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Quasisymmetric harmonics of the
exterior algebra

Nantel Bergeron , Kelvin Chan, Farhad Soltani, and Mike Zabrocki

Abstract. We study the ring of quasisymmetric polynomials in n anticommuting (fermionic) vari-
ables. Let Rn denote the ring of polynomials in n anticommuting variables. The main results of
this paper show the following interesting facts about quasisymmetric polynomials in anticommuting
variables:
(1) The quasisymmetric polynomials in Rn form a commutative subalgebra of Rn .
(2) There is a basis of the quotient of Rn by the ideal In generated by the quasisymmetric polynomials

in Rn that is indexed by ballot sequences. The Hilbert series of the quotient is given by

HilbRn/In (q) =
⌊n/2⌋

∑
k=0

f (n−k ,k)qk ,

where f (n−k ,k) is the number of standard tableaux of shape (n − k, k).
(3) There is a basis of the ideal generated by quasisymmetric polynomials that is indexed by sequences

that break the ballot condition.

1 Introduction

The study of coinvariants of groups dates back to Shephard—Todd and Chevalley
[5, 27] and has fruitfully produced many connections between algebra, combina-
torics, and physics. Motivated by recent developments in coinvariants of symmetric
groups and symmetric functions theory incorporating fermionic variables, we study
a coinvariant-like quotient of an exterior algebra obtained by the quotient of the
ideal generated by quasisymmetric functions in fermionic variables. The quotient
has a dimension that can be interpreted as the number of ballot sequences (or other
interpretations; see, for instance, the OEIS [26] sequences A008315 and A001405).

A notable feature of many quotients similar to coinvariants is their amenability
to combinatorial methods. One well-known example is the coinvariant ring of the
symmetric group. It is the quotient of the polynomial ring Q[x1 , . . . , xn] in commut-
ing variables by the ideal generated by the symmetric polynomials with no constant

Received by the editors October 2, 2022; accepted December 28, 2022.
Published online on Cambridge Core January 10, 2023.
This work is supported in part by York Research Chair and NSERC. This paper originated in a working

session at the Algebraic Combinatorics Seminar at York University.
AMS subject classification: 05E05, 16W55.
Keywords: Quasisymmetric polynomials, fermionic variables, exterior algebra, Ballot sequences,

polynomial harmonics.

https://doi.org/10.4153/S0008439523000024 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439523000024
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4482-7427
https://orcid.org/0000-0002-6636-2392
https://oeis.org/A008315
https://oeis.org/A001405
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439523000024&domain=pdf
https://doi.org/10.4153/S0008439523000024


998 N. Bergeron, K. Chan, F. Soltani, and M. Zabrocki

term. As an Sn representation, this quotient is naturally graded and is well known
to be isomorphic to the regular representation. Many useful bases of this space have
been found by studying combinatorics related to permutations. For more details, see
the nice surveys of [3, 13, 24, 25].

This line of inquiry inspired Garsia and Haiman [12, 18] to consider the ring of
diagonal harmonics, a similar quotient in two sets of commuting variables as an
Sn module. Haiman’s work [19] showed that the diagonal harmonics have a deep
connection to the theory of Macdonald polynomials. A combinatorial expression
for the Frobenius image of the diagonal harmonics known as the Shuffle Conjecture
[16] showed that the module structure is closely related to the combinatorics of
parking functions and can be described in terms of certain labeled Catalan paths.
This connection relating the symmetric functions and the combinatorial expression
was proved in [4] and is now known as the Shuffle Theorem.

The connection between the combinatorics and the symmetric function expres-
sions of the Shuffle Theorem has been generalized [17] and proved [8] to an expression
known as the Delta Conjecture. The last author with the group at the Fields Institute
[31] proposed a deformation of diagonal harmonics to two sets of commuting vari-
ables and one set of anticommuting variables. In this case, the connection of represen-
tation theoretic interpretation to the symmetric function expression remains open.
The symmetric function expressions and representation theoretic interpretation were
extended further to include the quotient of two sets of commuting and two sets of
anticommuting variables in [7] to what is known as the Theta Conjecture. At present,
this also remains an open conjecture, but progress has been made on some special
cases [21, 22, 29, 30].

The ring of quasisymmetric polynomials QSymn contains the ring of symmetric
polynomials Symn . Many combinatorial structures of QSymn parallel that of Symn .
Hivert described a Temperley–Lieb TLn action on Q[x1 , . . . , xn] making QSymn
exactly its trivial representation [20]. In 2003, Aval, F. Bergeron, and the first author
studied QSym coinvariant spaces obtained by replacing the ideal of nonconstant
symmetric functions with the ideal of nonconstant quasisymmetric functions [1, 2].
Surprisingly, they found that dimensions of QSym coinvariants are equal to the
Catalan numbers. At the heart of their argument is a recursion built from Catalan
paths. Li extended this argument to study some components of coinvariant spaces of
diagonally quasisymmetric functions [23].

Motivated by physics, Desrosiers, Lapointe, and Mathieu [9, 10] introduced sym-
metric functions with one set of commuting and one set of anticommuting vari-
ables known as symmetric function in superspace. The commuting variables encode
bosons, whereas the anticommuting ones encode fermions; hence, the anticommut-
ing variables are sometimes referred to as “fermionic variables.” The Hopf algebra
structure of the ring of symmetric functions in superspace was extended to quasisym-
metric functions in superspace [11] and so a natural question is to extend the study of
coinvariants of polynomial rings with commuting and anticommuting variables to the
quotients of these polynomial rings by the ideal generated by “super” quasisymmetric
polynomials.

