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1. Introduction and summary

Rings and distributive lattices can both be considered as semirings with commutative
regular addition. Within this framework we can consider subdirect products of rings and
distributive lattices. We may also require that the semirings with these restrictions are
regarded as algebras with two binary operations and the unary operation of additive
inversion (within the additive subgroup of the semiring). We can also consider
distributive lattices with the two binary operations and the identity mapping as the
unary operation. This makes it possible to speak of the join of ring varieties and
distributive lattices. We restrict the ring varieties in order that their join with
distributive lattices consist only of subdirect products. In certain cases these subdirect
products can be obtained via a general construction of semirings by means of rings and
distributive lattices.

In Section 2 we prove basic results concerning semirings which are lattices of rings.
For a semiring of the type under study, i.e. with commutative regular addition, we
define two congruences, one of which gives a quotient which is a distributive lattice and
the other one gives a ring. The discussion is focused on these congruences and the
additive structure mappings arising from the commutative regular addition.

Section 3 starts with a consideration of lattices of rings whose characteristics divide a
fixed positive integer. This is followed by characterisations of lattices of rings belonging
to a fixed variety of arithmetical rings. For semirings which are lattices of Boolean rings,
an explicit construction and a categorical interpretation are provided.

A construction of semirings is given in Section 4 which amounts to a lattice of
semirings where the operations are given as in the case of a strong semilattice of
semigroups. The axioms governing this construction are very simple. It is then
established that every semiring which is a lattice of rings with an identity has the
structure prescribed by this construction. Examples are given illustrating the theory.

2. Basic results

A semiring is a system with associative addition and multiplication connected by
distributivity of multiplication over addition.

*The second author gratefully acknowledges the support from a grant by the Deutsche
Forschungsgemeinschaft.
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156 HANS-J. BANDELT AND MARIO PETRICH

In this section S stands for a semiring with commutative regular addition (these
semirings have been considered by several authors, see V. N. Salii [8]). Hence the
additive semigroup S+ of S is a semilattice of groups. For each element a of S, we
denote by —a its additive inverse in the additive group it belongs to. We will further
adhere to the notation

d=a+(— a).

The congruence p on S+ which decomposes S+ into its maximal subgroups is the least
semilattice congruence on S+, and can be written succinctly as

apbod= 5.

For any a,beS, we have

-a)b=((-a) + a + (-a))b = (-a)b

which by the uniqueness of negative gives the usual formula (— a)b = — ab; analogously
a( — b) = — ab. Consequently

db = ab = ab.

It now follows that p is also a multiplicative congruence on S.
The semiring S may satisfy some of the following axioms.

ad=d (aeS), (Al)

aE=b~a (a,beS), (A2)

a + db=\ (a,beS). (A3)

Lemma 1. The following statements hold.
(i) S/p is idempotent if and only ifS satisfies (Al).

(ii) S/p is commutative if and only if S satisfies (A2).

(iii) S/p is a lattice if and only if S satisfies (Al), (A2), (A3).

Proof. We have seen above that for any a,beS, ab = aT> whence (i) and (ii) follow
since a pa2 can be written as ad = a and ab p ba can be written as aB = T>a.

Assume next that S/p is a lattice. Then (Al) and (A2) hold, and one of the absorption
laws gives a + abpa. Hence a + ab = a so that

Adding a on both sides, we get a + db = a, i.e. (A3) holds.
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Conversely, assume that (Al), (A2), (A3) hold in S. By the above remarks and parts (i)
and (ii), it remains to verify the absorption laws. The argument going in the opposite
direction to the one above gives that (A3) yields a + abpa. Now using the distributive
law, we get the other absorption law. Hence S/p is a lattice.

Note that the lattice in part (iii) above is distributive. The above lemma admits an
interesting interpretation if we introduce the following terminology.

Definition. A semiring S is a lattice D of rings Ra if S admits a congruence K such
that D = S/K is a distributive lattice and each K-class is a subring of S.

In an obvious way, we may replace "lattice" in the above definition by "semiring" (with
certain properties). Since p is the only congruence on S all of whose classes are groups,
we deduce from Lemma 1

Corollary. The following statements are valid.

(i) S is a multiplicatively idempotent semiring of rings if and only if it satisfies (Al).

(ii) S is a multiplicatively idempotent and commutative semiring of rings if and only if it
satisfies (Al) and (A2).

(iii) S is a lattice of rings if and only if it satisfies (Al), (A2) and (A3).

