2.7. Let B ⊆ N and suppose that η∗ is a regular Toeplitz sequence. Let (�i) be a
sequence realizing the lower density of MB. Then

lim
K→∞ d(�i )({n ∈ N : (η

K
(n), ηK(n)) �= (η∗(n), η(n))}) = 0.

Proof. It suffices to notice that

lim
K→∞ d(�i )({n ∈ N : ηK(n) �= η(n)}) = 0

and

lim
K→∞ d(�i )({n ∈ N : η

K
(n) �= η∗(n)}) = 0.

The first assertion follows by the Davenport–Erdős theorem (that is, by (1)). For the second,
notice that η

K
(n) �= η∗(n) implies that n �∈ Per(η∗, lcm(B∗

K)). Thus,

lim
K→∞ d({n ∈ N : η

K
(n) �= η∗(n)}) ≤ lim

K→∞ d(Z \ Per(η∗, lcm(B∗
K))) = 0 (28)

as η∗ is a regular Toeplitz sequence, cf. (10).

We will also need the following well-known fact related to quasi-generic points and
the corresponding invariant measures (we skip its proof and refer the reader e.g. to [28,
Appendix C], see also [27]).

PROPOSITION 2.8. Let A be a finite alphabet and suppose that (�i) ⊆ N is an increasing
sequence and that xK ∈ AZ for K ≥ 1 and x ∈ AZ are such that

lim
K→∞ d(�i )({n ∈ N : xK(n) �= x(n)}) = 0.

Suppose additionally that xK , K ≥ 1, and x are quasi-generic along (�i) for measures νK ,
K ≥ 1, and ν, respectively. Then νK → ν in the weak topology.

Last but not least, we will need the following result to pass from the description of
ergodic measures to that of all invariant measures on Xη.

PROPOSITION 2.9. Suppose that for a subshift X ⊆ {0, 1}Z, we have Pe(X) ⊆
{N∗((νη∗�νη) ∨ κ) : κ ∈P({0, 1}Z)}. Then P(X)⊆{N∗((νη∗�νη) ∨ κ) : κ ∈P({0, 1}Z)}.

We skip the proof—it is a repetition (with obvious changes such as replacing the map M
by N and the Mirsky measure νη by the joining νη∗�νη) of the proof of an analogous part
of [28, Theorem 4.1.23] (more specifically, see p. 66 therein). The main tool there is the
ergodic decomposition and the Arsenin–Kunungui theorem on measurable selection (see,
e.g. [15, Theorem 18.18]). A more general result (with a shorter proof) will be published
in [25].
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Now, fix ν ∈ Pe([ϕ, ϕ]) = Pe([ϕ, ϕ]), see (18). Since ν is ergodic, since [ϕ, ϕ] ⊆
[ϕ

K
, ϕK ] and the latter set is a subshift by Lemma 2.6, there exists a generic point

uK ∈ [ϕ
K

, ϕK ] for ν. Without loss of generality, we can assume

η
K

≤ uK ≤ ηK .

(Indeed, since uK ∈ [ϕ
K

, ϕK ], there exists h ∈ H with ϕ
K

(h) ≤ uK ≤ ϕK(h). If j ∈ N

is such that hb + j = 0 mod b for all b in a sufficiently large, finite subset of B, then
Lemma 2.5 shows ϕ

K
(
(0)) ≤ σ juK ≤ ϕK(
(0)), where σ juK is generic for ν.) Thus,

there exits yK ∈ {0, 1}Z such that uK = N(η
K

, ηK , yK). Notice that (η
K

, ηK , yK) is
quasi-generic for some measure ρK . Using the periodicity of η

K
and ηK , we hence obtain

that (η
K

, ηK) is generic for (π1,2)∗(ρK). In addition, (η∗, η) is quasi-generic along (�i)

for νη∗�νη by (21) and (22). Thus, Proposition 2.8 and Lemma 2.7 yield

(π1,2)∗(ρK) → νη∗�νη.