Parallel to the Delta Conjecture or Theta Conjecture, one ideally would like to
understand quasisymmetric coinvariants in multiple sets of commuting and anti-
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commuting variables. Our study of quasisymmetric coinvariant spaces in one set
of anticommuting variables is a first step in that study. We denote polynomials in
anticommuting variables by Rn . The main results of this paper show the following
interesting facts about symmetric and quasisymmetric functions in anticommuting
variables:
(1) The quasisymmetric polynomials in Rn form a commutative subalgebra of Rn

(Proposition 2.3).
(2) That Rn is free over the ring of symmetric polynomials in Rn (Proposition 2.5).
(3) There is a basis of the quotient of Rn by the ideal In generated by the quasisym-

metric polynomials in Rn that is indexed by ballot sequences (Proposition 2.10).
The Hilbert series of the quotient is given by

HilbRn/In (q) =
⌊n/2⌋

∑
k=0

f (n−k ,k)qk ,

where f (n−k ,k) is the number of standard tableaux of shape (n − k, k) (Corollary
4.4).

(4) There is a basis of the ideal generated by quasisymmetric polynomials that
is indexed by sequences that break the ballot condition (Theorem 4.2) and a
minimal Gröbner basis that is a subset of this basis (Corollary 4.6).

2 Quasisymmetric invariants on the exterior algebra

Fix n a positive integer, and let Rn = Q[θ1 , θ2 , . . . , θn] be the polynomial ring in
anticommuting variables. The ring Rn is isomorphic to the exterior algebra of a vector
space of dimension n. The variables of this ring satisfy the relations

θ i θ j = −θ jθ i if 1 ≤ i ≠ j ≤ n and θ2
i = 0 for 1 ≤ i ≤ n .

Since these conditions impose that a monomial in Rn has no repeated variables, the
monomials are in bijection with subsets of {1, 2, . . . , n} and the dimension of Rn is
therefore equal to 2n .

Denote [n] ∶= {1, 2, . . . , n}, and let A = {a1 < a2 < ⋯ < ar} ⊆ [n]. We define θA ∶=
θa1 θa2 ⋯θar , then the set of monomials {θA}A⊆[n] is a basis of Rn .

We define an action on monomials of Rn and extend this action linearly. For each
integer 1 ≤ i < n, let π i be an operator on Rn that is defined by

π i(θA) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θA, if i , i + 1 ∈ A or i , i + 1 ∉ A,
θA∪{i+1}/{i} , if i ∈ A and i + 1 ∉ A,
θA∪{i}/{i+1} , if i + 1 ∈ A and i ∉ A.

(2.1)

These operators, instead of exchanging an i for an i + 1 like the symmetric group
action, have the effect of shifting the indices of the variables (if possible). They are
therefore known as quasisymmetric operators. They were studied in depth by Hivert
[20]. The operators are not multiplicative on Rn in general since, for example,

π1(θ1θ2) = θ1θ2 = −π1(θ1)π1(θ2) .
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They are also not multiplicative when they act on the polynomial ring in commuting
variables.

A polynomial that is invariant under the action of quasisymmetric operators is
said to be quasisymmetric invariant (or just “quasisymmetric”). The quasisymmetric
invariants of Rn are linearly spanned by the elements:

F1r (θ1 , θ2 , . . . , θn) ∶= ∑
A⊆[n]
∣A∣=r

θA .(2.2)

The symbols F1r for the elements borrows the notation from the polynomial ring
in commuting variable invariants known as the “fundamental quasisymmetric poly-
nomials”. The commuting polynomial quasisymmetric invariants are indexed by
compositions.

Remark 2.1 As expressing polynomials with listing the variables (e.g., p(θ1 , θ2 , . . . ,
θn)) can be notational cumbersome, there will be points where we will drop the
variables in the expressions and this will indicate that the polynomials are in the
variables θ1 , θ2 , . . . , θn . There will also be expressions where some polynomials have
fewer variables and there we will indicate this by listing the variables.

2.1 Quasisymmetric functions generate a commutative subalgebra

In [11], the authors showed that the quasisymmetric functions in one set of commuting
variables and one set of anticommuting variables form a graded Hopf algebra. This
implies that the quasisymmetric functions in one set of anticommuting variables
are closed under multiplication and the space is spanned by one element at each
nonnegative degree. It follows that for r, s ≥ 0, there exists a (possibly 0) coefficient
ar ,s such that

F1r F1s = ar ,s F1r+s .(2.3)

If r + s > n, then F1r+s = 0 by definition and so the only relevant coefficient ar ,s is when
r + s ≤ n.

Remark 2.2 In the notation of [11], F1r = M0̇r = L0̇r where 0̇r = (0̇, 0̇, . . . , 0̇) is a
composition of length r. The “ ˙ ” over a part in [11] is to indicate a fermionic
component. Therefore, the fermionic degree of F1r is exactly r. In [11], they show that
ar ,s exists and express it as a sum of ±1, but they do not give an explicit formula.
Furthermore, they indicate that ar ,s = (−1)rs as ,r . Here, we shall compute exactly ar ,s
and the formula shows that the subalgebra generated by the F1r is commutative.

Proposition 2.3 The constants ar ,s in equation (2.3) satisfy the following equation:

ar ,s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if r, s are both odd,

( ⌊
r+s

2 ⌋

⌊ r
2 ⌋

) , otherwise.
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A remark brought to our attention by D. Grinberg [14] shows that ar ,s is equal to
the q-binomial coefficient [ r+s

r ]q evaluated at q → −1 [15, Equation (185) on page 291].

