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Abstract

In this note we partially answer a question of Cascales, Orihuela and Tkachuk [‘Domination by second
countable spaces and Lindelöf Σ-property’, Topology Appl. 158(2) (2011), 204–214] by proving that
under CH a compact space X is metrisable provided X2\∆ can be covered by a family of compact sets
{K f : f ∈ ωω} such that K f ⊂ Kh whenever f ≤ h coordinatewise.
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1. Introduction

As in [10], we put P = ωω, and for every f , g ∈ P we say that f ≤ g if f (n) ≤ g(n) for
all n ∈ ω. A topological space that has a compact cover {K f : f ∈ P} such that K f ⊂ Kg

whenever f ≤ g is called (again as in [10]) a P-dominated space, and if for every
compact K ⊂ X there is an f ∈ P such that K ⊂ K f then X is strongly P-dominated.
Other authors (for example, [7]) refer to (strongly) P-dominated spaces as those having
a compact resolution (swallowing compact sets).

It has been shown that studying P-dominated spaces can be useful for obtaining
conditions for metrisability in some cases. In particular, in [1] Cascales and Orihuela
proved, using different terminology, that a compact space X is metrisable whenever
X2\∆ is strongly P-dominated. It is not yet clear if we can obtain the same result
without assuming that the P-domination of X2\∆ is strong. However, certain partial
results in this direction have been obtained.

In [2], Cascales et al. proved in ZFC, among many other things, that if X is a
compact space with countable tightness and X2\∆ is P-dominated then X is metrisable.
In the same paper, assuming MA(ω1), they showed that if X is a compact space and
X2\∆ is P-dominated then X has a small diagonal and hence it is countably tight.
Therefore MA(ω1) implies that if X is a compact space and X2\∆ is P-dominated then
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X is metrisable. They asked if the same conclusion can be obtained in ZFC for every
compact space X such that X2\∆ is P-dominated.

According to [2], the problem reduces to showing that P-domination of X2\∆

implies small diagonal in compact spaces and hence countable tightness. As a
consequence, it is not difficult to see that if there is a nonmetrisable compact space
X such that X2\∆ is P-dominated then its weight cannot exceed ω1 (see [5]).

We will show that, at least under CH, we have a positive result.
Our notation is standard. Every compact space in this note is assumed to be

Hausdorff. Given a compact space X, the diagonal of X is the set ∆ = {(x, x) : x ∈
X} ⊂ X2. Given a cardinal κ, the tightness of X is not greater than κ if for every
Y ⊂ X and every y ∈ Y there is a set Z ⊂ Y such that y ∈ Z and |Z| ≤ κ. A κ-sequence
{xα : α ≤ κ} ⊂ X is a free sequence of length κ if {xα : α < β} ∩ {xα : β ≤ α} = ∅ for
every β ∈ κ. For a cardinal θ we let H(θ) denote the collection of all sets whose
transitive closure has cardinality less than θ (see [8, Ch. IV]).

2. Spaces with P-diagonal

Definition 2.1. A space X has a P-diagonal if X2\∆ is P-dominated, that is, covered
(dominated) by a family of compact sets {K f : f ∈ P} satisfying K f ⊂ Kh whenever
f ≤ h.

Theorem 2.2. CH implies that every compact space with a P-diagonal is metrisable.

As mentioned in the introduction, the following ZFC result is proved in [2]. We
prove it here to introduce the ideas applied to obtain the later results.

Proposition 2.3. Every countably tight compact space with P-diagonal is metrisable.

