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WEIGHT CHANGING OPERATORS FOR
AUTOMORPHIC FORMS ON GRASSMANNIANS

AND DIFFERENTIAL PROPERTIES OF
CERTAIN THETA LIFTS

SHAUL ZEMEL

Abstract. We define weight changing operators for automorphic forms on

Grassmannians, that is, on orthogonal groups, and investigate their basic

properties. We then evaluate their action on theta kernels, and prove that

theta lifts of modular forms, in which the theta kernel involves polynomials of

a special type, have some interesting differential properties.

Introduction

The classical Shimura–Maaß operators ∂
∂τ

+ k
2iy and y2 ∂

∂τ
are well known

for taking (elliptic, real-analytic) modular forms of weight k to modular

forms of weight k + 2 and k − 2, respectively. In addition, [Ma1, Ma2]

consider differential operators which have a similar effect on Siegel modular

forms, a work which was generalized in [Sh2]. The following paper [Sh3]

concerns differential operators on functions on unitary groups which have

related properties. All these operators have number-theoretic as well as

representation-theoretic (or Lie-algebraic) interpretations, and are therefore

the subject of many research papers (see, e.g., the reference [Sh1], which is

strongly related to the case considered in this paper, as well as [Sh4] for

some generalizations of the results of the previously mentioned references

or the investigation of invariant differential operators appearing in [Sh5]).

Our first goal is to define similar operators for modular (or automor-

phic) forms on another type of Shimura varieties, namely quotients of

Grassmannians of vector spaces of signature (2, b−). These are obtained

by interpolating the square of the Shimura–Maaß operators from the case
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b− = 1, the multiple Shimura–Maaß operators obtained in the case b− = 2,

and the operators for Siegel modular forms appearing in the case b− = 3.

One may use Lie-theoretic considerations in order to establish the existence

of such operators, but obtaining their explicit formula in this way is very

tedious, because of the change of coordinates between the tube domain

model and the transitive free action of an appropriate parabolic subgroup

of SO+(V ). We also remark that [Sh1] also considers differential operators

on automorphic forms on orthogonal groups. However, the operators defined

in that reference take automorphic forms of some weight (i.e., a represen-

tation of the maximal compact subgroup) ρ to automorphic forms having

weight ρ⊗ η for some b−-dimensional representation η, hence in particular

take scalar-valued automorphic forms on Grassmannians to vector-valued

functions. Moreover, since that reference works with the coordinates arising

from the bounded model while we consider the tube domain model (since

the explicit formulas for the theta functions are more neatly presented in

this model), an appropriate change of coordinates must be employed. It is

true that after this change of coordinates, using the natural bilinear form

on the tangent space of the Grassmannian in the tube domain model we

may indeed obtain differential operators which remain in the scalar-valued

realm. Indeed, after some additional normalization we obtain the operators

defined in this paper using this method. However, the calculations involved

are very delicate, laborious, long, and unenlightening, for which reason we

have chosen to state and prove the formulas for the operators directly.

The second goal of this paper is to present two applications of these weight

changing operators, in the theory of theta lifts. We recall the generalization,

defined in [B], for the Doi–Naganuma lifting first introduced in [DN, Ng].

This map is given in [B] in terms of a singular theta lift, and takes weakly

holomorphic elliptic modular forms to meromorphic modular forms on

Grassmannians. On the other hand, [Ze2] defines a similar theta lift, using

the same theta functions with polynomials. The first result of this paper

states that in the case of an even dimension, a power of our weight raising

operator sends the theta lift from [Ze2] to the generalized Doi–Naganuma

lifting of [B].

In addition, recall that the theta lift from [B, Section 13] (which is also

studied extensively in [Bru] and others) is a real function. No automorphic

forms of nonzero weight can be real. As a second application for our

operators we define a notion of m-real automorphic forms of positive weight

m, and show that in case one applies the theta lift from [B, Section 14] (or
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188 S. ZEMEL

from [Ze2]) to a modular form with real Fourier coefficients, the resulting

theta lift is m-real.

The first half of the paper contains numerous statements whose proofs

are delayed to later sections. We choose this way of presentation since most

of the proofs consist of direct calculations, which may divert the reader’s

attention from the main ideas. Specifically, the paper is divided into 4

sections. In Section 1 we define the weight raising and weight lowering

operators and state their properties. Section 2 presents the images of theta

functions with special polynomials under the weight changing operators, and

proves the main theorems. Section 3 presents the proofs for the assertions

of Section 1, while Section 4 contains the missing proofs of Section 2.

§1. Weight changing operators for automorphic forms on orthog-

onal groups

In this section, we present automorphic forms on complex manifolds

arising as orthogonal Shimura varieties of signature (2, b−), introduce the

weight raising and weight lowering operators on such forms, and give some

of their properties. The proofs of most assertions are postponed to Section 3.

Let V be a real vector space with a nondegenerate bilinear form of

signature (b+, b−). The pairing of x and y in V is written (x, y), and x2

stands for the norm (x, x) of x. For S ⊆ V , S⊥ denotes the subspace of

V which is perpendicular to S. The Grassmannian G(V ) of V is defined

to be the set of all decompositions of V into the orthogonal direct sum of

a positive definite space v+ and a negative definite space v−. In the case

b+ = 2 (which is the only case we consider in this paper), it is shown in [B,

Section 13], [Bru, Sections 3.2 and 3.3], or [Ze2, Section 2.2] (among others),

that G(V ) carries a complex structure and has several equivalent models,

which we now briefly present. Let

P =
{
ZV =XV + iYV ∈ VC = V ⊗R C

∣∣Z2
V = 0, (ZV , ZV )> 0

}
.

ZV ∈ VC lies in P if and only if XV and YV are orthogonal and have the same

positive norm. P has two connected components (which are interchanged

by complex conjugation), and let P+ be one component. The map

P+→G(V ), ZV 7→ RXV ⊕ RYV

is surjective, and C∗ acts freely and transitively on each fiber of this map

by multiplication. This realizes G(V ) as the image of P+ in the projective
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space P(LC), which is an analytically open subset of the (algebraic) quadric

Z2
V = 0, yielding a complex structure on G(V ). This is the projective model

of G(V ).

Let z be a nonzero vector in V which is isotropic, that is, z2 = 0. The

vector space KR = z⊥/Rz is nondegenerate and Lorentzian of signature

(1, b− − 1). Choosing some ζ ∈ V with (z, ζ) = 1 and restricting the pro-

jection z⊥→KR to {z, ζ}⊥ gives an isomorphism. We thus write V as

KR × R× R, in which

(α, a, b) = aζ + bz +
(
α ∈ {z, ζ}⊥ ∼=KR

)
, (α, a, b)2 = α2 + 2ab+ a2ζ2.

A (holomorphic) section s :G(V )→ P+ is defined by the pairing with

z being 1. Subtracting ζ from any s-image and taking the KC-image

of the result yields a biholomorphism between G(V )∼= s
(
G(V )

)
and the

tube domain KR + iC, where C is a cone of positive norm vectors in the

Lorentzian space KR. C is called the positive cone, and it is determined by

the choice of z and the connected component P+. The inverse biholomor-

phism takes Z =X + iY ∈KC to

ZV,Z =

(
Z, 1,

−Z2 − ζ2

2

)
=

(
X, 1,

Y 2 −X2 − ζ2

2

)
+ i
(
Y, 0,−(X, Y )

)
,

with the real and imaginary parts denoted by XV,Z and YV,Z , respectively.

They are orthogonal and have norm Y 2 > 0. This identifies G(V ) with the

tube domain model KR + iC. Taking the other connected component of P

corresponds to taking the other cone −C to be the positive cone, and to the

conjugate complex structure.

The subgroup O+(V ) consisting of elements of O(V ) preserving the

orientation on the positive definite part acts on P+ and G(V ), respecting

the projection. Elements of O(V ) \O+(V ) interchange the connected com-

ponents of P . The action of O+(V ) (and also of the connected component

SO+(V )) on G(V ) is transitive, with the stabilizer K (or SK 6 SO+(V )) of

a point being isomorphic to SO(2)×O(n) (resp. SO(2)× SO(n)). Therefore

G(V ) is isomorphic to O+(V )/K and to SO+(V )/SK. Given an isotropic

z as above, the action of O+(V ) transfers to KR + iC, and for M ∈O+(V )

and Z ∈KR + iC we have

MZV,Z = J(M, Z)ZV,MZ , with J(M, Z) = (MZV,Z , z) ∈ C∗.
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J is a factor of automorphy, namely the equality

J(MN, Z) = J(M, NZ)J(N, Z)

holds for all Z ∈KR + iC and M and N in O+(V ). For such M we define

the slash operator of weight m, and more generally of weight (m, n), by

Φ[M ]m,n(Z) = J(M, Z)−mJ(M, Z)
−n

Φ(MZ), [M ]m = [M ]m,0.