If ρ is a limit of ρK , it follows that (π1,2)∗(ρ) = νη∗�νη, so ρ is of the form
ρ = (νη∗�νη) ∨ κ for some κ ∈ P({0, 1}Z). Finally, since (η

K
, ηK , yK) is quasi-generic

for ρK , it follows that uK = N(η
K

, ηK , yK) is quasi-generic for N∗(ρK). However,
by assumption, uK is also generic for ν, which yields ν = N∗(ρK) for all K ∈ N,
and thus ν = N∗(ρ) ∈ {N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)}. This proves Pe([ϕ, ϕ]) ⊆
{N∗((νη∗�νη) ∨ κ) : κ ∈ P({0, 1}Z)}. To complete the proof of the surjectivity of DB,C,
we use Proposition 2.9.

2.2. Proof of Theorem A.

2.2.1. (DA) is a commutative dynamical diagram. The proof that (DA) is a commutative
dynamical diagram uses two ingredients. The first of them is that the following is a
dynamical diagram:

(H × {0, 1}Z, R × σ)

(({0, 1}Z)3, σ×3, {(νη∗�νη) ∨ κ : κ ∈ P({0, 1}Z)})
(ϕ ⊗ ϕ) × id

which is a consequence of Lemma 2.3.
The second ingredient that we need to prove the commutativity of (DA) is the following

equality (that holds everywhere):

N ◦ ((ϕ ⊗ ϕ) × id) = MH ,

which can be checked in a direct one-line calculation.

2.2.2. (DA) is surjective. Recall that by (19) and by the surjectivity of (DB,C), the
diagram
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(({0, 1}Z)3, σ×3, {(νη∗�νη) ∨ κ : κ ∈ P({0, 1}Z)})

(Xη, σ)

N

is surjective. Thus (using also the commutativity of (DA)), to prove the surjectivity of (DA),
it suffices to prove that

(H × {0, 1}Z, R × σ)

(({0, 1}Z)3, σ×3, {(νη∗�νη) ∨ κ : κ ∈ P({0, 1}Z)})
(ϕ ⊗ ϕ) × id (29)

is surjective. However, by Lemma 2.3 (cf. Remark 2.4), (({0, 1}Z)2, σ×2, νη∗�νη) is a
factor of (H , R, mH ) via ϕ ⊗ ϕ, so given any joining (νη∗�νη) ∨ κ , it suffices to take
its relatively independent extension to a joining of mH with κ to conclude that (29) is
surjective.

3. Tautness and combinatorics
Proof of Proposition D. We first show that the conditions (a′)–(f′) are all equivalent. We
then pass to proving that, in fact, they are also equivalent to each of conditions (a)–(f).

Note that the implications (d′) �⇒ (c′) �⇒ (f′) �⇒ (e′) are immediate. Next
we show (e′) �⇒ (a′). It was shown in [16] that for taut sets, the corresponding
Mirsky measure is of full support in the corresponding B-free subshift. Applying this
to C, we conclude that each block that appears on XηC is of positive νηC-measure.
Thus, it follows from condition (e′) that XηC ⊆ Xη′ , and hence X̃ηC ⊆ X̃η′ . Using
(8), we obtain that ∀b′∈B′∃c∈C c | b′. Moreover XηC ⊆ Xη implies Xη∗ ⊆ XηC , since
Xη∗ is the unique minimal subset of Xη. This yields X̃η∗ ⊆ X̃ηC . Using (8) again, we
obtain that ∀c∈C ∃b∗∈B∗ b∗ | c, which proves condition (a′). Next we note that (a′) �⇒
(b′) by the very definition of η′, ηC and η∗. To finish the first part, it only remains to notice
that by Proposition 2.1 and tautness of B′, it follows that Xη′ = [η∗, η′], which yields
(b′) �⇒ (d′).