Proof For completeness, we give a proof not assuming any results of [11]. Using
equation (2.2), we have

F1r F1s = ∑
A⊆[n]
∣A∣=r

∑
B⊆[n]
∣B∣=s

θAθB = ∑
C⊆[n]
∣C∣=r+s

( ∑
A⊆C
∣A∣=r

(−1)∣{b<a ∣ a∈A, b∈C∖A}∣)θC .

To see the second equality, we remark that the product θAθB = 0 if A ∩ B ≠ ∅.
Furthermore, if A ∩ B = ∅, then for C = A ∪ B, we have B = C ∖ A and θAθB =
(−1)∣{b<a ∣ a∈A,b∈C∖A}∣θC , where the sign is the number of interchanges needed to
sort A followed by B into C. This does not depend on the values of the elements of C,
but only on how A is chosen inside C. This shows that we get the same coefficient for
all C of size r + s and therefore F1r F1s = ar ,s F1r+s with

ar ,s = ∑
A⊆{1,2,. . . ,r+s}

∣A∣=r

(−1)∣{1≤b<a≤r+s ∣ a∈A,b/∈A}∣(2.4)

by choosing C = {1, 2, . . . , r + s}.
Let (C

r ) = {A ⊆ C , ∣A∣ = r}. We define a sign-reversing involution Φ∶ (C
r ) → (C

r ) as
follows. For A ∈ (C

r ), let γ(A) = γ1γ2⋯γr+s ∈ {0, 1}r+s be the sequence such that γ i = 1
if i ∈ A, and γ i = 0 otherwise. We look at the entries of γ(A) two by two and find the
smallest j (if it exists) such that the pair γ2 j−1γ2 j is not 00 or 11. If there is no such pair,
we let Φ(A) = A. If we find such pair, we define the involution Φ(A) = A′, where A′ is
such that γ(A′) is obtained from γ(A) by interchanging 01 ↔ 10 in position 2 j − 1, 2 j.
If r and s are both odd, then there must be at least one occurrence of 01 or 10 and there
are no fixed points of this involution.

We let

Inv(A) = {1 ≤ b < a ≤ r + s ∣ a ∈ A, b /∈ A} = {1 ≤ � < t ≤ r + s ∣ γ� = 0, γt = 1},

where γ(A) = γ1γ2⋯γr+s . As long as (t, �) ≠ (2 j − 1, 2 j), there is a bijection between
(t, �) ∈ Inv(A) and (t′ , �) ∈ Inv(A′) interchanging the 1 and 0 in positions 2 j − 1
and 2 j. The pair (2 j − 1, 2 j) is in only one of Inv(A) or Inv(A′) but not the other.
Therefore,

(−1)∣{1≤b<a≤r+s ∣ a∈A,b/∈A}∣ = −(−1)∣{1≤b<a≤r+s ∣ a∈A′ ,b/∈A′}∣ .

If Φ(A) = A, we have that ∣Inv(A)∣ is even since we can match the pairs two by two. If
r is odd and s is even, then the only A ∈ (C

r ) have r + s ∈ A and ∣Inv(A)∣ = ∣Inv(A/{r +
s})∣ + s. Therefore, Φ is a sign reversing involution and all fixed points contribute in
equation (2.4) with a +1. Therefore,

ar ,s =
�����������
{A ∈ (C

r
)∣Φ(A) = A}∣ = (⌊ r+s

2 ⌋
⌊ r

2 ⌋
) ,

since there are a total of ⌊ r+s
2 ⌋ pairs 2 j − 1, 2 j in a sequence of length r + s and we must

have ⌊ r
2 ⌋ of them equal to 11 and all others equal to 00 in order to get Φ(A) = A. ∎
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The generating series for the coefficients F(x , y) = ∑r ,s≥0 ar ,s x r ys is equal to
1+x+y

1−x2−y2 , and the OEIS [26] sequence number is A051159. This can be derived from
Proposition 2.3 using standard techniques of generating functions.

One consequence of Proposition 2.3 is that ar ,s = as ,r for all r, s ≥ 0. Remark that
this does not contradict the fermionic law stating that ar ,s = (−1)rs as ,r since ar ,s = 0
when both r, s are odd. Therefore, we have shown the following corollary.

Corollary 2.4 The subalgebra generated by quasisymmetric invariants {F1r ∣r ≥ 0} is
commutative.

2.2 The ideal generated by symmetric invariants

The symmetric invariants SymRn
of Rn are very small since a basis consists of only

two elements 1 and F1(θ1 , θ2 , . . . , θn). Therefore, the ideal generated by the invariants
of nonzero degree, which we shall denote Jn , is generated by a single element F1.
We begin by considering the symmetric coinvariants of Rn , the quotient ring Rn/Jn .
Because the ideal Jn is principal, we can understand this quotient with much more
detail. This quotient ring is a special case of the ring recently studied in [21, 22].

Recall that dim Rn = 2n , and if we consider the quotient Rn/Jn , it is isomorphic to
Rn−1 since in this algebra θn = −θ1 − θ2 − ⋯ − θn−1. Let A ⊆ [n − 1] and A′ = A ∪ {n},
then the map which sends θA′ to

−θA(θ1 + θ2 + ⋯ + θn−1) ⊗ 1 + θA ⊗ F1 ∈ Rn/Jn ⊗ SymRn

and θA to

θA ⊗ 1 ∈ Rn/Jn ⊗ SymRn

is an algebra isomorphism. Since this map describes the image for each monomial in
Rn , we have the following proposition.

Proposition 2.5 For each n ≥ 1,

Rn ≅ Rn/Jn ⊗ SymRn
,

as an algebra. That is, Rn is free over SymRn
.

2.3 The ideal generated by the quasisymmetric invariants

Define an ideal of Rn generated by the quasisymmetric invariants as

In ∶= ⟨F1r (θ1 , θ2 , . . . , θn) ∶ 1 ≤ r ≤ n⟩ .