Note that a semiring S is a union of pairwise disjoint rings whose zeros commute if
and only if S has commutative regular addition and satisfies (Al) and (A2). We can
reduce the set of axioms for semirings with commutative regular addition and satisfying
(Al), (A2) and (A3) by requiring: semirings with commutative addition and a unary
operation " —" satisfying —(-a) = a for all aeR or =a = a for all aeR (where a = a +
(—a) as before).

The semirings we have arrived at in Lemma 1 part (iii) admit the following
characterisation: S is a semiring which admits a retraction <f> onto an ideal L such that (a)
the classes of the congruence relation induced by <j> are rings, and (/J)L is a lattice under
the operations of S. Indeed, for the semirings in Lemma 1 part (iii), the mapping <l>:a->a
is a retraction onto the ideal and lattice L of additive idempotents. Conversely, it
suffices to observe that the addition of the semiring is automatically regular, and that it
is commutative since S+ is then a semilattice of abelian groups.

We now introduce a second relation on S as follows:

It is clear that a is reflexive and symmetric. For a a b and ceS, we get

ac + Bc = (a + 5)c = (a + b)c

= ac + bc = ac + bc,
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whence we conclude that a is compatible with both operations. If ap n ab, then a = 5
and thus

a=a+a=a+b=a+b=H+b=b

so that p n er = e, the equality relation.
We will use the notation x—y = x + (—y). The following characterisation of a will be

useful.

Lemma 2. For any a,beS,

a a bo2(a — b) = a — b.

Proof. If a a b, then

a + b~ + (a — b)-b = a+b + (a-b)-b

which implies 2(a — b) = a—b. Conversely, if 2(a — b) = a — b, then a~b= —(a — b) and
thus

so that aab.

We introduce another condition

= a=>2b = b. (A4)

This is equivalent to the condition: a + b = a=>b = T>.

Lemma 3. The relation a is transitive if and only if S satisfies (A4).

Proof. Assume first that a is transitive and that a + b = a. Then b + a = a = a + B so
that baa and a a 5 which then gives bah. But then fc = b + 5 = 2B = B whence 2b = b.

Conversely, assume that S satisfies (A4), and let aab, bac. Using Lemma 2, we
obtain

=(a-b) + (b-c) = a-

which by (A4) gives 2(a—c) = a — c and thus aac again by Lemma 2.

https://doi.org/10.1017/S0013091500016643 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016643


SUBDIRECT PRODUCTS OF RINGS 159

For any a,beS, we have

so that a<jT>. This says that in the case that a is transitive, S/o has only one additive
idempotent. Regularity of addition of S implies the same for S/o and thus S/o is
additively an abelian group. Since (A1)-(A4) are valid in any ring and any lattice, we
have proved

Theorem 1. A semiring S with regular addition is a subdirect product of a ring and a
lattice if and only if its addition is commutative and S satisfies (A1)-(A4).

We have mentioned earlier that regularity and commutativity of addition of our
semiring S gives that S+ is a semilattice of groups. The structure of such semigroups is
well-known, indeed, Clifford's theorem says that the operation is given by a system of
homomorphisms (p^p satisfying certain conditions. Here D = S/p is an upper semilattice,
we denote the p-classes by Rx, so that <j)atf:Ra-*R^a^P) is given by

where 0p denotes the (additive) identity of Rp. It is readily verified that all functions (f>x p
are one-to-one if and only if S satisfies (A4). The next lemma shows that these functions
also enjoy some multiplicative properties.

Let 4> be a homomorphism of a ring R into a ring R'. We let im <f> denote the image
of R in R' under <f> and ker 4> be the kernel of 4>. We also write

for the (double) annihilator of R.

Lemma 4. If S satisfies (Al), (A2) and (A3), then the following statements are valid for
any <x ^ /J.

(i) 0a p is a ring homomorphism.
(ii) im$ a £ is an ideal of Rp.

(iii) ^

Proof. First recall that (Al) ensures that each Ra is closed under multiplication, and
is thus a ring,

(i) We have seen above that <t> = <i>a,p is additive. Let a,beRx. Then aOpeRa and thus
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Similarly Qpb=0a, so that

Consequently <pa fi is a ring homomorphism.
(ii) If now aeRa and beRfi, then b(a + 0,,) = ba + 0fi where baeRx so that b(a<pxj)

= (ba)(f>ap. We analogously obtain that (a<j>xp)b = (ab)(pxp. Since im </>„_£ is already a
subring of Rp, we deduce that it is an ideal of Rp.