Since the proof of (b′) �⇒ (d′) was the only place where we used the tautness
of B′, the same arguments as above show also that (d) �⇒ (c) �⇒ (f) �⇒
(e) �⇒ (a) �⇒ (b). We now prove (b) �⇒ (b′). As (b′) �⇒ (d′) was already shown,
and as (d′) �⇒ (d) follows directly from Xη′ ⊆ Xη, this will finish the proof. Thus,
suppose that ηC ≤ η. It follows then by (8) that νηC ∈ P(X̃η) = P(X̃η′). Applying again
(8), we obtain ηC ≤ η′, and hence condition (b′).

4. Entropy
4.1. Entropy of Xη: proof of Theorem F and of Corollary G

Remark 4.1. If Xη is uniquely ergodic, then the Mirsky measure νη (whose entropy is zero)
is the unique invariant measure and it follows immediately by the variational principle that
h(Xη) = 0.
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Proof of Theorem F. To show the inequality h(Xη) ≥ d − d
∗
, we first assume that

B is taut and consider the following block: B = η[1, n] ∈ {0, 1}n. Then B(�) = 0 for
any � ∈ MB ∩ [1, n] and B(�) = 1 for any � ∈ FB ∩ [1, n] (so, in particular, for any
� ∈ FB∗ ∩ [1, n]). It follows by Proposition 2.1 that any block C ∈ {0, 1}n that agrees
with B on the positions belonging to MB ∪ FB∗ also appears in Xη. There are

2n−|(MB∪FB∗ )∩[1,n]| = 2|FB∩[1,n]|−|FB∗∩[1,n]|

such blocks C (they are pairwise distinct). Thus,

2|FB∩[1,n]|−|FB∗∩[1,n]| ≤ pn(η).

It follows that

d − d
∗ = lim sup

n→∞
|FB ∩ [1, n]|

n
− lim sup

n→∞
|FB∗ ∩ [1, n]|

n

≤ lim sup
n→∞

|FB ∩ [1, n]| − |FB∗ ∩ [1, n]|
n

≤ lim
n→∞

log2 pn(η)

n
= h(Xη). (30)

For general (not necessarily taut) B, we apply (30) to the tautification B′. We use Xη′ ⊆
Xη, (B′)∗ = B∗ and d

′ = d (see (11), (12) and (21), respectively) to obtain

h(Xη) ≥ h(Xη′) ≥ d
′ − (d

′
)∗ = d − d

∗
.

Now, assume additionally that Xη∗ is uniquely ergodic. Fix K ≥ 1 and let
n ∈ (

∏
b∈BK

b)N. Since η∗ ≤ η ≤ ηK , it follows that

pn(η) ≤ pn([η∗, ηK ]).

For any block B ∈ {0, 1}n which appears in [η∗, ηK ], there exists M ∈ Z such that

η∗[M + 1, M + n] ≤ B ≤ ηK [M + 1, M + n].

Clearly, if η∗(M + �) = 1, then B(�) = 1 and there are

|supp η∗[M + 1, M + n]|
such ‘mandatory’ 1s on B coming from η∗. Moreover, if ηK(M + �) = 0, then also
B(�) = 0 and there are

n − |supp ηK [M + 1, M + n]|
such ‘mandatory’ 0s on B coming from ηK . All the other positions on B can be altered
arbitrarily, without loosing the property that B appears in [η∗, ηK ]. The number of such
‘free’ positions equals

|supp ηK [M + 1, M + n]| − |supp η∗[M + 1, M + n]|.
Each choice of 0s and 1s on the ‘free’ positions yields a different block of length n from
[η∗, ηK ]. Thus, for each choice of M, we obtain

2|supp ηK [M+1,M+n]|−|supp η∗[M+1,M+n]|
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blocks and it follows that

pn(η)≤pn([η∗, ηK ])≤pn(η
∗) ·pn(ηK) · 2supM∈Z(|supp ηK [M+1,M+n]|−|supp η∗[M+1,M+n]|).