The fact that (ZV , ZV ) = 2Y 2 and the definition of J(M, Z) yield the

equalities

(1)(
=(MZ)

)2
=

Y 2

|J(M, Z)|2
and

(
F (Y 2)t

)
[M ]m,n = F [M ]m+t,n+t(Y

2)t

the latter holding for every m, n, t, and function F on KR + iC (see [Bru,

Lemma 3.20] for the first equality in Equation (1), and the second one

follows immediately).

The invariant measure on KR + iC is dXdY
(Y 2)b−

(see [Bru, Section 4.1], but

one can also prove this directly, using the generators of O+(V ) considered in

Section 3 below). Note that this measure depends on the choice of a basis for

KR + iC, but changing the basis only multiplies this measure by a positive

global scalar. Let Γ be a discrete subgroup of O+(V ) of cofinite volume. In

most of the interesting cases Γ will be either the O+ or the SO+ part of the

orthogonal group of an even lattice L in V , or the discriminant kernel of

such a group. Given m ∈ Z, an automorphic form of weight m with respect

to Γ is defined to be a (complex valued) function Φ on KR + iC for which

the equation

Φ(MZ) = J(M, Z)mΦ(Z), or equivalently Φ[M ]m(Z) = Φ(Z),

holds for all M ∈ Γ and Z ∈KR + iC. Using the standard argument, such a

function is equivalent to a function on P+ which is −m-homogeneous (with

respect to the action of C∗) and Γ-invariant, as considered, for example,

in [B].

We now consider some differential operators on functions on KR + iC.

Given a basis for KR, we write ∂xk for ∂
∂xk

(for 1 6 k 6 b−). Similarly, ∂yk
stands for the coordinates of the imaginary part from C. The notation for

the derivatives ∂zk = 1
2(∂xk − i∂yk) and ∂zk = 1

2(∂xk + i∂yk) will be shortened

further to ∂k and ∂k, respectively.
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The operator I =
∑

k xk∂xk multiplies a homogeneous function on KR
by its homogeneity degree, and is thus independent of the choice of basis

(indeed, it has an intrinsic Lie-theoretic description). The operators

D∗ =
∑
k

yk∂k and D∗ =
∑
k

yk∂k

from [Na] are intrinsic as well, and they are also invariant under translations

in the real part of KR + iC. If the basis for KR is orthonormal, that is,

orthogonal with the first vector having norm 1 and the rest having norm −1,

then the Laplacian of KR, denoted ∆KR , is defined to be ∂2
x1 −

∑b−
k=2 ∂

2
xk

. It

is independent of the choice of the orthonormal basis (though using a basis

which is not orthonormal it takes a different form), and it is invariant under

the action of O(KR) as well as under translations in KR. With complex

coordinates it has three counterparts,

∆h
KC = ∂2

1 −
b−∑
k=2

∂2
k , ∆h

KC = ∂2
1
−

b−∑
k=2

∂2
k
, and

∆R
KC = ∂1∂1 −

b−∑
k=2

∂k∂k,

which we call the holomorphic Laplacian of KC (of Hodge weight (2, 0)),

the anti-holomorphic Laplacian of KC (of Hodge weight (0, 2)), and the

real Laplacian of KC (of Hodge weight (1, 1)), respectively. These operators

have the same invariance and independence properties as ∆KR . Note that

the appropriate combinations appearing in [Bru, Na] can be identified as our

operators 1
2∆h

KC
, 1

2∆h
KC

, and ∆R
KC

, respectively, expressed in a basis which

is not orthonormal. We shall indeed discuss and generalize the operators ∆1

and ∆2 of [Na] in Proposition 1.5 below.

The weight changing operators and their defining property are given in

Theorem 1.1. For any integer m define R
(b−)
m to be the operator

(Y 2)
b−
2
−m−1∆h

KC(Y 2)m+1− b−
2 = ∆h

KC −
i(2m+ 2− b−)

Y 2
D∗

− m(2m+ 2− b−)

2Y 2
.

In addition, define

L(b−) = (Y 2)2R0 = (Y 2)
b−
2

+1∆h
KC(Y 2)1− b−

2 = (Y 2)2∆h
KC + iY 2(2− b−)D∗.
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Then the equalities

(R(b−)
m F )[M ]m+2 =R(b−)

m

(
F [M ]m

)
, (L(b−)F )[M ]m−2 = L(b−)

(
F [M ]m

)
hold for every C2 function F on KR + iC and any M ∈O+(V ).

The different descriptions of R
(b−)
m and L(b−) coincide by Lemma 3.1

below. Theorem 1.1 has the following standard

Corollary 1.2. If Φ is an automorphic form of weight m on G(V )∼=
KR + iC then R

(b−)
m Φ and L(b−)Φ are automorphic forms on KR + iC which

have weights m+ 2 and m− 2, respectively.

In correspondence with Theorem 1.1 and Corollary 1.2 we call R
(b−)
m

and L(b−) the weight raising operator of weight m and the weight lowering

operator for automorphic forms on Grassmannians of signature (2, b−),

respectively. As already mentioned in the Introduction, these operators may

also be given a Lie-theoretic description (see Section 3 for more details).

However, the explicit operators appearing in Theorem 1.1 are more useful

for our applications.

We shall make use of the operator

D∗D∗ − D∗

2i
=D∗D∗ +

D∗

2i
=
∑
k,l

ykyl∂k∂l,

which we denote by |D∗|2. Lemma 2.2 of [Ze2] shows that

∆(b−)
m,n = 8|D∗|2 − 4Y 2∆R

KC − 4imD∗ + 4inD∗ + 2n(2m− b−)

is the weight (m, n) Laplacian on KR + iC, and the weight m Laplacian

∆
(b−)
m is just ∆

(b−)
m,0 (this extends the corresponding assertion of [Na], since

his operator ∆1 is our ∆
(b−)
0 divided by 8). The constants are normalized

such that

∆(b−)
m,n (Y 2)t = (Y 2)t∆

(b−)
m+t,n+t(2)

holds for every m, n, and t (see the remark after Lemma 3.1 below). The

relations between R
(b−)
m , L(b−), and the corresponding Laplacians are given

by
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Proposition 1.3. The equalities

∆
(b−)
m+2R

(b−)
m −R(b−)

m ∆(b−)
m = (2b− − 4m− 4)R(b−)

m

and

∆
(b−)
m−2L

(b−) − L(b−)∆(b−)
m = (4m− 2b− − 4)L(b−)

hold for every m ∈ Z.

We recall that an automorphic form of weight m on KR + iC is said to

have eigenvalue λ if it is annihilated by ∆
(b−)
m + λ (i.e., eigenvalues are of

−∆
(b−)
m ). Hence Proposition 1.3 has the following

Corollary 1.4. If F is an automorphic form of weight m on KR + iC

which has eigenvalue λ then the automorphic forms R
(b−)
m F and L(b−)F have

eigenvalues λ+ 4m− 2b− + 4 and λ− 4m+ 2b− + 4, respectively.

By evaluating compositions of the weight changing operators one shows

Proposition 1.5. The combination

Ξ(b−)
m = (Y 2)2∆h

KC∆h
KC − iY

2(2m+ 2− b−)D∗∆h
KC + iY 2(2− b−)D∗∆h

KC

+
(2− b−)(2m+ 2− b−)

2
Y 2∆R

KC −
m(2m+ 2− b−)

2
Y 2∆h

KC

commutes with all the weight m slash operators as well as with the Laplacian

∆
(b−)
m . The commutator of the global weight raising operator and the weight

lowering operator is

[
R(b−), L(b−)

]
m

=R
(b−)
m−2L

(b−)− L(b−)R(b−)
m =

m∆
(b−)
m

2
− mb−(2m− 2− b−)

4
.

Proposition 1.5 provides another proof to [Ze2, Lemma 2.2] about ∆
(b−)
m .

It also implies that Ξ
(b−)
m preserves the spaces of automorphic forms of weight

m for all m ∈ Z and for every discrete subgroup Γ of cofinite volume in

O+(V ). It also commutes with ∆
(b−)
m , hence preserves eigenvalues of such

automorphic forms. By rank considerations, one can probably show that the

ring of differential operators which commute with all the slash operators of

weight m is generated by ∆
(b−)
m and Ξ

(b−)
m , hence is a polynomial ring in two

variables (if b− > 1). This assertion should also follow from [Sh5, part (3) of

Theorem 3.3] (since the rank of the symmetric space G(V ) is 2 if b− > 1),

though I have not verified this in detail. As ∆
(b−)
0 is 8∆1 and Ξ

(b−)
0 is 16∆2
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in the notation of [Na], Proposition 1.5 generalizes the main result of that

reference to other weights. A similar argument yields results of the same sort

for (m, n), where a possible normalization for Ξ
(b−)
m,n is (Y 2)−nΞ

(b−)
m−n(Y 2)n,

for which an equality similar to Equation (2) holds. We shall not need these

results in what follows.