(iii) Let a e k e r ^ j , and beRx. Then a+ 0̂  = 0̂  and thus b(a + 0p) = b0p which implies
ba+0x = 0x so that ba = 0x. Analogously ab = Qx, which proves that ae^(Rx), and thus

Corollary 1. If S is a lattice of rings with trivial annihilator, then S is a subdirect
product of a ring with trivial annihilator and a lattice.

Proof. By part (iii) of Lemma 4, all the functions <j>x p are one-to-one. We have
remarked above that this is equivalent to condition (A4). Now by Theorem 1 we have
that S is a subdirect product of a ring R and lattice D. Assume that S^RxD and take
r e s4(R). Then for some a e D, we have (r, a) e S. Then for all elements of S of the form
(a, a), we get (r,a)(a,a) = (a,a)(r,a)=(0,a) since res/(R). But Ra = (R x {a}) n S is one of
the rings of which S is a lattice of. Hence (r, a) e ̂ (RJ = (0, a) by the hypothesis, so that
r = 0. Consequently

Recall that a ring is called simple if it has no proper ideals and R2^0.

Corollary 2. / / S is a lattice of simple rings, then S is the direct product of a simple
ring and a lattice.

Proof. First note that the annihilator of a simple ring R must be trivial and that
Rj=0. Thus Corollary 1 implies that S is a subdirect product of a ring R and a lattice D.
But part (ii) of Lemma 4 yields that for any a^/9, <px ^ maps Ra onto Rp, and is thus a
ring isomorphism. This together with the fact that S is a subdirect product of R and D
gives the assertion that S is the direct product of R and D.

Example 1. A lattice of rings is in general not a subdirect product of a ring and a
(distributive) lattice. For, consider the commutative semiring S = {0, a, b} with zero 0 for
which a2 = 2a = aft = 0 and b2 — 2b=a-\-b = b (see Figure 1). Then S is a lattice of null
rings R0C = {0, a} and Rfi = {b} (a<y3), though S is subdirectly irreducible. This seems to
contradict the first assertion of ([6], Theorem 6).
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Figure 1

3. The join of distributive lattices and arithmetical ring varieties

We consider here semirings which are lattices of rings belonging to some particular
varieties of rings. The first such class is that of rings whose characteristics divide a fixed
positive integer. The second class is an arbitrary variety of arithmetical rings. The third
is the variety of Boolean rings where we can give an explicit construction of semirings
under consideration.

For a ring of finite characteristic, the additive inverse can be expressed by means of
addition. Since in this section we consider only such rings, we regard the rings, the
distributive lattices and in general the semirings as algebras with just two binary
operations, of which the addition is commutative.

We start by introducing three more axioms as follows: for an integer n> 1, let

na2 = na, (A5)

nab = nba, (A6)

a + nab = a. (A7)

Proposition 1. Let n > 1 and S be a semiring with commutative addition. Then S is a
lattice of rings whose characteristics divide n if and only if S satisfies (A5), (A6), (A7).

Proof. For the direct part, we note that in a ring R whose characteristic divides n,
we have d=na. Axioms (A5), (A6), (A7) thus coincide with (Al), (A2), (A3). Conversely,
assume the validity of (A5), (A6), (A7). Letting b = a in (A7) and taking into account
(A5), we get (n+ l)a = a which yields regularity of the addition and d=na. Again axioms
(A5), (A6), (A7) coincide with axioms (Al), (A2), (A3) which by the corollary to Lemma 1
gives that S is a lattice of rings. These rings satisfy the identity na = O, hence their
characteristics divide n.

H. Werner and R. Wille [7] have shown that a ring variety "V is generated by finitely
many finite fields if and only if "V consists of all rings satisfying the identities

EMS-D

l ( FI qYP)-l)-^{P) = x (Wl)
peP\qeP-{p) )
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where

HP)= n *.
k e N(p)

* n n (JC*-X)=O
pei> teJV(p)

for some finite set P of prime numbers and finite sets N(p) (peP) of positive integers.
The next proposition lists some further characterisations of these varieties, which are

essentially due to G. M. Bergman, G. Michler, H. Werner and R. Wille. We give a proof
for those implications which are not proved in [3], [7].

Proposition 2. For a ring variety "V~ the following statements are equivalent.

(i) Every ring in V has a trivial annihilator.
(ii) "V contains no nontrivial null rings.

(iii) No ring in V has nonzero nilpotent elements.
(iv) There exists a polynomial t(x) without the linear term such that the identity t(x) = x

is valid in Y~.
(v) "V is arithmetical, that is, the ideal lattice of any ring in "V is distributive.