(31)

Since ηK is lcm(BK)-periodic and lcm(BK) | n, we have

|supp ηK [M + 1, M + n]| = nd(FBK
). (32)

By the uniform ergodicity of Xη∗ , for any ε > 0 and for large enough n, we have

n(d∗ − ε) ≤ |supp η∗[M + 1, M + n]| ≤ n(d∗ + ε) (33)

for every M ∈ Z. Using (31), (32) and (33), we conclude that

pn(η) ≤ pn(η
∗) · pn(ηK) · 2nd(FBK

)−n(d∗−ε).

Hence,

h(Xη) ≤ h(Xη∗) + h(XηK
) + d(FBK

) − d∗.

By Remark 4.1, we have h(Xη∗) = 0 and h(XηK
) = 0 since ηK is periodic. Recall also

that by the Davenport–Erdős theorem (i.e. (1)), limK→∞ d(FBK
) = d . This yields

h(Xη) ≤ d − d∗,

which completes the proof of Theorem F.

For the proof of Corollary G, we will need the following lemma.

LEMMA 4.2. For any B ⊆ N such that η′ �= η∗, we have d > d
∗
.

Proof. Since d = d
′

:= d(FB′), we can assume without loss of generality that B is taut.
Let (�i) be a sequence realizing the lower density of MB∗ . It follows by the result of
Davenport and Erdős (that is, by (1)) that

d
∗ = d(FB∗) = lim

i→∞
1
�i

|FB∗ ∩ [1, �i]| = lim inf
i→∞

1
�i

|FB∗ ∩ [1, �i]|

≤ lim inf
i→∞

1
�i

|FB ∩ [1, �i]| ≤ lim sup
i→∞

1
�i

|FB ∩ [1, �i]| ≤ d(FB) = d .

If d = d
∗
, then all inequalities in the above formula become equalities. In particular,

lim
i→∞

1
�i

|FB ∩ [1, �i]| exists and equals d = d
∗
,

so that η is generic along (�i) for νη. Since η∗ ≤ η (by the construction of B∗), it follows
that (1/�i)|{n ∈ [1, �i] : η(n) �= η∗(n)}| → 0. Thus, since η∗ is generic along (�i) for νη∗ ,
it follows immediately that η has to be generic along (�i) for the very same measure,
that is, νη∗ . However, we know that the Mirsky measure νη is the unique measure of
maximal density, that is, the invariant measure of the greatest value for the cylinder
{x ∈ Xη : x(0) = 1}, in each B-free subshift (see, e.g. [19, Theorem 4 and Corollary 4],
cf. also [1, Ch. 7]), which gives us νη = νη∗ . Now it suffices to use [7, Corollary 9.2] which
says (in particular) that the latter condition is equivalent to η = η∗ (cf. (8)).

https://doi.org/10.1017/etds.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.7


Invariant measures for B-free systems revisited 27

Proof of Corollary G. By Remark 4.1, if Xη is uniquely ergodic, then h(Xη) = 0.
Suppose that h(Xη) = 0. Then, by Theorem F, we have d = d∗ which implies η′ = η∗

by Lemma 4.2. The latter condition is equivalent to B′ = B∗ by [7, Theorem L], as both
B′ and B∗ are taut (cf. (8)). It follows immediately that Xη′ must be uniquely ergodic as
it is equal to Xη∗ and the latter subshift is uniquely ergodic since η∗ is assumed to be a
regular Toeplitz sequence. It suffices to use Theorem C to complete the proof.

4.2. Intrinsic ergodicity of Xη: proof of Theorem H. Consider first the case when
η′ = η∗. It follows by Theorem C that

P(Xη) = P(Xη′) = P(Xη∗).

Thus, if Xη∗ is uniquely ergodic, then Xη is also uniquely ergodic. Moreover, the pair
(η∗, η) is quasi-generic for νη∗�νη along (�i) realizing the lower density of MB. It follows
by Remark 4.1 that

{νη} = P(Xη) = P(Xη∗) = {νη∗}.
Thus, νη∗�νη is the diagonal joining of two copies of νη. Let (x, x, y) be a generic point for
(νη∗�νη) ⊗ B1/2,1/2. Then N(x, x, y) = x is a generic point for N∗((νη∗�νη) ⊗ B1/2,1/2).
It follows immediately that N∗((νη∗�νη) ⊗ B1/2,1/2) = νη.