We now consider compositions of the weight raising operators. The

natural lth power of R
(b−)
m is the composition

(R(b−)
m )l =R

(b−)
m+2l−2 ◦ · · · ◦R

(b−)
m .

The general formula for the resulting operator seems too complicated to

write as a combination of ∆h
KC

, D∗, and 1
Y 2 with explicit coefficients.

However, we can establish the properties given in the following

Proposition 1.6. (i) The operator (R
(b−)
m )l takes automorphic forms

of weight m on G(LR) to automorphic forms of weight m+ 2l. (ii) In

case the former automorphic form is an eigenfunction with eigenvalue λ,

the latter is also an eigenfunction, and the corresponding eigenvalue is

λ+ l(4m+ 4l − 2b−). (iii) The operator (R
(b−)
m )l can be written as

(R(b−)
m )l =

l∑
c=0

c∑
a=0

A(l)
a,c

(iD∗)c−a(∆h
KC

)l−c

(−Y 2)c
,

where A
(0)
0,0 = 1 and given the coefficients A

(l)
a,c for given l, the coefficient

A
(l+1)
a,c of the next power l + 1 is defined recursively as

a∑
s=0

(
c− s
a− s

)
A(l)
s,c + (2m+ 4l − 2c+ 4− b−)

×
(
A

(l)
a,c−1 +

m+ 2l − c+ 1

2
A

(l)
a−1,c−1

)
.

(iv) For a= 0 the coefficients A
(l)
0,c are given by the explicit formula

A
(l)
0,c =

l! · 2c

(l − c)!

(
m+ l − b−

2

c

)
.

The binomial symbol appearing in part (iv) of Proposition 1.6 is the

extended binomial coefficient : Indeed, for two nonnegative integers x and n
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we have (
x

n

)
=

1

n!

n−1∏
j=0

(x− j),

a formula which makes sense for x ∈ R (as well as x in any Q-algebra).

Part (i) of Proposition 1.6 follows immediately from Corollary 1.2.

For part (ii) Corollary 1.4 shows that the application of Rm+2r (for

0 6 r 6 l − 1) to an eigenfunction adds 4m+ 8r + 4− 2b− to the eigenvalue,

so the assertion follows from evaluating

l−1∑
r=0

(4m+ 8r + 4− 2b−) = l(4m+ 4l − 2b−).

The proofs of parts (iii) and (iv) are given in Section 3.

We recall that M =
(
a b
c d

)
∈ SL2(R) defines the holomorphic map

M : τ ∈
[
H=

{
τ = x+ iy ∈ C

∣∣y > 0
}]
7→ aτ + b

cτ + d
, with j(M, τ) = cτ + d,

the latter being the factor of automorphy of this action. Modular forms of

weight (k, l) (or just weight k if l = 0) with respect to a discrete subgroup Γ

of SL2(R) with cofinite volume (with respect to the invariant measure dxdy
y2

)

are functions f :H→ C which are invariant under the corresponding weight

(k, l) slash operators for elements of Γ. The weight (k, l) Laplacian is

∆k,l = 4y2∂τ∂τ − 2iky∂τ + 2ily∂τ + l(k − 1),

normalized such that ∆k = ∆k,0 annihilates holomorphic functions and the

Laplacians commute with powers of y as in Equation (2). The Shimura–

Maaß operators

δk = y−k∂τy
k = ∂τ +

k

2iy
and y2∂τ

(note the different normalization from [Bru, Ze2]!) take modular forms

of weight k to modular forms of weight k + 2 and k − 2, respectively,

or more precisely, satisfy an appropriate commutation relation with the

slash operators for all the elements of SL2(R). They also change Laplacian

eigenvalues (again, with respect to −∆k rather than ∆k): δk adds k to the

eigenvalue, while y2∂τ subtracts k − 2 from it. Moreover, the powers of the

Shimura–Maaß operators are given by, for example, [Za, equation (56)],
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stating that

δlk = δk+2l−2 ◦ · · · ◦ δk =
l∑

r=0

l!

(l − r)!

(
k + l − 1

r

)
∂l−rτ

(2iy)r

(for arbitrary k, not necessarily integral and nonnegative). Theorem 1.1 and

Proposition 1.3 show that our weight changing operators R
(b−)
m and L(b−)

have similar properties. However, our operators are differential operators of

order 2 while the Shimura–Maaß operators are of order 1. This is why the

results of Propositions 1.5 and 1.6 are more complicated than the fact that

δk−2y
2∂τ is just ∆k

4 , the commutator [δ, y2∂τ ]k being simply k
4 , and [Za,

equation (56)].

Nonetheless, the operators R
(b−)
m and L(b−) for small values of b− are

closely related to the Shimura–Maaß operators. Indeed, for b− = 1 the group

SO+
2,1 is PSL2(R) and the tube domain KR + iC is just H. We have

J(M, τ) = j2(M, τ), hence [M ]m = [M ]H2m and ∆(1)
m = ∆2m

(the same assertions hold for the operators involving anti-holomorphic

weights). Our operators R
(1)
m and L(1) are squares of the Shimura–

Maaß operators, namely

R(1)
m = δ2

2m = δ2m+2δ2m and L(1) = (y2∂τ )2.

Note that in this case

Ξ(1)
m =

(∆2m)2

16
− m∆2m

8
∈ C[∆(1)

m = ∆2m],

in accordance with the rank of the group being 1 rather than 2 (in particular,

in the notation of [Na] we have ∆2 = ∆1
4 in this case).

For b− > 1 many authors (including [Bru, Na]) take the basis for KR
as two elements spanning a hyperbolic plane together with an orthogonal

basis of elements of norm −2. In elements of the positive cone C, the first

two coordinates are positive. In particular, for b− = 2 we have KR + iC ∼=
H×H, with τ = x+ iy and σ = s+ it being the two coordinates. The group

SO+
2,2 is an order 2 quotient of SL2(R)× SL2(R), acting on G(V )∼=H×H

through

(M, N) : (τ, σ) 7→ (Mτ, Nσ) with J
(
(M, N), (τ, σ)

)
= j(M, τ)j(N, σ).
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It follows that

[M, N ]m = [M ]Hm,τ [N ]Hm,σ and ∆(2)
m = 2∆m,τ + 2∆m,σ

(which extend to the operators with anti-holomorphic weights as well). Our

operators are

R(2)
m = 2δm,τδm,σ, L(2) = 8y2t2∂τ∂σ and Ξ(2)

m = ∆m,τ∆m,σ.

In both cases b− = 1 and b− = 2 the assertions of this section follow from

properties of the Shimura–Maaß operators (note that Y 2 is 2y2 for b− = 1).

When b− = 2 the special orthogonal group of a negative definite subspace is

also SO(2), which makes the theory of automorphic forms more symmetric.

Working with b− = 3 in this model yields another coordinate z = u+ iv.

The positivity of y, t, and yt− v2 is equivalent to

Π =

(
τ z

z σ

)
being in H2 =

{
Π =X + iY ∈M2(C)

∣∣Π = Πt, Y � 0
}
.

Hence KR + iC is identified with the Siegel upper half-plane of degree 2.

The group SO+
2,3 is PSp4(R), with the symplectic action and the factor of

automorphy (hence the slash operators) from the theory of Siegel modular

forms. In this case

R(3)
m =−Mm

Y 2
, L(3) =−Y 2N0, and ∆(3)

m = 2Tr(Ωm,0)

in the notation of [Ma1, Ma2] for degree 2 (for weight (m, n) the latter

assertion extends to the modified Laplacian ∆̃
(3)
m,n presented in Section 3).

The operator ∆h
KC

is also a constant multiple of the operator D considered,

for example, in [CE, Ch].

§2. Images of Theta Lifts under R
(b−)
m and L(b−)

For natural r, s, t, and l we define the polynomials

Pr,s,t(µ, Z) =
(µ, ZV )r(µ, ZV )t

(Y 2)s
and P

(l)
r,s,t(µ, Z) = Pr,s,t(µ, Z)(µ2

−)l.

As a function of µ ∈ V , the polynomial Pr,s,t(µ, Z), considered, for example,

in [Ze2], is homogeneous of degree (r + t, 0) with respect to the element

of G(V ) represented by Z, while P
(l)
r,s,t(µ, Z) has homogeneity degree
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(r + t, 2l). Equation (5) of [Ze2] extends from Pr,s,t = P
(0)
r,s,t to the more

general polynomials P
(l)
r,s,t: The equality

P
(l)
r,s,t(MZ, µ) = J(M, Z)s−rJ(M, Z)

s−t
P

(l)
r,s,t(Z, M

−1µ)(3)

holds for every µ ∈ V , Z ∈KR + iC, M ∈O+(V ), and r, s, t, and l from N.