(vi) y is the variety of all rings satisfying (Wl) and (W2) for some P and N(p) (peP).

Proof. The equivalence of (iv), (v), (vi) is proved in [3], [7]. The implications
(iii)=>(i)=>(ii) and (iv)=>(ii) are obvious. If x" = 0 and x"~i=fc0(n>l)ma. ring R, then the
subring generated by x""1 is a null ring. Hence (ii) implies (iii). It remains to verify
(ii) =>(iv). Let Y be given by the system {u£xiA,..., xt ,„,.) = 0}i e / of identities. Let kfjXjj
be the linear terms occurring in «;. Let m be the greatest common divisor of all khj (iel,
j=l,...,nl). Obviously, the abelian group Z/mZ considered as a null ring belongs to V.
Thus by (ii) m = l must be true. Hence for some finite subset / 0 of / and integers qitj we
get

Then by substituting —qitix for xtJ and adding up the identities K, = 0 for i e / 0 , we get
an identity t(x)~ x = 0 where t(x) is without linear term.

Lemma 5. Let S be a semiring with commutative addition. If S satisfies (A7) and an
identity of the form (Wl), then S satisfies (A5).

Proof. Let aeS. According to (Wl), a is equal to a polynomial in the variable a with
no linear term. Hence a = au, where u is a polynomial in a, and thus u = av + ka for some
polynomial v in a and integer k ̂  0. Now by (A7), we get

(n+l)a = na + a = a + nau = a, (1)
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whence, again by (A7)

a2 = (kn + l)a2 = kna2 + a2 = kna2 + (na2v + a2)

(2)

By (2) and (1), we obtain

na2 = n2a + na2 = na + na2. (3)

On the other hand, again using (A7) and (1)

na = na + n2a2 = na + na2,

which together with (3) yields na2 = na, that is (A5) holds.

Let S> denote the variety of distributive lattices.

Theorem 2. Let "V be an arithmetical variety given by the identities (Wl) and (W2).
The following statements concerning a semiring S with commutative addition are
equivalent.

(i) S is a lattice of rings in ir.
(ii) S is a subdirect product of a ring in "V and a (distributive) lattice.
(iii) S is in the join T v S of the semiring varieties "f and S>.
(iv) S satisfies (A6), (A7), (Wl), and

* • n n (*"*+(n - i w = n x ' w h e r e « = n ?• <w2')
peP fceJV(p) PEP

Proof, (i) implies (ii). By Corollary 1 to Lemma 4, S is a subdirect product of a ring
R and a lattice D. Since D is a homomorphic image of S, it must be distributive. Both
the identities (Wl) and (W2) are in a single variable, whence it follows easily that R
satisfies (Wl), (W2).

(ii) implies (iii) trivially.
(iii) implies (iv). Since both the rings in •f and the lattices (in @>) satisfy (A6), (A7),

(Wl), (W2'), so do all semirings in their join "V v S).
(iv) implies (i). By Lemma 5 and Proposition 1, S is a lattice of rings. These rings must

satisfy (Wl), (n+ \)a = a and (W2'), and therefore must be in *V.

For any integers m,n>\, the variety Mmn of all rings satisfying xm = x and «x = 0 is
arithmetical. A semiring is in the join Mm,„ v 3) if and only if it satisfies the identities
(A6), (A7) and xm = x. Unfortunately, not every arithmetical ring variety occurs among
the ®m<n. For instance, (GF(3), GF(72)}<=<#m n if and only if {GF(32), GF(7 2 )}s^ m „.
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An important case of the preceding class of semirings is provided by lattices of
Boolean rings (m = « = 2). This gives a common abstraction of Boolean rings and
distributive lattices; for Boolean rings with identity and Boolean lattices, see the classical
result of M. H. A. Newman [4].

Recall that every relatively complemented distributive lattice (L, v , •) with zero can
be made into a Boolean ring (L, + , •), where a + b is the relative complement of ab in the
interval [ 0 , a v d ] .

Theorem 3. Let (L, v , •) be a distributive lattice and let 4> be a retraction of L upon an
ideal D such that every class of the congruence x induced by $ is relatively complemented.
For any two elements a,b of a class C of x, let a®b denote the sum of a and b in the
Boolean ring C. On L define a new operation + by

a + b = (av b<j>)(&(a(p v b) (a,beL) (4)

Then (L, +,•) is a semiring which is a lattice of Boolean rings, and conversely, every such
semiring can be so obtained.