Assume now that η′ �= η∗. We will study the following diagram:

(H × {0, 1}Z, R × σ)

(H × {0, 1}Z, R̃)

([ϕ, ϕ], σ)

�

�

MH
(34)

Let us now introduce all maps appearing in this diagram. We define R̃ : H × {0, 1}Z →
H × {0, 1}Z by

R̃(h, x) =
{

(Rh, x) if ϕ(h)(0) = ϕ(h)(0),

(Rh, σx) if 0 = ϕ(h)(0) < ϕ(h)(0) = 1.

Let

Z∞ := {z ∈ {0, 1}Z : |supp z ∩ (−∞, 0]| = |supp z ∩ [0, ∞)| = ∞}.
Given x ∈ {0, 1}Z and z ∈ Z∞, let x̂z be the sequence obtained by reading consecutive
coordinates of x which are in the support of z and such that

x̂z(0) = x(min{k ≥ 0 : z(k) = 1}).
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Now, let

H∞ := {h ∈ H : Rnh ∈ W \ W infinitely often both in the future and in the past}
and define � : H∞ × {0, 1}Z → H∞ × {0, 1}Z by

�(h, x) = (h, x̂ϕ(h)−ϕ(h))

(notice that ϕ(h)(n) − ϕ(h)(n) = 1 ⇐⇒ Rnh ∈ W \ W , so for h ∈ H∞, we have
ϕ(h) − ϕ(h) ∈ Z∞). It remains to define �. Let � : H∞ × {0, 1}Z → [ϕ, ϕ] be defined
by mapping (h, x) to the unique element in [ϕ, ϕ] such that

ϕ(h) ≤ �(h, x) ≤ ϕ(h) and ̂(�(h, x))ϕ(h)−ϕ(h) = x.

We will show that the diagram in (34) commutes (it will then follow by Theorem A that
the maps MH and � are surjective morphisms).

LEMMA 4.3. For any B ⊆ N, we have mH (W \ W) = d − d
∗
. Moreover, if η′ �= η∗, we

have mH (W \ W) > 0.

Before we begin the proof of this lemma, recall some results from [17] that we already
mentioned in the introduction: there is a continuous surjective group homomorphism
H ,H ∗ : H → H ∗, which maps 
(n) to 
∗(n). In addition, it has the following property,
see (13):

H ,H ∗(W) = W ∗ and H ,H ∗(H \ W) = H ∗ \ W ∗.

Recall also that it was shown in [14, Lemma 4.1] that

mH (W) = d(FB) = d . (35)

Proof of Lemma 4.3. We have

mH (W \ W) = mH (W) − mH (W)

= mH (W) − mH (−1
H ,H ∗(W ∗))

= mH (W) − (H ,H ∗)∗(mH )(W ∗)
= mH (W) − mH ∗(W ∗)

(the second equality follows from (13) and the fourth equality follows by the unique
ergodicity of R∗). It remains to use (35) to deduce that mH (W \ W) = d − d

∗
and Lemma

4.2 to conclude that mH (W \ W) > 0 whenever η′ �= η∗.

It follows now from Lemma 4.3 and from the ergodicity of (H , R, mH ) that
mH (H∞) = 1. Thus, to conclude that (34) commutes, it remains to check whether for
every h ∈ H∞ and every x ∈ {0, 1}Z, we have the commutativity relations

MH (h, x) = (� ◦ �)(h, x),

(R̃ ◦ �)(h, x) = (� ◦ (R × σ))(h, x),

(σ ◦ �)(h, x) = (� ◦ R̃)(h, x).

(36)
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The first equality in (36) is immediate by the definition of the maps, while the second and
third follow from

σ̂ xσz =
{

x̂z if z(0) = 0,

σ x̂z if z(0) = 1,
(37)

(the proof of (37) consists of a straightforward but lengthy calculation; an analogous
property is proved in [22]).