Remark 2.6 Note that since the operators π i are not multiplicative, it is unlikely to
be the case that In as an ideal is invariant under the action of the π i . Indeed, we find
that for n = 4,

θ2F1(θ1 , θ2 , θ3 , θ4) = −θ1θ2 + θ2θ3 + θ2θ4 .
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If we apply π1 to this element, we obtain

π1(θ2F1(θ1 , θ2 , θ3 , θ4)) = −θ1θ2 + θ1θ3 + θ1θ4 .

This is not in I4.

The exterior quasisymmetric coinvariants are defined to be

EQCn ∶= Rn/In .

We borrow the name “coinvariant” space even though the generators, and not the
whole ideal, are invariant under the quasisymmetric operators.

2.4 Differential operators on the exterior algebra

We can define a set of differential operators on Rn which will permit us to define the
orthogonal complement to the ideal and a notion of quasisymmetric harmonics.

The operators ∂θ i act on monomials in Rn by

∂θ i (θA) =
⎧⎪⎪⎨⎪⎪⎩

(−1)#{ j∈A∶ j<i}θA/{i} , if i ∈ A,
0, if i ∉ A.

The operators can equally be characterized by the action that ∂θ i (1) = 0 and the
commutation relations

∂θ i ∂θ j = −∂θ j ∂θ i if 1 ≤ i ≠ j ≤ n and ∂2
θ i

= 0 for 1 ≤ i ≤ n ,

∂θ i θ j = −θ j∂θ i if 1 ≤ i ≠ j ≤ n and ∂θ i θ i = 1 for 1 ≤ i ≤ n.

For a monomial θA = θa1 θa2 ⋯θar , let θA = θar θar−1 ⋯θa1 represent reversing the
order of the variables in the monomial. Extend this notation to both differential
operators and polynomials (and polynomials of differential operators) by extending
the notation linearly.

We can define an inner product on Rn by setting for p, q ∈ Rn .

⟨p, q⟩ = p(∂θ 1 , ∂θ2 , . . . , ∂θ n )q(θ1 , θ2 , . . . , θn)∣θ 1=θ2=⋯=θ n=0 .

The monomials of Rn form an orthonormal basis of the space with respect to this
inner product.

Define the orthogonal complement to In with respect to the inner product as the
set

EQHn ∶ = {q ∈ Rn ∶ ⟨p, q⟩ = 0 for all p ∈ In}(2.5)

= {q ∈ Rn ∶ p(∂θ 1 , ∂θ2 , . . . , ∂θ n )q = 0 for all p ∈ In} .(2.6)

The second equality follows from the fact that In is an ideal and shows that EQHn is
also the solution space of a system of differential equations. The containment of the set
in equation (2.6) inside the set in equation (2.5) is clear. For the reverse inclusion, take
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an element q which is not in the set in equation (2.6), and we assume for some p ∈ In
that p(∂θ)q = cθα plus possibly some other terms, but then pθα ∈ In and ⟨pθα , q⟩ = c,
which implies that q is not in the set in equation (2.5).

We refer to EQHn as the exterior quasisymmetric harmonics. The harmonics
and diagonal harmonics borrow the name from the physics literature because the
harmonic operator ∂2

1 + ∂2
2 + ⋯ + ∂2

n is symmetric in the differential operators. In the
case of the exterior algebra, this operator acts as zero and yet we persist by borrowing
the name from the analogous spaces of commuting variables.

It is clear that the monomials of Rn form an orthonormal basis of the space
with respect to the inner product; hence, the inner product is positive-definite. It
follows that since EQHn is the orthogonal complement of the ideal In in Rn , then
the following result must hold.

Proposition 2.7 For all n ≥ 1, as graded vector spaces,

EQCn ≃ EQHn .

We will conclude this section by constructing a set of linearly independent ele-
ments inside EQHn , which will give us a lower bound on the dimension of EQCn .
In Section 4, we will see that this is also an upper bound, thus concluding that our
set is in fact a basis. To compute EQHn , we need to solve the differential equations in
equation (2.6). Remark first that since In is an ideal, we do not need to take all p ∈ In ,
but it is enough to solve for the generators p = F1r for 1 ≤ r ≤ n. We can reduce that
further using Proposition 2.3 as noted in the following lemma.

Lemma 2.8 For n ≥ 2, we have that In is the ideal generated by F1 and F12 .

Proof Clearly, we have that the ideal generated by F1 , F12 is contained in In . For the
converse, we note that for each k ≥ 1, there are nonzero coefficients a and a′ such that

aF12k = (F12 )k and a′F12k+1 = (F12 )k F1;

hence, all of the generators of In are contained in the ideal generated by F1 , F12 . ∎

From this, we conclude that

EQHn =
⎧⎪⎪⎨⎪⎪⎩

q ∈ Rn ∶ ∑
1≤i≤n

∂θ i q = 0 and ∑
1≤i< j≤n

∂θ j ∂θ i q = 0
⎫⎪⎪⎬⎪⎪⎭

.(2.7)

Given 0 ≤ k ≤ ⌊ n
2 ⌋, a noncrossing pairing of length k is a list (C1 , C2 , . . . , Ck) with

Cr = (ir , jr) for 1 ≤ ir < jr ≤ n for each 1 ≤ r ≤ k and,
either ir < jr < is < js or is < ir < jr < js for any 1 ≤ r < s ≤ k.