Proof. Let (L, v , ) be a distributive lattice and let + be given by (4). Since

> = a<f> v b<j> = (a<p v b)4>,

the right hand side of (4) is unambiguously defined. If a<j) = b<j> and c<p = c, then
(a®b)vc is the relative complement of (avc)(fcvc) in the interval [a<pvc, as/bvc'},
and so (a®b) v c = (av c)@(b v c) (see Figure 2).

av b vc

a vb
(a@b) v c

ab QZ "®h P"""^ XJ a<pvc = (avbvc)(j>

Figure 2

Hence for arbitrary a, b, c e L, we have

= ((a v b<j>)@(a<p v

= ((a v b<f>)(t> v c) © [((a v b(f>) © (a<t> v b)) v c(p~)

= (a<l> v b<j> v c) © (a v b<j> v c<j>) © (a$ v b v c<j>).
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The same expression can also be obtained for a+{b + c), and thus + is associative. If a4>
= b<f>, then for any ceL, (a@b)c is the relative complement of abc in the interval [_a(j>c,
ac v he], and so (a@b)c = ac@bc (see Figure 3).

(a@h)c

Figure 3

Hence for arbitrary a,b,ce L, we have

(a + b)c = ((a v ft$)©(a0 v b))c = (a v b<j))c©(a<l> v b)c

= (ac v (bc)<j>)@{{ac)(t> v be) = ac + be.

We conclude that (L, + , ) is a semiring. If a<j) = b<l>, then

a + b = (a v acj))@(b v b</>) =

so that + extends ©. Since for any a,beL,

= a<f> v b(f> = ci(

<f> is a retraction of the semiring (L, + , ) upon D. Every class of the induced congruence
is a Boolean ring, and therefore (L, + , ) is a lattice of Boolean rings.

Conversely, let L be a semiring which is a lattice of Boolean rings. It is routine to
check that (L, v , ) is a distributive lattice, where

xv y = x + y + xy.

Then D = {xeL|x = 2x} is an ideal of (L, v , ) and <j>:x-*2x gives the retraction of
(L, v , ) upon D. Every class of the congruence induced by ^ is a Boolean ring with
respect to + and •, and we have

x + y = (x + 2xy) + (y + 2xy) = x + 2y + 2xy + 2x + y + 2xy

= (x v 2y) + (2x v y) = (x v y4>) + (x<l> v y).
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Let ££ be the category of the following universal algebras (L, v , A , ") of type (2,2,1)
and their homomorphisms:

(i) (L, v , A ) is a distributive lattice,
(ii) x->5c is a translation of (L, A ) (that is aAb = a/\b, or equivalently, x->x is a

retraction upon an ideal of (L, v , A )),
(iii) for each aeL, the sublattice {xeL\a = x}of L is relatively complemented.

Further let Sf be the category of semirings (S, +,•) which are lattices of Boolean rings
and semiring homomorphisms.

Lemma 6. Let Lt and L2 be ££-objects. Under the correspondence of Theorem 3, a
map 6:Ll->L2 is an Sf-morphism if and only if 9 is an y-morphism.

Proof. If 6 is an jSf-morphism, then 6 is a lattice homomorphism and a = b~ implies
a~0 = bQ for all a,beLv Therefore 6 preserves the Boolean addition © of ring
components, and consequently,

Conversely, if 0 is an ,9^-morphism, then 8 is an J§?-morphism since a v b = a + b + ab,
a/\b = ab, and a = a + a.

From Theorem 3 and Lemma 6 we conclude:

Corollary. i£ and !? are isomorphic categories.

4. A construction

The now classical theorem of A. H. Clifford which determines the structure of
semigroups which are semilattices of groups can be carried over to suitable classes of
semirings. This was done by McAlister [2] for a distributive lattice of lattice ordered
groups. We offer below a variant of this construction for a distributive lattice of (semi)
rings suitable for proving a converse for rings with identity.

Construction. Let D be a distributive lattice and let Sa be a family of pairwise
disjoint semirings indexed by elements in D. For each pair j ^ ^ i n D , let

be (semiring) homomorphisms satisfying the following requirements:

<t>x,a = ^x,a = 'sa, the identity function on Sx, (Rl)

^«./)^/».y = 0«.y»>,,^/I.a = ^ . « i f <* < P < 7. (R2)

Sa(/)ai/, is an ideal of Sp if a</?, (R3)

(R4)
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On S= [j .S'2 define the operations: for aeSx,
7 . /)

Denote this system by S = <D;Sa, <£,,,,, i/^,,).
Note that the construction discussed in [1J is more general than the one above.