Proof. Let {K f : f ∈ P} witness the P-diagonal property of a countably tight compact
space X. For each t ∈ ω<ω, let K(t) =

⋃
{K f : t ⊂ f }. Observe that if s ≥ t, and

dom(s) ⊂ dom(t), then K(s) ⊃ K(t). This is simply because if t ⊂ f , then s ⊕ f =

s ∪ f � [dom(s), ω) satisfies Ks⊕ f ⊃ K f .
For each h ∈ ωω, let C(h) =

⋂
{K(h � n) : n ∈ ω}. We show that the closure of C(h) is

disjoint from ∆. Since X2 has countable tightness, it suffices to consider any sequence
{yn : n ∈ ω} ⊂ C(h). Recursively choose 〈hn : n ∈ ω〉 with h = h0 ≤ h1 ≤ · · · so that
hn � n ⊂ hn+1 and so that yn ∈ Khn+1 . To do so, observe that since K(hn � n + 1) ⊃
K(h � n + 1), the point yn ∈ K(hn � n + 1). Therefore there is an hn+1 with yn ∈ Khn+1 as
required. Let hω =

⋃
n hn � n and notice that {yn}n ⊂ Khω .

Now consider any open U ⊂ X2 such that the closure of C(h) is contained in U and
U ∩ ∆ is empty. We claim there is an n such that the closure of K(h � n) is contained
in U. Otherwise, perform a similar recursion, choosing hn ≥ h � n and xn ∈ Khn+1\U.
For each n, let hω(n) = max{hk(n) : k ≤ n} so that {xn}n ⊂ Khω\U. More importantly,
for each n, the set {xk}k>n ⊂ Kh�n⊕hω and all its limit points are contained in K(h � n).
This yields a contradiction since U contains C(h).

It now follows that X has a Gδ-diagonal, since X2\∆ is covered by the collection of
all K(t) which are disjoint from ∆. �
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It is easy to see that if X = ω1 + 1 then X does not have a P-diagonal because X2\∆

contains an uncountable closed discrete subset (see [5]).
Now suppose that X is a compact space with P-diagonal and uncountable tightness.

By [6], it contains a convergent free ω1-sequence {xα : α ∈ ω1}. We may assume that
{xα : α ∈ ω1} is dense in X. This means that there is a continuous map from X onto
ω1 + 1. We now show that X also maps continuously onto [0, 1]ω1 . To do so, we will
apply some ideas from the investigations into the Moore–Mrowka problem, especially
Eisworth’s paper [4] on hereditary countable π-character.

Theorem 2.4. Suppose that X is a compact space with P-diagonal and ϕ maps X
continuously onto ω1 + 1. Then X maps onto [0, 1]ω1 .

Proof. Assume that X does not map onto [0, 1]ω1 . We will work in the subspace
Y = X\ϕ−1(ω1) = ϕ−1([0, ω1)). For a subset H of Y , define σH to be the ℵ0-bounded
closure of H, that is, σH =

⋃
{H0 : H0 ∈ [H]ω}. Let F denote any maximal filter of

ℵ0-bounded sets such that the family {ϕ−1([α, ω1)) : α ∈ ω1} is contained in F . Such
a filter exists by Zorn’s lemma. It is easy to verify that F is closed under countable
intersections.

We say that H ∈ F + provided H ∩ F is not empty for all F ∈ F . Notice that if
H ∈ F +, then σH ∈ F . We will now explore how the members of F interact with the
family {K f : f ∈ ωω}. Let π2 denote the projection map from Y × Y onto the second
coordinate; thus we will be focusing on the upper triangle in Y2.

For F ∈ F and t ∈ ω<ω, define

F(t) = {x ∈ F : σ(π2 [K(t) ∩ ({x} × F)]) ∈ F }.

For each t ∈ ω<ω choose, if possible, Ft ∈ F so that Ft(t) < F +. Let F0 ∈ F be
contained in each such Ft.

Now choose any countable elementary submodel M ≺ H(θ), where θ is any
sufficiently large regular cardinal and H(θ) denotes the family of sets which are
hereditarily of cardinality less than θ. ‘Sufficiently large’ just means here that X
is based on some ordinal λ and |P(P(λ))| < θ. Of course, we want ϕ, X, F and
{K f : f ∈ ωω} to be elements of M. One can assume that F0 is also in M or simply
carry out the selection of the Ft within M.

Now we define Z to be
⋂
{F ∩ M : F ∈ F ∩ M}.