Given a noncrossing pairing C = (C1 , C2 , . . . Ck), we define

ΔC = (θ j1 − θ i1 )(θ j2 − θ i2 )⋯(θ jk − θ ik ) .(2.8)

https://doi.org/10.4153/S0008439523000024 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000024


Quasisymmetric harmonics of the exterior algebra 1005

Here, ΔC = 1 if k = 0. Remark that j1 < j2 < ⋯ < jk . The following proposition shows
that there is a relationship between the noncrossing pairing condition and the
differential equations from equation (2.7).

Proposition 2.9 The set

D′n = {ΔC ∶ C = (C1 , C2 , . . . , Ck) noncrossing pairing and 0 ≤ k ≤ ⌊ n
2

⌋}

is contained in EQHn .

Proof To show that ΔC is contained in EQHn , we fix C. We need to show that ΔC
satisfies the differential equation conditions in equation (2.7).

For the first defining equation of EQHn , we have

∑
1≤i≤n

∂θ i ΔC = ∑
1≤r≤k

(∂θ ir
+ ∂θ jr

)ΔC + ∑
i∉⋃k

r=1 Cr

∂θ i ΔC

= ∑
1≤r≤k

(∂θ ir
+ ∂θ jr

)ΔC = 0 .

For the last equality, fix 1 ≤ r ≤ k and note that ΔC = (−1)r−1(θ jr − θ ir )q for some
polynomial q and so for each r,

(∂θ ir
+ ∂θ jr

)ΔC = (−1)r−1(∂θ ir
+ ∂θ jr

)(θ jr − θ ir )q = 0 .

For the second defining equation of EQHn , we decompose the sum over pairs 1 ≤
i < j ≤ n according to whether (a) ∣{i , j} ∩ ⋃k

r=1 Cr ∣ < 2, (b) Cr = (i , j) for some r, or
(c) i , j appear in two different Cr , Cs .

In case (a), if ∣{i , j} ∩ ⋃ C∣ < 2, then one of θ i or θ j does not appear in ΔC and we
have ∂θ j ∂θ i ΔC = 0.

In case (b), we have that the product θ jr θ ir does not appear in ΔC and we also have
∂θ jr

∂θ ir
ΔC = 0.

Thus, we know that only case (c) contributes to the sum and we can thus write

∑
1≤i< j≤n

∂θ j ∂θ i ΔC = ∑
1≤r<s≤k

∑
i∈Cr
j∈Cs

±∂θ j ∂θ i ΔC .

In the second sum on the right-hand side, we have to be careful as when we pick
i ∈ Cr and j ∈ Cs we are not guaranteed that i < j, so a sign may be needed in order
to keep the equality. We will make a careful study of all possibilities for fixed 1 ≤
r < s ≤ k. First, we rearrange the terms of ΔC in equation (2.8) to bring the terms
(θ jr − θ ir )(θ js − θ is ) in front performing (r − 1) + (s − 2) anticommutations, we
have

ΔC = (−1)r+s−1(θ jr − θ ir )(θ js − θ is )q

for some polynomial q. Remark that ir , jr , is , js satisfy either the inequalities

ir < jr < is < js or is < ir < jr < js .

The only concern is their relative order, and we can thus assume that we have the num-
bers 1, 2, 3, 4. There are two possibilities: ((ir , jr), (is , js)) is equal to ((1, 2), (3, 4))
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n = 1 1
n = 2 1 1
n = 3 1 2
n = 4 1 3 2
n = 5 1 4 5
n = 6 1 5 9 5
n = 7 1 6 14 14
n = 8 1 7 20 28 14
n = 9 1 8 27 48 42

Figure 1: The number of ballot sequences of length n with exactly k1s with 1 ≤ n ≤ 9 and 1 ≤ k ≤
⌊ n

2 ⌋. These will be shown to be the graded dimensions of EQHn ≃ EQCn .

or ((2, 3), (1, 4)). In the first case, we have

(∂θ3 ∂θ 1 + ∂θ3 ∂θ2 + ∂θ4 ∂θ 1 + ∂θ4 ∂θ2 )(θ2 − θ1)(θ4 − θ3) = 0,

and in the second case, we get

(∂θ2 ∂θ 1 + ∂θ4 ∂θ2 + ∂θ3 ∂θ 1 + ∂θ4 ∂θ3 )(θ3 − θ2)(θ4 − θ1) = 0.

Furthermore, this shows that ΔC ∈ EQHn for all noncrossing pairings C. ∎

The set D′n is not linearly independent, for example, for n = 3 and k = 1, we have
the following three noncrossing pairings: ((1, 2)), ((1, 3)), and ((2, 3)), but

Δ((1,2)) − Δ((1,3)) + Δ((2,3)) = 0.

We want to select a linearly independent subset ofD′n . We proceed as follows: consider
a sequence α = (a1 , a2 , . . . , an) ∈ {0, 1}n such that ∑r

i=1 a i ≤ r/2 for all 1 ≤ r ≤ n. Such
sequences are known as ballot sequences. If ever it is the case that ∑r

i=1 a i > r/2, then
we say that α breaks the ballot condition at position r.

Given a ballot sequence α, we build a noncrossing pairing C(α) by first replacing
all 0s by open parentheses 0 ↦“(,” and all 1s by close parentheses 1 ↦“),” and then
do the natural maximal pairing of parenthesis. The positions of the pairings give us
in lexicographic order a noncrossing pairing which we shall denote C(α). Since α is
a ballot sequence, every closed parenthesis is matched and some open parentheses
might remain unpaired. The natural pairing of parenthesis guarantees that the result
will be noncrossing. For example,

α = 0010001101 ↦ (()((())() ↦ C(α) = ((2, 3), (6, 7), (5, 8), (9, 10)).

The total number of ballot sequences of size n is equal to ( n
⌊n/2⌋) (see [26,

A001405]). The number of ballot sequences graded by the number of 1s in the
sequence (see [26, A008315]) is given in Figure 1.