We shall assume that V = LR for some fixed even lattice L (of signature

(2, b−)), and consider the theta function of L which is based on the

polynomial P
(l)
r,s,t. This is a (vector-valued) function of τ = x+ iy ∈H and

Z ∈KR + iC, which is a sum of expressions of the form

F
(l)
r,s,t(τ, Z, µ) = e−∆v/8πy(P

(l)
r,s,t)(µ, Z)e

(
τ
µ2

+

2
+ τ

µ2
−
2

)
.(4)

Here µ± are the parts of µ ∈ V which lie in the spaces v± according to

the element of G(V ) corresponding to Z, ∆v is the Laplacian on V which

corresponds to the majorant associated with that element (i.e., to the

bilinear form in which the sign on the pairing on v− is inverted to be

positive as well), and e(w) = e2πiw for every complex w. A simple and direct

calculation proves

Lemma 2.1. (i) We have the equality µ2
+ = P1,1,1(µ, Z). In addition, the

following equalities hold:

(ii) ∆v+Pr,s,t = 4rtPr−1,s−1,t−1.

(iii) ∆v−(µ2
−)l = 2l(2l + b− − 2)(µ2

−)l−1.

Part (i) of Lemma 2.1 shows that we can write the exponent in

Equation (4) as the constant e
(
τ µ

2

2

)
(independent of Z) times e−2πyP1,1,1 .

Since the differences in the indices in part (ii) of Lemma 2.1 remain the same,

l does not affect the weight of modularity of P
(l)
r,s,t, and P1,1,1 is invariant

(by Equation (3)), we find that replacing P by F in Equation (3) still yields

a valid equation. Let L∗ = Hom(L, Z) be the dual lattice of L and L∗/L

the (finite) discriminant group of L. Then the theta function Θ
(l)
L,r,s,t is the

C[L∗/L]-valued function defined by

Θ
(l)
L,r,s,t(τ, Z) =

∑
γ∈L∗/L

θ
(l)
γ+L,r,s,t(τ, Z)eγ ,

θ
(l)
γ+L,r,s,t(τ, Z) =

∑
µ∈γ+L

F
(l)
r,s,t(τ, Z, µ)
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(this function is ΘL(τ, 0, 0; v, P
(l)
r,s,t) in the notation of [B], where v ∈G(LR)

corresponds to Z ∈KR + iC). The extension of Equation (3) to Θ
(l)
L,r,s,t

shows that Θ
(l)
L,r,s,t is automorphic of weight (s− r, s− t) as a function of

Z ∈KR + iC, and [B, Theorem 4.1] shows that as a function of τ ∈H it is

a vector-valued modular form of weight
(
1 + r + t, 2l + b−

2

)
and the Weil

representation ρL. The latter is a representation of the metaplectic double

cover Mp2(Z) of SL2(Z), which is defined by sending the generators T and S

of Mp2(Z) lying over the elements
(

1 1
0 1

)
and

(
0 −1
1 0

)
of SL2(Z), respectively,

to

ρL(T )(eγ) = e(γ2/2)eγ ,

ρL(S)(eγ) =
ζ
b−−b+
8√

∆L

∑
δ∈L∗/L

e(−(γ, δ))eδ,

respectively. For the properties of ρL see [Ze1], as well as the references cited

there. The space C[L∗/L] comes with a Hermitian pairing 〈·, ·〉ρL in which

the eγ are orthonormal, and ρL is a unitary representation with respect to

this pairing. The operation of complex conjugation on Θ
(l)
L,r,s,t interchanges

r and t and sends τ to −τ (this is equivalent to multiplying the bilinear

form on V by −1, but as we rather stay in the signature (2, b−) setting, we

prefer this anti-holomorphic operation on τ). It also replaces ρL by its dual

representation, but we shall consider the effect of complex conjugation only

for the automorphy in the Z variable.

We are interested in the action of the operators R
(b−)
m and L(b−) on theta

kernels, and the resulting differential properties of the associated theta lifts.

Several proofs will involve comparisons of these actions on theta kernels with

the actions of the operators δk and y2∂τ on these theta kernels (multiplied

by the appropriate powers of y). The latter are given (in a more general

context) in [Ze2, equations (6a) and (6b)]. As P
(l)
r,s,t = Pr,s,t(µ

2
−)l, Lemma 2.1

shows that in our case these equations take the form

(5)

δky
b−
2

+2lΘ
(l)
L,r,s,t = πiy

b−
2

+2lΘ
(l)
L,r+1,s+1,t+1 +

il(2l + b− − 2)

8π
y
b−
2

+2l−2Θ
(l−1)
L,r,s,t

(where k = 1− b−
2 + r + t− 2l) and

y2∂τy
b−
2

+2lΘ
(l)
L,r,s,t = πiy

b−
2

+2l+2Θ
(l+1)
L,r,s,t +

irt

4π
y
b−
2

+2lΘ
(l)
L,r−1,s−1,t−1(6)

(note again the different normalization of these operators).
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Recall that given a modular form F of weight 1 + r + t− b−
2 − 2l and

representation ρL, possibly with exponential growth at the cusps, its theta

lift with respect to the polynomial P
(l)
r,s,t is defined in [B, Ze2], and others as

follows. For w > 1 let

Dw =
{
τ ∈H

∣∣|<τ |6 1/2, |τ |> 1, =τ 6 w
}
,

and assume that

lim
w→∞

∫
Dw

y1+r+t−σ〈F (τ),ΘL(τ, v, pv)〉ρL
dxdy

y2

exists for <σ� 0 and defines a holomorphic function of σ on some right half-

plane, which may be extended to a meromorphic function of σ for all σ ∈ C.

Then the theta lift Φ
(l)
L,r,s,t(F, Z) is the constant term of the expansion of

this meromorphic function at σ = 0. Now, the modular form F has a Fourier

expansion of the sort

F (τ) =
∑

γ∈L∗/L

∑
n∈Q

cn,γ(y)qneγ ,(7)

where qn denotes e(nτ) and the cn,γ are smooth functions of y = =τ , which

vanish unless n ∈ γ2

2 + Z. The modular forms which are usually considered

also satisfy the condition that cn,γ = 0 unless n�−∞ (for F which is

holomorphic onH this means at most a pole at the cusp, and not an essential

singularity).

The relations between the action of the (classical) Shimura–Maaß oper-

ators on the lifted modular form and the action of these operators on the

theta kernel used for the theta lift are given in the following

Lemma 2.2. Let F± be a modular form of weight k ± 2 = 1 + r + t−
b−
2 − 2l ± 2 and representation ρL, with Fourier expansion as in Equa-

tion (7), and assume that the regularized theta lifts Φ
(l)
L,r,s,t(Z, δkF−) and

Φ
(l)
L,r,s,t(Z, y

2∂τF+) are well defined. Assume that the growth condition

cγ,n(y) = o(eεy) as y→∞ holds for every γ, n, and ε > 0, and that c0,0(y) is

o(yT ) as y→∞ for some T . Then the theta lift Φ
(l)
L,r,s,t(Z, δkF−) coincides,

up to an additive constant which may appear only if r = t, with the value at Z

of the theta lift of F− with respect to −y2∂τΘ
(l)
L,r,s,t. The same assertion holds

for Φ
(l)
L,r,s,t(Z, y

2∂τF+) and the theta lift of F+ with respect to −δkΘ
(l)
L,r,s,t.
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Proof. See [Ze2, Lemmas 3.4 and 3.6] as well as the argument proving

Lemma 2.7 of that reference. Note the factors of 2i distinguishing our

operators here from those of [Ze2], and observe that the theta function

is conjugated in the integral defining the theta lift.

The complex conjugation of Θ
(l)
L,r,s,t in the definition of the theta lift

implies that Φ
(l)
L,r,s,t(Z, F ) is automorphic of weight (s− t, s− r). We

shall thus consider only the case r = s, where the automorphy in (the

corresponding) Equation (3) involves only J(M, Z) and not its complex

conjugate. As with Pr,s,t, we may omit the superscript (l) in case l = 0. In the

same manner as in Section 1, we shall postpone most of the (calculational)

proofs to Section 4. Only the assertions about theta lifts will be proved here.

The first assertion we are interested in is

Proposition 2.3. The action of R
(b−)
m takes y

b−
2 ΘL,m,m,0 to 4πi times

the complex conjugate of y2∂τ
(
y
b−
2 ΘL,m+2,m+2,0

)
.

We remark that Proposition 2.3 may be formulated in terms of comparing

the actions of elements from the universal enveloping algebras of sl2(R) and

so(V )∼= so2,b− on the theta kernel. However, unlike [Ze2, Proposition 2.3]

(and [Bru, Proposition 4.5]), which compares the action of order 2 elements

of both universal enveloping algebras, here the one from the algebra of so2,b−

has order 2 while the element from sl2 has order 1.

We can now establish the first property of the theta lift from [Ze2].