Choose any z ∈ Z and y ∈ F0 ∩ M. Notice that z < M and so (y, z) ∈ X2\∆. Choose
any h0 ∈ ω

ω so that (y, z) ∈ Kh0 .
Choose any t ≥ h0 � dom(t) (hence (y, z) ∈ K(t)). Let Hy = π2[K(t) ∩ ({y} × F)] and

notice that Hy and σHy are in M. If σHy < F , then there is an F2 ∈ F ∩ M such
that σHy ∩ F2 is empty. However, z ∈ σ(F2 ∩ M) ⊂ F2 and also z ∈ Hy, which cannot
happen. Thus σHy ∈ F . Moreover, Ft does not exist. For otherwise, F0 is contained in
it and Hy is smaller than π2(K(t) ∩ ({y} × Ft)) and so σ(Hy) is not in F , a contradiction.

We can say even more about t ≥ h0 � dom(t). Choose any F ∈ F ∩ M and any open
W ⊂ X such that W ∩ Z is not empty. Choose any z1 ∈W ∩ Z. Then we claim that there
is a y1 ∈ W ∩ F ∩ M such that W ∩ (Hy1 ∩ M) is also not empty. As before, we may
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assume that F ⊂ F0 and we know that Ft does not exist. This means that F(t) ∈ F + and
so σF(t) is in F . Hence Z is contained in the closure of M ∩ σF(t). By elementarity,
M ∩ σF(t) is contained in σ(M ∩ F(t)). So we may choose some y1 ∈ W ∩ M ∩ F(t).

Again let Hy1 = π2[K(t) ∩ ({y1} × F)] and it is easily shown that z is in the closure of
M ∩ σHy1 . But again, by elementarity, it follows that z1 is in the closure of M ∩ Hy1 ,
and the set W ∩ M ∩ Hy1 is not empty, as required.

The conclusion is that if t ≥ h0 � dom(t), F ∈ F ∩ M and an open W meets Z, then
there is a point (y1, y2) ∈ K(t) ∩ M ∩ (W ∩ F)2.

Since X does not map onto [0, 1]ω1 we may assume that every closed subset K of X
contains a point which has countable π-character in K (see [9]).

Now choose a point x ∈ Z which has countable π-character in Z. Let {Un,Wn : n ∈ ω}
be open subsets of X such that, for each n, Wn ⊂ Un and Wn ∩ Z is nonempty, and such
that the family {Un ∩ Z : n ∈ ω} is a local π-base for x in Z. For convenience, we
assume that each pair Un,Wn is listed infinitely many times.

Begin our (by now) standard recursive construction of a sequence of functions
{hn : n ∈ ω} so that hn+1 ≥ hn and hn+1 ⊃ hn � n. Let {Fn : n ∈ ω} be an enumeration for a
descending base for M ∩ F . Choose hn+1 so that there is a pair (yn

1, y
n
2) ∈ K(hn � n) ∩

M ∩ (Wn ∩ Fn)2 as discussed above. Let hω =
⋃

n hn � n, so that hω ≥ hn for all n.
Consider a pair Uk,Wk which was listed infinitely often. Let Lk = {n : (Un,Wn) =

(Uk,Wk)}. The sequence {(yn
1, y

n
2) : n ∈ Lk} accumulates at some point (zk

1, z
k
2) which is

in (Wn ∩ Z)2. To see this, it is enough to notice that every limit point of the entire set
{yn

1, y
n
2 : n ∈ ω} is in Z because a cofinite subset of it is contained in F` ∩ M for each

`. Notice then that (zk
1, z

k
2) ∈ (Uk ∩ Z)2. Since the family {(Uk ∩ Z)2 : k ∈ ω} is a local

π-base at (x, x), we see that (x, x) is in the closure.
But now we have a contradiction since {(yn

1, y
n
2) : n ∈ ω} is contained in Khω . �

We now prove that βω does not have a P-diagonal.

Theorem 2.5. A compact space with a P-diagonal must contain a nontrivial converging
sequence.

Proof. Suppose that we have a compact space X with no nontrivial converging
sequences. Assume that {K f : f ∈ ωω} is a compact cover of X2\∆.