Notice that it follows by Theorem A that the morphism MH is surjective. Thus, the
morphism � is also surjective.

Now, we are ready to complete the proof of the intrinsic ergodicity of Xη. The main
ideas come from [22]. We will present the sketch of the proof only (similarly as in [7] for
X̃η). Clearly, any point from H∞ ∩ (W \ W) returns to W \ W infinitely often under R and
mH (H∞ ∩ (W \ W)) = mH (W \ W). Recall that

R̃(h, x) =
{

(Rh, x) if ϕ(h)(0) = ϕ(h)(0),

(Rh, σx) if 0 = ϕ(h)(0) < ϕ(h)(0) = 1.

Then every point from (H∞ ∩ (W \ W)) × {0, 1}Z returns to (W \ W) × {0, 1}Z infinitely
often under R̃ and ν((H∞ ∩ (W \ W)) × {0, 1}Z) = ν((W \ W) × {0, 1}Z) for every
ν ∈ P(H × {0, 1}Z, R̃). Thus, the induced transformation R̃(W\W)×{0,1}Z is well defined,
that is, R̃(W\W)×{0,1}Z(h, x) = R̃n(h,x)(h, x) for ν-almost every (h, x) ∈ (W \ W) ×
{0, 1}Z, where n(h, x) := min{n ≥ 1 : R̃n(h, x) ∈ (W \ W) × {0, 1}Z}. It follows that
R̃(W\W)×{0,1}Z = R(W\W) × σ a.e. for any R̃-invariant measure.

We will show now that R̃ has a unique measure of maximal (measure-theoretic)
entropy. Since mH (W \ W) > 0 whenever η′ �= η∗ (see Lemma 4.3) and since
κ(W \ W × {0, 1}Z) = mH (W \ W) > 0 for any RW\W × σ -invariant probability
measure κ , in view of the Abramov formula, it suffices to show that R̃(W\W)×{0,1}Z =
R(W\W) × σ has a unique measure of maximal entropy. For any R(W\W) × σ -invariant
measure κ , by the Pinsker formula, we have

h({0, 1}Z, σ , (π2)∗(κ)) ≤ h((W \ W) × {0, 1}Z, RW\W × σ , κ)

≤h(W \ W , RW\W , (π1)∗(κ)|(W\W)) + h({0, 1}Z, σ , (π2)∗(κ))=h({0, 1}Z, σ , (π2)∗(κ)),

where h(W \ W , RW\W , (π1)∗(κ)|(W\W)) vanishes by the Abramov formula as RW\W is
an induced map coming from a rotation. Since (π2)∗(κ) can be arbitrary, it follows that
a measure κ has the maximal entropy among all RW\W × σ -invariant measures if and
only if h((W \ W) × {0, 1}Z, RW\W × σ , κ) = h({0, 1}Z, σ). Moreover, κ is a measure
of maximal entropy for RW\W × σ if and only if (π2)∗(κ) is the measure of maximal
entropy for σ , that is, when (π2)∗(κ) is the Bernoulli measure B1/2,1/2, that is, when κ is a
joining of the unique invariant measure for RW\W and B1/2,1/2. Since the unique invariant
measure for RW\W is of zero entropy, it follows from the disjointness of K-automorphisms
with zero entropy automorphisms [10] that κ is the product measure. In particular, κ is
unique.
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The last step to conclude the intrinsic ergodicity of Xη is to show that

h(H × {0, 1}Z, R̃) = mH (W \ W) = d − d∗ = h(Xη). (38)

Let us justify each of the equalities above. By the variational principle, by the Abramov
formula and by the Pinsker formula, we have

h(H × {0, 1}Z, R̃) = sup
ρ

{h(H × {0, 1}Z, R̃, ρ)}

= mH (W \ W) · sup
ρ

{h((W \ W) × {0, 1}Z, RW\W × σ , ρ)}

= mH (W \ W) · sup
ρ

{h({0, 1}Z, ρ)} = mH (W \ W),

where the suprema are taken over all Borel probability invariant measures for the
corresponding maps. This yields the first equality in (38). Moreover, the middle equality
in (38) follows by Lemma 4.3, while the last one follows by Theorem F.