Given this construction, we have the following proposition.

Proposition 2.10 The set

Dn = {ΔC(α) ∶ α ∈ {0, 1}n a ballot sequence}
is contained in EQHn and is linearly independent.
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Proof The first statement follows from Proposition 2.9 since Dn ⊆ D′n ⊆ EQHn .
To show the linear independence, fix α a ballot sequence and let C(α) =
((i1 , j1), . . . , (ik , jk)) be its noncrossing pairing. We remark that the sequence of
numbers j1 < j2 < ⋯ < jk corresponds to the position of the 1s in α. Using the
monomial ordering described in Section 3 and by inspection of the product in
equation (2.8), we observe that the term θ j1 θ j2 ⋯θ jk is the smallest lexicographic
monomial in ΔC(α). For different ballot sequences α, we get different positions of
the 1s in α and thus different smallest lexicographic monomials, which shows the
independence of Dn . ∎

Remark 2.11 For a fixed 0 ≤ k ≤ ⌊ n
2 ⌋, the set

D
(k)
n = {ΔC(α) ∶ α ∈ {0, 1}n a ballot sequence with k 1s}

spans a subspace of Rn of degree k. It is known that the ballot sequences with k 1s
are in bijection with standard tableaux of shape (n − k, k). If the variables θ were
commutative, the space spanned by D

(k)
n would be the same as the space spanned

by the Specht polynomials indexed by standard tableaux and therefore would be an
irreducible symmetric group module. Here, the situation appears to be related, but is
in fact quite different.

A small example is informative. Consider n = 4 and k = 2. There are two ballot
sequences 0101 and 0011. The associated two noncrossing pairings are ((1, 2), (3, 4))
and ((2, 3), (1, 4)), and we have

ΔC(0101) = (θ2 − θ1)(θ4 − θ3) and ΔC(0011) = (θ3 − θ2)(θ4 − θ1).

On the other hand, the two standard tableaux associated with 0101 and 0011 are

T1 =
1

2

3

4
and T2 =

1

3

2

4
.

A standard construction of the symmetric group irreducible of shape (2, 2) from the
tableaux T1 and T2 is to use the Garnir polynomials

ΔT1 = (θ2 − θ1)(θ4 − θ3) = ΔC(0101) ,
ΔT2 = (θ3 − θ1)(θ4 − θ2).

Unfortunately, ΔT2 ∉ EQHn . In commutative variables, the span of the {ΔT1 , ΔT2 } (an
irreducible module) would be the same as the span of {ΔC(0101) , ΔC(0011)}. However,
for anticommutative variables, it is a different story.1

3 A linear basis of the ring

Again, let n be a fixed positive integer and Rn = Q[θ1 , θ2 , . . . , θn]. We have thus far
represented the basis for Rn as the elements θA with A ⊆ [n]. Define α(A) ∈ {0, 1}n

1A more correct construction would be to apply the Young idempotent associated with T2 to the
monomial associated with T2 using Hivert’s action. In this case, we get Δ′T2

= θ3 θ4 − θ1θ4 − θ2 θ3 + θ1 θ2 ∉
EQHn . The span {ΔT1 , Δ′T2

} is a symmetric group irreducible module, but is not fully contained in EQHn .
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to be the sequence a1a2a3⋯an with a i = 1 if i ∈ A and a i = 0 if i ∉ A so that

θA = θa1
1 θa2

2 ⋯θan
n ∶= θα(A) .

For such a sequence α ∈ {0, 1}n , let m1(α) ∶= ∑n
i=1 a i represent the number of 1s in

the string. This will also be the degree of the monomial θα .
For sequences α ∈ {0, 1}n , define elements Gα by

G1s 0n−s = F1s(3.1)

and if α ≠ 1s0n−s , then α is of the form u01s0n−k−s for some string u of length k − 1
and we recursively define

Gu01s 0n−k−s = Gu1s 0n−k−s+1 − (−1)m1(u)θkGu1s−1 0n−k−s+2 .(3.2)

We will show below that the recurrence for the Gα is defined so that they are
S-polynomials [6] for elements of the ideal In . In commutative variables, similar
polynomials were defined by Aval–Bergeron–Bergeron [1, 2] as a (complete) subset
of S-polynomials needed to compute all possible S-polynomials in the Buchburger
algorithm for a Gröbner basis. It is not given that one can easily describe such a set
of S-polynomials and here we have adapted the definition for working in the exterior
algebra.

Example 3.1 For α = 010110 and β = 001100, we compute the elements Gα and Gβ
using the definition.

G010110 = G011100 + θ3G011000 = (G111000 − θ1G110000) + θ3(G110000 − θ1G100000)
= θ2θ4θ5 + θ2θ4θ6 + θ2θ5θ6 + 2θ3θ4θ5 + 2θ3θ4θ6 + 2θ3θ5θ6 + θ4θ5θ6 ,

and we have that

G001100 = G011000 − θ2G010000 = (G110000 − θ1G100000) − θ2(G100000 − θ1G000000)
= θ3θ4 + θ3θ5 + θ3θ6 + θ4θ5 + θ4θ6 + θ5θ6 .

We follow [6] for the convention of lexicographical ordering on monomials. Given
vectors u, v with nonnegative integer entries, we say that u < v lexicographically if
there exists an index j ≥ 1 such that u i = v i for all 1 ≤ i < j, but u j < v j . Monomials
of Rn are ordered by their exponent vectors. More precisely, θA < θB if α(A) < α(B)
lexicographically. For example, we have θ1 > ⋯ > θn and the lexicographically largest
monomial in the above example G001100 is θ3θ4. The latter demonstrates an important
property of these elements stated in the following proposition.