Theorem 2.4. Assume that b− is even, and let f be a weakly holomor-

phic modular form of weight 1− b−
2 −m and representation ρL. Consider

the modular form F = 1
(2πi)m δ

m

1− b−
2
−m

f , of weight k = 1− b−
2 +m, and its

theta lift ΦL,m,m,0(Z, F ) considered in [Ze2, Theorem 3.9]. The image of

the latter automorphic form under 1

(8π2)b−/2
(R

(b−)
m )b−/2 is a meromorphic

automorphic form of weight m+ b− on KR + iC, whose singularities are

poles of order m+ b− along special divisors.

Proof. Proposition 2.3 yields the equality

1

8π2
R(b−)
m y

b−
2 ΘL,m,m,0(τ, Z) =

i

2π
y2∂τy

b−
2 ΘL,m+2,m+2,0(τ, Z)

for every τ ∈H and Z ∈KR + iC. As F (as well as its images under

any power of δk) satisfies the conditions of Lemma 2.2, we establish
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the equality

1

8π2
R(b−)
m ΦL,m,m,0(Z, F ) = ΦL,m+2,m+2,0

(
Z,

1

2πi
δkF

)
.

Repeating this argument, we get

1

(8π2)l
(R(b−)

m )lΦL,m,m,0(Z, F ) = ΦL,m+2l,m+2l,0

(
Z,

1

(2πi)l
δlkF

)
for any l ∈ N. Consider now the case l = b−

2 . Then F̃ = 1

(2πi)b−/2
δ
b−/2
k F

is 1

(2πi)m+b−/2
δ
m+b−/2
k−2m f with f weakly holomorphic of weight 1− b−

2 −m

(which is integral since b− is even). But then 1

(2πi)m+b−/2
δ
m+b−/2
k−2m is just

the operator
(
∂τ
2πi

)m+b−/2 (which takes qn from a Fourier expansion to

nm+b−/2qn—this is the reason for our normalization), so that the weight

1 + b−
2 +m modular form F̃ is again weakly holomorphic. Theorem 14.3

of [B] now shows that our automorphic form of weight m+ b−, which we

write as ΦL,m+b−,m+b−,0(Z, F̃ ), is meromorphic on KR + iC, with poles of

order m+ b− along rational quadratic divisors associated with negative

norm vectors in L∗ whose corresponding coefficients in Equation (7) do

not vanish. This completes the proof of the theorem.

We remark that in case the modular form f is a harmonic weak Maaß form

the modular form F̃ from the proof of Theorem 2.4 is again weakly

holomorphic. Moreover, in case the image of f under the operator ξk−2m

of [BF] does not have a pole at the cusp, the theta lift has no additional

singularities, and the result of Theorem 2.4 extends to this case. However,

in the theta lift ΦL,m,m,0(Z, F ) itself one can still distinguish the case where

f is weakly holomorphic from the one where F is such a harmonic weak

Maaß form.

For the weight lowering operator L(b−), we do not have a nice equivalent

to Proposition 2.3. However, we do have an interesting result concerning its

mth power. We begin with

Lemma 2.5. The image of Θ
(l)
L,k,n,n(−τ , Z) under L(b−) is

4π2y2Θ
(l+1)
L,k+2,n,n(−τ , Z) + n

(
2l +

b−
2

)
Θ

(l)
L,k+1,n−1,n−1(−τ , Z)

+
n(n− 1)l

(
l − 1 + b−

2

)
4π2y2

Θ
(l−1)
L,k,n−2,n−2(−τ , Z).
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Lemma 2.5 allows us to establish the following

Proposition 2.6. For any s ∈ N, the image of ΘL,m,m,0 under (L(b−))s

attains, on τ and Z, the value

∑
h

(
s

h

)
Γ
(
s+ b−

2

)
Γ
(
h+ b−

2

) m!(4π2y2)h

(m− s+ h)!
Θ

(h)
L,s+h,m−s+h,m−s+h(−τ , Z).

The case s=m in Proposition 2.6 is of particular importance, as is shown

in the following

Proposition 2.7. The expression (L(b−))my
b−
2 ΘL,m,m,0 equals the com-

plex conjugate of (−4πi)mδm
1− b−

2
−m,τ

y
b−
2

+2mΘ
(m)
L,0,0,m(τ, Z).

Automorphic forms of nonzero weight can never be real-valued, because

complex conjugation yields an automorphic form with a different weight.

However, multiplying the complex conjugate automorphic form by a power

of Y 2 leads to an object which is comparable with the image of our

automorphic form under the appropriate power of a weight changing

operator, as these two functions do have the same weight. We shall thus

say that an automorphic form Φ, of positive weight m, is m-real if its

image under the mth power of the weight lowering operators L(b−) coincides

with its complex conjugate multiplied by a positive multiple of (Y 2)m. We

now show that the theta lifts from [Ze2, Theorem 3.9] are m-real, or more

generally:

Theorem 2.8. Let F be as in Theorem 2.4 (but without the restric-

tion on the parity of b−), and assume that F is an eigenfunction with

respect to (minus) the Laplacian of weight 1− b−
2 +m, with eigenvalue

λ=−mb−
2 . Assume further that the Fourier coefficients cγ,n of F appear-

ing in Equation (7) are real. Then applying the operator (L(b−))m to
im

2 ΦL,m,m,0(Z, F ) yields m!Γ
(
m+ b−

2

)
(Y 2)m/Γ

( b−
2

)
times the complex con-

jugate of im

2 ΦL,m,m,0(Z, F ).

Proof. By Proposition 2.7, the image of im

2 ΦL,m,m,0 under (L(b−))m

coincides with im

2 times the regularized integral of F paired with the function

(−4πi)mδm
1− b−

2
−m,τ

y
b−
2

+2mΘ
(m)
L,0,0,m(τ, Z).
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On the other hand, the fact that the first index in P0,0,m vanishes allows us

to use Equation (6) successively m times and write

(−πi)my
b−
2

+2mΘ
(m)
L,0,0,m(τ, Z) as just (−y2∂τ )my

b−
2 ΘL,0,0,m(τ, Z).

As in the proof of Theorem 2.4, we can write (L(b−))mΦL,m,m,0(Z, F ),

using Lemma 2.2, as the theta lift im

2 ΦL,0,0,m

(
Z, 4mδm

1− b−
2
−m,τ

(−y2∂τ )mF
)
.

Now, as F is an eigenfunction and y2∂τ takes eigenfunctions to eigen-

functions, we can replace each combination −4δly
2∂τ , starting from the

innermost pair, by the appropriate eigenvalue. As after applying (−y2∂τ )r

the eigenvalue becomes λ− r
(
m− r − b−

2

)
, the modular form we plug inside

the latter lift is just F multiplied by the scalar
∏m−1
r=0

[
λ− r

(
m− r −

b−
2

)]
. Substituting the value of λ, the rth multiplier becomes just (r −

m)
(
r + b−

2

)
, and the product is (−1)mm!Γ

(
m+ b−

2

)
/Γ
( b−

2

)
. Division by

m!Γ
(
m+ b−

2

)
(Y 2)m/Γ

( b−
2

)
thus gives (−i)m

2 ΦL,0,m,m(Z, F ), so that we need

to show why ΦL,0,m,m(Z, F ) is the complex conjugate of ΦL,m,m,0(Z, F ).

As the Fourier coefficients of F are real, we obtain F (τ) = F (−τ). On the

other hand, we have seen that complex conjugation on our theta function

interchanges the indices r and t and replaces the variable τ by −τ . The

required assertion now follows from the fact that powers of y and the

measure dxdy
y2

are both preserved by the change of variable τ 7→ −τ . This

completes the proof of the theorem.

We remark that the choice of λ=−mb−
2 in Theorem 2.8 is not crucial.

Any choice of λ for which the number
∏m−1
r=0

[
r
(
m− r − b−

2

)
− λ

]
is positive

will be sufficient for Theorem 2.8 to hold (with the same proof). However,

we chose this eigenvalue as it is the eigenvalue of the theta lifts from [Ze2].

§3. Proofs of the Properties of R
(b−)
m and L(b−)

In this section, we include the proofs of the properties of the weight raising

and weight lowering operators appearing in Section 1.

We first introduce (following [Na]) a convenient set of generators for

O+(V ). For ξ ∈KR we define the element pξ ∈ SO+(V ) whose action is

[
µ ∈KR = {z, ζ}⊥

]
7→ µ− (µ, ξ)z, ζ 7→ ζ + ξ − ξ2

2
z, z 7→ z.

Furthermore, given an element A ∈O(KR) and a scalar a ∈ R∗ such that

a > 0 if A ∈O+(KR) and a < 0 otherwise, we let ka,A ∈O+(V ) be the
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element acting as

[
µ ∈KR = {z, ζ}⊥

]
7→Aµ, ζ − ζ2

2
z 7→ 1

a

(
ζ − ζ2

2
z

)
, z 7→ az.

For any Z ∈KR + iC we have

pξZ = Z + ξ, J(pξ, Z) = 1, ka,AZ = aAZ, and

J(ka,A, Z) =
1

a
.