Theorem 4. With the above notation, S is a semiring. Moreover, the relation a defined
on S by

+p = b(l>iJyt:t+p (aeSx,beSp)

is a congruence, and S is a subdirect product of D and S/a.

Proof. It can be checked readily, and is a well-known fact from semigroup theory,
that the above defined addition and multiplication are associative and the former is
evidently commutative.

As a preparation for the proof of distributivity, we first observe that for a = /? in (R4),
we get

0«., = *«.. = »s. if *<P- (1)

Now for a</? and aeSa, beS^, we get by (R3) that b-a<t>!ltfi = a'(l)!lifi for some a ' eS a .
Hence by (1), we obtain

a' = a'<Pa ptf) « = (*>• a<t>a, pWp, a

s o t h a t

b-a4>^t=Wt,a-a)4>^ if a < / J . (2)

W e will n o w p r o v e t h e d i s t r i b u t i v e l aw a(b + c) = a-b + a-c w h e r e aeSx, beSfi, c e SY.
W e c o m p u t e

( a • b)<j>aPi a(f + y) = ( # « , , xe • bij/p, a P ) 0 a p , a(/, + y)

( # r f - H)<PaHMfi + y) by (R2)

tf by (2)

x, a ( / l + y ) • b<t>p, p+yflff+y, a ( < ( + y ) by (R4)
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and similarly

(a • c ) ^ a y > a ( / ) + y ) = aip^ xiP+y) • c4>y< p+ytyp + y, a

Using this, we obtain

= (a • b)(j>apMfi + y) + (a • c)0ay, a0 + y)

= a-b + a-c.

An analogous argument can be used to prove the other distributive law. We conclude
that S is a semiring.

Next let aeSx, beSp, ce Sy and assume that a a b. Then

(a • c)0ay, (a+^)y=(a^a> ay • c^y, «y)<̂ ay, (a+Wy

by (R2), (2)

by (R4)

and similarly

Now all 4>a,p w i t n <*</? are one-to-one by (1). Hence by ([5] HI.7.11), we deduce that o
is a congruence and that S is a subdirect product of D and S/CT.

We have seen in Corollary 1 to Lemma 4 that a semiring which is a lattice of rings
with trivial annihilator is actually a subdirect product of such a ring and a (distributive)
lattice. In Corollary 2 to the same lemma, the conclusion is even stronger, viz. a lattice
of simple rings is the direct product of a simple ring and a (distributive) lattice. For
lattices of rings having an identity, we have an intermediate case, as we now show.
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Theorem 5. Let S be a semiring which is a lattice of rings with identity. Then S can be
obtained as in the construction above.

Proof. Let S be a lattice D of rings Rx with identity la. For ag/J, the function \J/p a

defined on Sp by

* „ . „ : & - 1 , 6

is a multiplicative homomorphism (see, e.g. [5], III.4.5) of Rp into Rx. Clearly \j/p_x is also
additive, and is thus a ring homomorphism. Since a ring with identity has trivial
annihilator, we have by Lemma 4 that all <$>XiP are one-to-one.

Axiom (Rl) is obviously satisfied. For <x</9 and aeRx, we have

which then implies that \pa = a. If now a</?<y and ceRy, we get

which gives the second half of (R2); the first half is automatically satisfied. Validity of
(R3) follows from Lemma 4. For any oc + /? = y and aeRx, we compute (using lpa = a if

which verifies (R4).
For any a e Rx and b e Rfi, we get

as required.

The next example shows that not all semirings which are subdirect products of a ring
and a lattice can be obtained by our construction. The example following it illustrates
the fact that our construction does not generally produce the direct product. Thus the
construction discussed in this section represents a strictly intermediate case between
general subdirect products and the direct product of a ring and a lattice.

Example 2. Let R denote the Boolean ring of all subsets of M. Pick any ideal of R
which is not a retract, for instance, the ideal / of all finite sets. Then S
= /x{0}uRx{l} is a subdirect product of R and the lattice 2 = {0,1} (see Figure 4).
However, S cannot be obtained by our construction since there is no map i/̂  0 with the
required properties.
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/x{0}

Example 3. Let A and B be the Boolean rings of all subsets of N and of l̂
N u {0}, respectively. Then A^B and S = Ax{0}vBx{l} is a lattice of rings. Since

S is directly indecomposable (see Figure 5).

This seems to be in disagreement with the second assertion of ([6], Theorem 6).
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