Proposition 3.2 The largest lexicographic term in Gα is θα .

The proof of Proposition 3.2 follows by induction on the length of α and from a
lemma that is analogous to Lemma 3.3 of [2]. The recursion in this result is really the
origin of the definition of Gα because equation (3.2) was adapted so that this lemma
holds. It follows that the set {Gα}α∈{0,1}n is a basis for Rn .

The argument for the proposition is elementary (chasing the largest lexicographic
term in (3.3) and (3.4)) and so we do not include it; however, the proof of the following
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result comes from a careful analysis of the terms arising in the recursive definition of
the Gα .

Lemma 3.3 Let α ∈ {0, 1}n−1, then

G0α = Gα(θ2 , θ3 , . . . , θn) and(3.3)

G1α = θ1G0α + Pα(θ2 , θ3 , . . . , θn)(3.4)

for some polynomial Pα(θ2 , θ3 , . . . , θn) ∈ Q[θ2 , θ3 , . . . , θn].

Remark 3.4 By convention, the length of the index for our polynomials indicates
in which polynomial space we are. For example, if β ∈ {0, 1}n , then Gβ ∈ Rn . For
α ∈ {0, 1}n−1 in Lemma 3.3, when we write Gα(θ2 , θ3 , . . . , θn), we mean Gα ∈ Rn−1
embedded in Rn with the substitution θ i ∶= θ i+1. A similar convention will be followed
for Pα .

Proof of Lemma 3.3 The proof will proceed by induction on n − i where i is the
number of trailing 0s in α. The base case 0 = n − n with n zeros is 0α = 0n , and we
have

G0n = F10 (θ1 , θ2 , . . . , θn) = 1 = G0n−1 (θ2 , θ3 , . . . , θn) .

We then consider the case 0α = 01s0n−s−1. The polynomials F1s satisfy the following
identity:

F1s (θ1 , θ2 , . . . , θn) = θ1F1s−1 (θ2 , . . . , θn) + F1s (θ2 , θ3 , . . . , θn).(3.5)

This follows directly from the definition (2.2) where we split the sum in two parts
depending if 1 ∈ A or not. The definition of G01s 0n−s−1 gives us

G01s 0n−s−1 = G1s 0n−s − θ1G1s−1 0n−s+1 = F1s (θ1 , θ2 , . . . , θn) − θ1F1s−1 (θ2 , . . . , θn)
= F1s (θ2 , θ3 , . . . , θn) = Gα(θ2 , θ3 , . . . , θn).

To finish the proof of equation (3.3) by induction, let us assume that α is not of the
form 01s0n−s−1 for some s > 0. Instead, we have 0α = 0w01s0n−k−s for some s > 0 and
some string w of length k − 2. For 0α = 0w01s0n−k−s , we have n − k − s trailing zeros.
Remark that for 0w1s0n−k−s+1 and 0w1s−10n−k−s+2, we have more trailing zeros than
that of 0α and we will use the induction hypothesis with (3.3) in the equality (3.6).

G0w01s 0n−k−s = G0w1s 0n−k−s+1 − (−1)m1(0w)θkG0w1s−1 0n−k−s+2

= Gw1s 0n−k−s+1 (θ2 , θ3 , . . . , θn) − (−1)m1(0w)θkGw1s−1 0n−k−s+2 (θ2 , θ3 , . . . , θn)(3.6)

= [Gw1s 0n−k−s+1 − (−1)m1(w)θk−1Gw1s−1 0n−k−s+2 ](θ2 , θ3 , . . . , θn)(3.7)

= Gw01s 0n−k−s (θ2 , θ3 , . . . , θn) = Gα(θ2 , θ3 , . . . , θn).(3.8)

In (3.7), the expression inside the square bracket [⋯] is treated as a polynomial in the
variables θ1 , . . . , θn−1 in Rn−1 (see Remark 3.4). Hence, the variable θk from (3.6) must
be replaced by θk−1 in (3.7). Furthermore, m1(0w) = m1(w). The expression we get is
exactly the definition of Gw01s 0n−k−s ∈ Rn−1 and equation (3.8) follows. This concludes
the proof of (3.3).
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We next prove equation (3.4) by induction. The base case is if 1α = 1s+10n−s−1, then
using equation (3.5) we have

G1s+1 0n−s−1 = F1s+1 (θ1 , θ2 , . . . , θn)
= θ1F1s (θ2 , θ3 , . . . , θn) + F1s+1 (θ2 , θ3 , . . . , θn)
= θ1G01s 0n−s−1 + F1s+1 (θ2 , θ3 , . . . , θn) .(3.9)

In (3.9), we use (3.3) with G01s 0n−s−1 = G1s 0n−s−1 (θ2 , . . . , θn) = F1s (θ2 , . . . , θn). We then
let P1s 0n−s−1 = F1s+1 (θ1 , . . . , θn−1), and this shows that (3.4) holds in this case.

We now assume that 1α ≠ 1s+10n−s−1. Therefore, 1α = 1w01s0n−k−s for some string
w of length k − 2. We have

G1w01s 0n−k−s = G1w1s 0n−k−s+1 − (−1)m1(1w)θkG1w1s−1 0n−k−s+2

= (θ1G0w1s 0n−k−s+1 + Pw1s 0n−k−s+1 (θ2 , θ3 , . . . , θn))(3.10)

− (−1)m1(1w)θk(θ1G0w1s−1 0n−k−s+2 + Pw1s−1 0n−k−s+2 (θ2 , θ3 , . . . , θn))
= θ1(G0w1s 0n−k−s+1 − (−1)m1(w)θkG0w1s−1 0n−k−s+2 )(3.11)

+ [Pw1s 0n−k−s+1 − (−1)m1(1w)θk−1Pw1s−1 0n−k−s+2 ](θ2 , θ3 , . . . , θn).