First notice that for all x ∈ X and infinite compact J ⊂ X, there is an f so that
K f ∩ ({x} × J) is infinite. To see this, simply fix any uncountable {yα : α ∈ ω1} ⊂ J\{x}.
For each α, choose fα so that (x, yα) ∈ K fα . There is an h ∈ ωω so that for each
n, there is an αn such that h � n ⊂ fαn . Now define f ∈ ωω so that for each n,
f (n) ≥ max{ fαk (n) : k ≤ n}. This means that fαn ≤ f for all n, whence (x, yαn ) ∈ K f

for all n.
Similarly (but now using the hypothesis), for each infinite compact J ⊂ X, there is

an f so that K f contains J0 × J1 for some infinite compact L0, L1 ⊂ J.
To see this, let {xα : α ∈ ω1} be any subset of J (which must be uncountable because

it has no nontrivial converging sequences). By recursion, we choose a descending
sequence {Jα : α ∈ ω1} of infinite compact sets with J0 = J. We require that, for each α,
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there is an fα so that K fα contains {xα} × Jα+1. If Jα is infinite compact, then the
existence of fα and infinite compact Jα+1 follows from the first claim. For limit α,
Jα =

⋂
{Jβ : β < α} is infinite because X contains no nontrivial converging sequences.

Now again choose any f so that there is an infinite increasing sequence {αn : n ∈ ω}
with fαn ≤ f for all n. Let J0 denote the (infinite) set of limit points of {xαn : n ∈ ω},
and let L1 =

⋂
{Jαn : n ∈ ω}. Note that L0 × L1 is contained in K f .

Now specify any indexing {tk : k ∈ ω} of ω<ω. We may assume that tk ⊂ t j implies
k < j. By a countable recursion, choose a descending sequence {Jk : k ∈ ω} of infinite
closed subsets of X with J0 = X. Having chosen Jk, we consider tk. If there exists some
infinite compact J ⊂ Jk so that, for all f ⊃ tk, K f does not contain any product J0 × J1

with J0, J1 infinite compact subsets of J, then choose Jk+1 to be such a set. Otherwise,
let Jk+1 = Jk, and note that there is no such J contained in Jk+1.

When this recursion is complete, set J =
⋂

k Jk, and again note that J is an infinite
compact subset of X. Choose any h0 so that Kh0 contains L0 × L1 for infinite compact
L0, L1 contained in J. We now know that for any tk ≥ h0 � dom(tk), and every Jk+1,
there is no J ⊂ Jk such that, for all f ⊃ tk, K f does not contain any product J0 × J1

with J0, J1 being infinite compact subsets of J. So we recursively choose h1 ≥ h0 with
h0 � 1 ⊂ h1 and so that there are L2, L3 contained in L0 with L2 × L3 ⊂ Kh1 . Continue
recursively with L2k+2, L2k+3 ⊂ L2k, L2k+2 × L2k+3 ⊂ Khk+1 and hk � k ⊂ hk+1. Choosing
h ≥ hk for all k, we show that Kh will hit ∆. For each k, choose yk ∈ L2k+1 and let
y be any limit point of {yk : k ∈ ω}. Then {y` : ` > 2k} ⊂ L2k and so y ∈ L2k for all k.
Similarly, (y, yk+1) ∈ L2k+2 × L2k+3 for all k, which implies that (y, y) ∈ Kh. �

From the previous result, we conclude that a compact space with P-diagonal cannot
contain a copy of βω and therefore it cannot be mapped continuously onto [0, 1]c (see
[3]). We can now use CH and Theorem 2.4 to complete the proof of Theorem 2.2.

3. Open problems

The most important problem on the subject of this paper is to determine if every
compact space with P-diagonal is metrisable. We have already seen that ω1 + 1 is not
a counterexample. However, if there is a counterexample it must map onto ω1 + 1.
Moreover, any counterexample must contain the closure of a convergent free sequence
of length ω1 in a compact space of weight ω1.

Question 3.1. Suppose that X is a compact space that contains a dense convergent free
sequence of length ω1. Must X contain a copy of ω1 + 1?

Question 3.2. Is every countably compact space with P-diagonal metrisable?

Question 3.3. Is every pseudocompact space with P-diagonal metrisable?
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