Note that the relation between A and the sign of a is equivalent to preserving

C rather than mapping Z into KR − iC—it appears that [Na] ignored this

point. Choose now an element of G(KR) in which the positive definite

space is generated by the norm 1 vector u1, and consider the involution

w ∈ SO+(KR) defined by

[
µ ∈KR = {z, ζ}⊥

]
7→ µ− 2(µ, u1)u1, ζ − ζ2

2
z 7→ −z,

z 7→ −
(
ζ − ζ2

2
z

)
(w inverts the positive definite space Ru1). Its action on KR + iC is through

wZ =
2

Z2

[
Z − 2(Z, u1)u1

]
with J(w, Z) =

Z2

2
.

The elements ka,A with (a, A) in the index 2 subgroup of R∗ ×O(KR) thus

defined and pξ for ξ ∈KR generate the stabilizer StO+(V )(Rz) of the isotropic

space Rz in O+(V ) as the semi-direct product of these groups. The fact

that adding w to StO+(V )(Rz) generates O+(V ) is now easily verified by

considering the action on isotropic 1-dimensional subspaces of V .

Some useful relations are derived in the following

Lemma 3.1. Let KR be a nondegenerate vector space of dimension b−,

fix α ∈ C, and let F be a C2 function that is defined on a neighborhood of a

point Z =X + iY ∈KC with Y 2 > 0. Then the following relations hold:

(Y 2)−α∆h
KC

(
(Y 2)αF

)
(Z) = ∆h

KCF (Z)− 2iα

Y 2
D∗F (Z)

−
α(α− 1 + b−

2 )

Y 2
F (Z)
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and

(Y 2)−α∆h
KC

(
(Y 2)αF

)
(Z) = ∆h

KCF (Z) +
2iα

Y 2
D∗F (Z)

−
α(α− 1 + b−

2 )

Y 2
F (Z).

We remark that Lemma 3.1 holds for KR of arbitrary signature (not

necessarily Lorentzian), but not negative definite (for Y 2 > 0 to be possible).

Proof. The proof is obtained by a straightforward calculation, using an

orthonormal basis for KR and the action of ∂k and ∂k on functions of Y

alone.

We remark that the third operator ∆R
KC

bears a property similar to

Lemma 3.1, which is used implicitly in [Ze2, Section 3] in order to prove

Equation (2).

We can now present the

Proof of Theorem 1.1. Multiply both sides of the desired assertion for

R
(b−)
m , as well as the function F there, by (Y 2)m. Lemma 3.1, the first

definition of R
(b−)
m , and Equation (1) show that this yields the equivalent

equality

(R
(b−)
0 F )[M ]2,−m =R

(b−)
0

(
F [M ]0,−m

)
.

Observe that conjugating the latter equation and multiplying by (Y 2)2

yields the required equality for L(b−). Hence we are reduced to proving only

this equality. Moreover, R
(b−)
0 involves only holomorphic differentiations,

which means that it commutes with the power of J(M, Z) coming from

the anti-holomorphic weights. Hence we can take m= 0, which implies that

proving the equation

(R
(b−)
0 F )[M ]2 =R

(b−)
0

(
F [M ]0

)
(which the assertion for R

(b−)
0 in the formulation of the theorem) suffices for

proving the theorem. Writing the arguments as M−1(Z) in both sides and

using the cocycle condition brings the latter equation to the form

(R
(b−)
0 F )(Z)J(M−1, Z)2 = (R

(b−)
0 )M

−1
F (Z).(8)

By a standard argument it suffices to verify Equation (8) for M−1 being

one of the generators of O+(V ) considered above. Equation (8) with M−1 =
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pξ follows from the invariance of both ∆h
KC

and D∗ under translations of

X = <Z and the fact that J(pξ, Z) = 1. The action of M−1 = ka,A divides

∆h
KC

by a2, leaves D∗ invariant, and divides Y 2 by a2 (since A ∈O(KR)),

which proves Equation (8) since J(ka,A, Z) = 1
a . Finally, for M−1 = w we

have the equalities

(∆h
KC)w =

(
Z2

2

)2

∆h
KC − (b− − 2)

Z2

2
D, (D∗)w =

Z2

Z
2D
∗ − 2iY 2

Z
2 D

with D =
∑

k zk∂k from [Na] (the corresponding operator from [Na] is
1
2∆h

KC
rather than ∆h

KC
, while δ = Z2

2 , δ = Z
2

2 , and d= Y 2

2 there). Using

Equation (1) we thus find that applying M−1 = w to the sum of ∆h
KC

and
i(b−−2)
Y 2 D∗ (which is R

(b−)
0 ) multiplies it by

(
Z2

2

)2
(as the coefficients in front

of D cancel), which establishes Equation (8) also for this case using the value

of J(w, Z). This completes the proof of the theorem.

In order to indicate what is the Lie-theoretic interpretation of the

operators R
(b−)
m and L(b−), we recall the vector u1 we used for defining

w above, and take a vector ũ ∈KR of norm −1 which is orthogonal to u1

(we assume here b− > 1, but for b− = 1 our operators are squares of the

order 1 operators δ2m and y2∂τ , whose Lie-theoretic interpretation is given,

for example, in [Ve]). These choices determine the parabolic subgroup of

SO+(V ) appearing in the following

Proposition 3.2. Let HKR be the subgroup of SO+(KR) consisting of

those matrices which preserve the isotropic subspace R(u1 + ũ) and whose

action on the quotient (u1 + ũ)⊥/R(u1 + ũ) is trivial. Define H to be the

group generated by all the elements pξ with ξ ∈KR and by the elements ka,A
with a > 0 and A ∈HKR. Then the group H operates freely and transitively

on KR + iC.

Let K ∼= SO(2)× SO(b−) be the stabilizer, in SO+(V ), of the element

of G(V ) represented by Z = iu1, and let k be its Lie algebra. The action

of a normalized generator of so(2)⊆ k on so(V )C decomposes the latter

space into the eigenspaces with eigenvalue 0 (this is precisely k) and ±i
(complex conjugate spaces of dimension b− each). Hence the action on the

space of products of two elements of so(V ) (inside its universal enveloping

algebra, say) decomposes into eigenspaces with eigenvalues 0, ±i, and ±2i.

One verifies that in each of the ±2i-eigenspaces, precisely one combination

commutes with the part so(b−) of k. As our automorphic forms correspond
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to functions on SO(V ) on which SO(2)⊆K operates according to a specific

character and SO(b−) operate trivially (normalized suitably), these elements

(of order 2) of the universal enveloping algebra of so(V ) lead to weight

raising and weight lowering operators. One may then evaluate, using the

interplay between the operations of k and the Lie algebra of the group H

from Proposition 3.2, the action of these operators, and find that they lead

to our R
(b−)
m and L(b−). However, the change of coordinates between HKR

and KR + iC in this evaluation is more tedious than one might believe.

We also indicate briefly the connection between our operators and those

of [Sh1]. That reference defines, for every representation ρ of C× ×GLb−(C)

(a subgroup of which we identify with the complexification of the compact

subgroup K, which is isomorphic to the product C× × SO(b−, C)), a differ-

ential operator that roughly sends (vector-valued) automorphic forms with

weight (i.e., representation) ρ to automorphic forms having representation

ρ⊗ ω, where ω is the standard representation of that product on Cb− . This

representation space is considered as the holomorphic cotangent space of

G(V ), and the operator is, in fact, just the holomorphic differential map d,

twisted by the image of a scalar η and a matrix ξ (both defined explicitly

in [Sh1]) via the representation ρ. Starting with the 1-dimensional represen-

tation which is the mth power of C× (this is the representation associated

with our automorphic forms of weightm) and repeating this operation twice,

we obtain an automorphic form with representation involving ω⊗2. The idea

is expressing the resulting automorphic form when ω is identified with KC,

and using the bilinear form on the latter space in order to replace the ω⊗2-

valued automorphic forms by scalar-valued ones.

Now, we replace the coordinate denoted z in [Sh1] by u=
√

2z, consid-

ering it as lying in the complexified space (v−)C associated with some base

point for G(V ), and decompose it as some multiple uz of zv− plus a vector

u⊥ which is perpendicular to zv− . Here z is again the isotropic vector we

used for defining KR. Choosing the positive part of z appropriately (recall

that the vector denoted p(z) in [Sh1] is not presented in the canonical form),

we obtain that our norm 0 vector has pairing 1 + utu− 2utzv− with z and its

positive and negative KC coordinates are i(1− utu) and 2u⊥, respectively.