In (3.10), we have used the induction hypothesis of (3.4) on both terms. In (3.11),
we group together the terms with θ1 in front, using the identity (−1)m1(1w)θk θ1 =
(−1)m1(1w)+1θ1θk = (−1)m1(w)θ1θk . The term with θ1 in (3.11) is the definition of G0α .
The expression inside the square bracket is a polynomial in Rn−1 that we take as the
definition for Pα . This shows by induction that (3.4) holds in all cases and concludes
the proof of the lemma. ∎

4 A basis for the quotient

The elements Gα are defined so that we could use them to identify a nice basis of the
ideal In . Our first result establishes that the Gα such that α is not a ballot sequence are
in the ideal. The slightly more difficult step is to show that these elements also span
the ideal.

Proposition 4.1 If α ∈ {0, 1}n is not a ballot sequence, then Gα ∈ In .

Proof A sequence α ∈ {0, 1}n is either of the form α = 1s0n−s for some s > 0 or α =
u01s0n−s−k for some s > 0 and some u ∈ {0, 1}k−1.

In the first case, α breaks the ballot condition in position 1 and by equation (3.1),
G1s 0n−s = F1s is in the ideal In .

Now, the other case is established by induction on the position of the last 1 in α.
We assume that α = u01s0n−s−k and, by equation (3.2), Gα is in In if both Gu1s 0n−k−s+1

and Gu1s−1 0n−k−s+2 are elements of In .
Assume that u01s0n−s−k breaks the ballot condition for the first time at position

r. If r < k, then u1s0n−k−s+1 and u1s−10n−k−s+2 both break the ballot condition also
at position r. Since αk = 0, α does not break the ballot condition for the first time at
r = k, so the other possibility is that r > k. In this case, u01r−k with r − k ≤ s breaks
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the ballot condition for the first time and therefore so does u1r−k−1 and so do both
u1s0n−k−s+1 and u1s−10n−k−s+2. By our inductive hypothesis, this implies that Gα ∈ In .

Therefore, by induction, α breaking the ballot condition implies that Gα ∈ In for
all α ∈ {0, 1}n . ∎

We will show that the ideal lies in the span of the Gα such that α breaks the ballot
condition, therefore establishing our main theorem.

Theorem 4.2 The set An ∶= {Gα ∶ α ∈ {0, 1}nbreakstheballotcondition} is a Q-linear
basis of the ideal In .

The proof of this theorem uses our understanding of the harmonic space EQHn ≅
EQCn . In Proposition 2.10, we found that dim(EQHn) = dim(EQCn) is at least the
number of ballot sequences. We first establish a small lemma about a spanning set
for the quotient EQCn showing that the dimension is at most the number of ballot
sequences. Therefore, we have equality and the set Dn in Proposition 2.10 is in fact a
basis of EQHn .

Lemma 4.3 The set Bn = {θβ ∶ β ∈ {0, 1}n is a ballot sequence} Q-spans the quotient
Rn/In .

Proof Order the monomials lexicographically, and let θγ be the smallest monomial
that is not in the Q-span of Bn (modulo In). We must have that γ breaks the ballot
condition, since otherwise θγ ∈ Bn . Therefore, Proposition 4.1 tells us that Gγ ∈ In .
Proposition 3.2 says that Gγ = θγ + ∑β<γ cβ θβ . Hence, modulo In , we have

θγ ≡ θγ − Gγ = − ∑
β<γ

cβ θβ .

The right-hand side is a linear combination of monomials strictly smaller than θγ . By
the choice of θγ , all such monomials are in the Q-span of Bn . Therefore, θγ is also in
the Q-span of Bn , a contradiction. We must conclude that there are no such θγ and
all monomials are in the Q-span of Bn modulo the ideal In . ∎

Proof of (Theorem 4.2) Let dn be the number of ballot sequences of size n. We
have

dn ≤ dim EQHn = dim EQCn ≤ dn ,

where the first inequality follows from Proposition 2.10 and the second follows
from Lemma 4.3. By Proposition 2.7, we have dn = dim EQCn . Let QAn be the
Q-span of the elements of An . Similarly, let QB′n be the Q-span of the set {Gβ ∶ β ∈
{0, 1}n is a ballot sequence}. Using Proposition 3.2, we have that

Rn = QB′n ⊕QAn .

Since QAn ⊆ In and dimQB′n = dn , we conclude that QAn = In . ∎

There are several straightforward consequences of this theorem which we state
here.
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Corollary 4.4 The number of ballot sequences of length n with k entries 1 is known [28]
to be equal to the number f (n−k ,k) of standard tableaux of shape (n − k, k). Therefore,
we have that the Hilbert series of EQHn is

HilbEQHn (q) =
⌊n/2⌋

∑
k=0

f (n−k ,k)qk .

Corollary 4.5 The set Dn is a basis of EQHn and of EQCn .

Corollary 4.6 The set An is a (nonreduced, nonminimal) Gröbner basis of In . A
minimal Gröbner basis for In is given by

{Gα ∶ α ∈ {0, 1}nbreaks the ballot condition only at the rightmost 1 of α}.

Remark 4.7 In this paper, we have adopted the language of ballot sequences. An
alternative (as in [2, 3]) is to use northeast lattice paths in the first quadrant from
(0, 0) with a north step for every 0 and an east step for every 1 as we read in a 0–1
sequence. In such representation, a sequence is ballot if and only if it remains above
the diagonal.
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