4.3. Entropy density of Xη: proof of Theorem I. The idea of the proof of Theorem I is
the same as that of the analogous result for X̃η in [21]. Let us introduce the necessary tools
and notation. Given x, y ∈ {0, 1}Z, consider the following premetric:

d(x, y) := lim inf
n→∞

1
n
|{1 ≤ i ≤ n : x(i) �= y(i)}|

(being a premetric means that d is a real-valued, non-negative, symmetric function on
({0, 1}Z)2 vanishing on the diagonal; the triangle inequality for d fails). As a premetric, d

induces a Hausdorff pseudometric dH on the space of all non-empty subsets of {0, 1}Z in
the following way:

d(x, Y ) := inf
y∈Y

d(x, y) and dH (X, Y ) := max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y, X)}

for any ∅ �= X, Y ⊆ {0, 1}Z and x ∈ X, y ∈ Y .
Let us now recall some results from [21] (we formulate them for 0–1 shifts, however,

they are valid for shifts over any finite alphabet).

PROPOSITION 4.4. [21, Proposition 26] Let x ∈ {0, 1}Z be a periodic point under σ . Then
the hereditary closure of the orbit of x is a transitive sofic shift.

Remark 4.5. We skip here the definition of a sofic shift as it is quite technical and this
notion serves here as a tool only. Namely, in any sofic transitive shift, the ergodic measures
are entropy dense (more general results are known, see [8, 33]). The following modification
of Proposition 4.4 holds. Let w, x ∈ {0, 1}Z be periodic, such that w ≤ x. Then [w, x]
is a transitive sofic shift. The proof is a straightforward adjustment of the proof of [21,
Proposition 26].

PROPOSITION 4.6. [21, Corollary 20] Let (XK)K≥1 ⊆ {0, 1}Z be a sequence of transitive
sofic shifts. If X ⊆ {0, 1}Z is a subshift such that dH (XK , X) → 0, then ergodic measures
are entropy-dense in P(X).
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Proof of Theorem I. Since P(Xη) = P(Xη′) by Theorem C, we can assume without
loss of generality that B is taut. Hence, Xη = [η∗, η] by Proposition 2.1, and in view
of Remark 4.5 and Proposition 4.6, it suffices to prove that dH ([η

K
, ηK ], [η∗, η]) → 0. To

do so, we show that

dH ([η
K

, ηK ], [η∗, η]) ≤ d(η
K

, η∗) + d(η, ηK),

where the right-hand side tends to zero by the regularity of η∗ (cf. (28)) and the
Davenport–Erdős theorem (i.e. (1)). Fix now K ≥ 1. We claim that for η

K
≤ x ≤ ηK ,

there exists y ∈ [η∗, η] with

d(x, y) ≤ d(η
K

, η∗) + d(η, ηK). (39)

Indeed, set y := N(η∗, η, x) = η∗ + x(η − η∗). Then y(n) �= x(n) implies that
η∗(n) = η(n) and η

K
(n) �= ηK(n) (recall that η

K
≤ η∗ ≤ η ≤ ηK ). Thus, for every n ∈ Z

with y(n) �= x(n), we have either that η
K

(n) �= η∗(n) or that η(n) �= ηK(n), that is,

{n ∈ N : x(n) �= y(n)} ⊆ {n ∈ N : η
K

(n) �= η∗(n)} ∪ {n ∈ N : η(n) �= ηK(n)}.
This yields (39). To finish the proof, note that for every x ∈ [η

K
, ηK ], there exists m ∈ Z

such that η
K

≤ σmx ≤ ηK . By the above construction, for every x ∈ [η
K

, ηK ], there exists
therefore y ∈ [η∗, η] with d(x, y) ≤ d(η

K
, η∗) + d(η, ηK). In addition, we have [η∗, η] ⊆

[η
K

, ηK ].
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