It follows that the associated element Z of KC (which can be shown to be

in KR + iC) satisfies (Z + ie+)2 = −4
1+utu−2utz−

(where e+ is the generator

of the positive part of KR), so that the inverse map sends Z to the vector

obtained by multiplying the positive part of −2 Z+ie+
(Z+ie+)2

by i, and adding

zv− to the result. Given an automorphic form F of weight m on G(V ),
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a very lengthy, tedious, and involved calculation gives us the expression

for the ω⊗2-valued automorphic form obtained from F under the operator

mentioned in the previous paragraph, and after applying the pairing we

obtain an expression closely related to (Z + ie+)2mR
(b−)
m [(Z + ie+)−2mF ].

Indeed, the expression denoted by η in [Sh1] becomes 16Y 2

|(Z+ie+)2|2 using our

variable, so that multiplying by ηm before applying the operator and by

η−m afterward corresponds to the operation involving Y 2m appearing in

the definition of R
b−
m , as well as the additional operation with (Z + ie+)2m.

However, the details of this calculation are very long as well, and therefore

we have chosen to state and prove Theorem 1.1 more directly.

For calculational purposes it turns out convenient to introduce the

operator

∆̃(b−)
m,n = ∆(b−)

m,n − 2n(2m− b−),

on which complex conjugation interchanges the indices m and n. The

operator

(D∗)2 − D∗

2i
=
∑
k,l

ykyl∂k∂l

will also show up, so we denote it (̃D∗)2. We now turn to the

Proof of Proposition 1.3. Conjugating the desired equality for R
(b−)
m by

(Y 2)m, applying Equation (2), and taking the differences between the

operators ∆̃
(b−)
m,n and ∆

(b−)
m,n into consideration, we see that the asserted

equality for R
(b−)
m is equivalent to

∆̃
(b−)
2,−mR

(b−)
0 −R(b−)

0 ∆̃
(b−)
0,m = (2b− + 4m− 4)R

(b−)
0 .

Moreover, multiplying the complex conjugate of the latter equation by

(Y 2)2 and comparing ∆̃
(b−)
2,−m with ∆

(b−)
2,−m yields the required property for

L(b−) (with the index m replaced by −m). Hence, as in the proof of

Theorem 1.1, we are reduced to proving this single equation. In addition,

the dependence on m of the left hand side enters only through the difference

−4imD∗ between the operators ∆̃
(b−)
l,−m and ∆

(b−)
l with l ∈ {0, 2}. As a simple

calculation yields

[
D∗,∆h

KC

]
= i∆h

KC and

[
D∗,

D∗

Y 2

]
=
iD∗

Y 2
,
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it suffices to prove the equality for m= 0 (i.e., the original assertion for

R
(b−)
0 ):

∆
(b−)
2 R

(b−)
0 −R(b−)

0 ∆
(b−)
0 = (2b− − 4)R

(b−)
0 .

The commutator of ∆
(b−)
0 and R

(b−)
0 is evaluated using the equalities

[
|D∗|2,∆h

KC

]
= iD∗∆h

KC + iD∗∆R
KC +

∆R
KC

2
,[

|D∗|2, D
∗

Y 2

]
=

3i|D∗|2 − i(̃D∗)2 +D∗

2Y 2
,

[
Y 2∆R

KC ,∆
h
KC

]
= 2iD∗∆R

KC +
b−
2

∆R
KC , and[

Y 2∆R
KC ,

D∗

Y 2

]
=

2i|D∗|2 − 2i(̃D∗)2 + i∆h
KC

+ i∆R
KC

+ (2− b−)D∗

2Y 2

(all of which follow from straightforward calculations). Applying the equal-

ities

∆
(b−)
2 = ∆

(b−)
0 − 8iD∗ and D∗ ◦

(
D∗

Y 2

)
=

2|D∗|2 − iD∗

2Y 2

and putting in the appropriate scalars now establishes the proposition.

Our next task is the

Proof of Proposition 1.5. We begin by evaluating R
(b−)
m−2L

(b−) written as

R
(b−)
m−2(Y 2)2∆h

KC +R
(b−)
m−2i(2− b−)Y 2D∗ = (Y 2)2R(b−)

m ∆h
KC

+ i(2− b−)Y 2R
(b−)
m−1D

∗.

Using the equalities

[
∆h
KC , D

∗
]

=−i∆R
KC and D∗D∗ = |D∗|2 +

D∗

2i

we establish the equation

R
(b−)
m−2L

(b−) = Ξ(b−)
m +

(2− b−)(2m− b−)

8
∆(b−)
m ,
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where Ξ
(b−)
m is defined in the formulation of the proposition. We now

decompose R
(b−)
m in L(b−)R

(b−)
m (which is (Y 2)2R

(b−)
0 R

(b−)
m ), yielding

(Y 2)2R
(b−)
0 ∆h

KC − i(2m+ 2− b−)Y 2R
(b−)
−1 D∗ − m(2m+ 2− b−)

2
Y 2R

(b−)
−1 .

The formulas [
∆h
KC , D

∗]= i∆R
KC and D∗D∗ = |D∗|2 − D∗

2i

now show that

L(b−)R(b−)
m = Ξ(b−)

m − b−(2m+ 2− b−)

8
∆(b−)
m +

mb−(2m+ 2− b−)

4
.

The required commutation relation follows. As Theorem 1.1 shows that

the compositions R
(b−)
m−2L

(b−) and L(b−)R
(b−)
m commute with all the slash

operators of weight m, and Proposition 1.3 implies that these operators

commute with ∆m, the assertion about Ξ
(b−)
m is also established. This proves

the proposition.

Finally, we come to the

Proof of parts (iii) and (iv) of Proposition 1.6. We prove part (iii) by

induction (the case l = 0 being trivial). If (R
(b−)
m )l is presented by the

asserted formula then (R
(b−)
m )l+1, which is R

(b−)
m+2l(R

(b−)
m )l, equals

R
(b−)
m+2l

l∑
c=0

c∑
s=0

A(l)
s,c

(iD∗)c−s(∆h
KC

)l−c

(−Y 2)c
=
∑
s,c

A(l)
s,c

R
(b−)
m+2l−c(iD

∗)c−s(∆h
KC

)l−c

(−Y 2)c
.

For each c, the term involving D∗

Y 2 (resp. 1
Y 2 ) in R

(b−)
m+2l−c takes the term with

indices c and s (for l) to a multiple of the term corresponding to c+ 1 and

s (resp. c+ 1 and s+ 1) for l + 1. For ∆h
KC

we have

[
∆h
KC , iD

∗]= ∆h
KC hence ∆h

KC(iD∗)c−s =
c∑

a=s

(
c− s
a− s

)
(iD∗)c−a∆h

KC ,

and we multiply the latter sum by
(∆h

KC
)l−c

(−Y 2)c
. This shows that (R

(b−)
m )l+1 can

be expressed by the asserted formula. Putting in the multipliers A
(l)
s,c from

(R
(b−)
m )l and the coefficients of D∗

Y 2 and 1
Y 2 in R

(b−)
m+2l−c, summing over c and
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s, and taking the coefficient in front of the term with indices c and a (and

l + 1) in the result, we obtain the recursive relation asserted in part (iii).

We now observe that for a= 0 the recursive formula reduces to

A
(l+1)
0,c =A

(l)
0,c + (2m+ 4l − 2c+ 4− b−)A

(l)
0,c−1.

Denote the asserted value of A
(l)
0,c by B

(l)
0,c. As A

(0)
0,0 = 1 =B

(0)
0,0 , it suffices to

show that the numbers B
(l)
0,c satisfy the latter recursive formula. But the

equality

2(l − c+ 1)

(
m+ l − c− b−

2
+ 1

)
+ c(2m+ 4l − 2c+ 4− b−)

= 2(l + 1)

(
m+ l − b−

2
+ 1

)
holds for every l and c (and m and b−), and multiplication by l!·2c−1

c(l+1−c)! and

by the binomial coefficient
(m+l− b−

2
c−1

)
yields the required recursive relation

for the numbers B
(l)
0,c. This completes the proof of the proposition.

§4. Actions on theta kernels—proofs

The main technical lemma, which will be required for the evaluations in

most of the following proofs, is based on

Lemma 4.1. Given µ ∈ LR, the operators R
(b−)
0 and L(b−) take the

function P1,1,1 of Z ∈KR + iC to − b−
2 P0,2,2 and − b−

2 P2,0,0 respectively.

Proof. The commutation relation between powers of Y 2 and the oper-

ators R
(b−)
m obtained from the first definition of the latter operators in

Theorem 1.1 and the fact that the latter operators involve only holomorphic

differentiation allows us to write R
(b−)
0 P1,1,1 as P0,1,1R

(b−)
−1 (µ, ZV,Z). Hence

we must evaluate the operation of ∆h
KC

and D∗ on (µ, ZV,Z). For the latter

operator a simple calculation yields

2iD∗(µ, ZV,Z) = 2i(µ, YV,Z) + 2Y 2(µ, z)

= (µ, ZV,Z)− (µ, ZV,Z) + 2Y 2(µ, z).

The former operator is pure of weight 2, hence its action gives a nonzero

result only on the part −Z2

2 (µ, z), and using an orthonormal basis one finds
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that this result is just −b−(µ, z). Combining these results, we find that[
R

(m)
−1 = ∆h

KC +
ib−
Y 2

D∗ − b−
2Y 2

]
(µ, ZV,Z) =− b−

2Y 2
(µ, ZV,Z),

from which the value of R
(b−)
0 P1,1,1 follows. The assertion about L(b−)P1,1,1

is a consequence of the value of R
(b−)
0 P1,1,1, since P1,1,1 is a real function

and L(b−) is the operator which is complex conjugate to R
(b−)
0 , multiplied

by (Y 2)2. This proves the lemma.

Another useful evaluation appears in the following

Lemma 4.2. The holomorphic and anti-holomorphic Z-gradients of

P1,1,1 have, as vectors in KC, the norms P0,2,2µ
2
− and P2,2,0µ

2
− respectively.

Proof. (µ, ZV,Z) is anti-holomorphic, and the holomorphic gradients of

(µ, ZV,Z) and Y 2 are µKR − (µ, z)Z and −iY respectively, where µKR is the

orthogonal projection of µ ∈ LR onto KR = {z, ζ}⊥. It follows that P1,1,1 has

holomorphic gradient

P0,2,1

[
Y 2(µKR − (µ, z)Z) + i(µ, ZV,Z)Y

]
.

Now, the (easily evaluated) equalities(
µKR − (µ, z)Z, Y

)
= (µ, YV,Z)− iY 2(µ, z)

and

(µ, z)2Z2 − 2(µ, z)(µKR , Z) + 2(µ, z)(µ, ZV,Z) = 2(µ, z)(µ, ζ)− ζ2(µ, z)2

reduce to the norm of the latter gradient to

P0,2,2

[
µ2
KR + 2(µ, ζ)(µ, z)− ζ2(µ, z)2 − P1,1,1

]
.

But µ is
(
µKR , µz, (µ, ζ)− ζ2µz

)
in the KR × R× R coordinates, so that the

sum of the first three terms in the brackets is just µ2. Subtracting P1,1,1 = µ2
+

completes the proof of the first assertion, and the second assertion follows

from complex conjugation since the function P1,1,1 is real-valued. This proves

the lemma.

For µ ∈ LR and τ = x+ iy ∈H we denote the vector
√

2πyµ by µ̃. Its

norm is 2πyµ2, and after choosing an element of G(LR), it decomposes into

µ̃+ (of norm 2πyµ2
+) and µ̃− (whose norm is 2πyµ2

−). We now prove
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Proposition 4.3. Let f : R→ R be a smooth function. Then the images

of the function f(µ̃+) under R
(b−)
0 and L(b−) are 2πyP0,2,2

[
µ̃2
−f
′′(µ̃+)−

b−
2 f
′(µ̃+)

]
and 2πyP2,0,0

[
µ̃2
−f
′′(µ̃+)− b−

2 f
′(µ̃+)

]
respectively.

Proof. Both operators consist of a first order operator D (a multiple of

D∗ or of D∗) and a second order operator ∆ (which equals ∆h
KC

or ∆h
KC

).

Then D
(
f(T )

)
=DT · f ′(T ), and ∆

(
f(T )

)
is the sum of ∆T · f ′(T ) and

an expression involving f ′′(T ). In our case T = µ̃+ = 2πyµ2
+ = 2πyP1,1,1, so

that the coefficient of f ′(T ) is just 2πy times R
(b−)
0 P1,1,1 and L(b−)P1,1,1,

and the latter expressions are evaluated using Lemma 4.1. The coefficients

of f ′′(T ) coming from ∆ being ∆h
KC

or (Y 2)2∆h
KC

are the norms (in KC)

of the holomorphic and anti-holomorphic gradients of T , the latter being

multiplied by (Y 2)2. For T = 2πyP1,1,1 these norms take the values given

in Lemma 4.2, multiplied by (2πy)2. Gathering these results together and

substituting the value of µ̃2
− completes the proof of the proposition.

We now turn to proving assertions concerning the images of theta lifts (or

complex conjugates of theta functions), having only holomorphic weights of

automorphy, under the operators R
(b−)
m and L(b−). This was seen to boil

down to the operation on the function F
(l)
r,s,t from Equation (4), with τ

replaced by −τ , under the additional assumption s= t. The exponent was

seen, using part (i) of Lemma 2.1, to be e
(
− τ µ

2

2

)
e−µ̃

2
+ , where the first

multiplier is a constant (i.e., independent of Z). The polynomial part is

evaluated in

Lemma 4.4.

(i) For any natural numbers k and n we have

(2πy)nPn−k,0,0e
−∆v+/8πy(Pk,n,n)e−2πyP1,1,1 = (−1)k

dk

dT k
(Tne−T )

∣∣∣∣
T=µ̃2+

.

(ii) Applying e∆v−/8πy to (2πy)l(µ2
−)l yields∑

p

(
l

p

)[
Γ

(
l +

b−
2

)/
Γ

(
p+

b−
2

)](
µ̃2
−
)p
.

We allow the index n− k appearing in Part (i) here to be negative,

with the natural extension of the definition of Pr,s,t to negative r. We

remark that the expressions obtained in this part are just the generalized

Laguerre polynomials L
(n−k)
k , multiplied by the exponents, and normalized

appropriately.
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Proof. Multiple applications of part (ii) of Lemma 2.1 show that

∆h
v+

h!(−8πy)h
Pk,n,n =

k!n!Pk−h,n−h,n−h
(k − h)!(n− h)!h!(−2πy)h

.

Multiplying by (2πy)nPn−k,0,0 and summing over h, the left hand side of

the equation in part (i) becomes just∑
h

(
k

h

)
n!

(n− h)!
(−1)h(2πyP1,1,1)n−he−2πyP1,1,1 .

On the other hand, differentiating the product Tne−T k times with respect

to T yields

k∑
h=0

(
k

h

)(
d

dT

)h
Tn ·

(
d

dT

)k−h
e−T =

k∑
h=0

(
k

h

)
n!Tn−h

(n− h)!
(−1)k−he−T ,

and substituting T = µ̃2
+ = 2πyP1,1,1 yields the same expression multiplied

by (−1)k. This establishes part (i). For part (ii), applying part (iii) of

Lemma 2.1 successively evaluates

∆l−p
v− (µ2

−)l =
4l−pl!

p!
·

Γ
(
l + b−

2

)
Γ
(
p+ b−

2

)(µ2
−)p.

Dividing this term by (8πy)l−p(l − p)!, multiplying everything by (2πy)l,

and substituting µ̃2
− = 2πyµ2

− gives the asserted expression. This completes

the proof of the lemma.

As µ̃2
− = µ̃2 − µ̃2

+, Lemma 4.4 implies that the dependence of the expres-

sion (2πy)n+lPn−k,0,0F
(l)
k,n,n(−τ , Z, µ) (or the corresponding theta function)

on the variable Z is only through the quantity µ̃2
+. For convenience, we

gather these results in the following

Corollary 4.5. Define the functions

f
(w)
k,n,p(T ) = (−1)k

dk

dT k
(Tne−T ) · (w − T )p,

where k, p, and n are natural numbers and w ∈ R. Then the theta function

Θ
(l)
L,k,n,n(−τ , Z) equals

∑
µ∈L∗

∑
p

(
l

p

)
Γ
(
l + b−

2

)
Γ
(
p+ b−

2

) f
(µ̃2)
k,n,p(µ̃

2
+)

(2πy)n+lPn−k,0,0
e

(
− τ µ

2

2

)
eµ+L.
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Proof. Just substitute the value of e−∆v/8πy(P
(l)
k,n,n), which equals the

product of e−∆v+/8πy(Pk,n,n) and e−∆v+/8πy
(
(µ2
−)l
)
, from Lemma 4.4 into

the expression defining the theta function.

We can now present the

Proof of Proposition 2.3. As seen above, it suffices to consider the action

of R
(b−)
m on the expression P0,m,m(µ, Z)e−2πyP1,1,1 with fixed µ (recall

that P0,m,m is harmonic). The holomorphicity of the differentiation in

R
(b−)
m shows that the result is the same as P0,m,mR

(b−)
0 e−µ̃

2
+ . By putting

f(T ) = e−T , Proposition 4.3 evaluates R
(b−)
0 e−µ̃

2
+ as 2πyP0,2,2

(
µ̃− +

b−
2

)
e−µ̃+ , and multiplying by P0,m,m yields

R(b−)
m P0,m,me

−µ̃2+ = 4π2y2P0,m+2,m+2

[
µ2
− +

b−
4πy

]
e−2πyP1,1,1 .

But the expression in parentheses is e∆v−/8πy(µ2
−) by part (ii) of Lemma 4.4,

and the harmonicity of P0,m+2,m+2 allows us to put it also into the action of

e−∆v/8πy without affecting the resulting expression. Putting in the missing

constant y
b−
2 e
(
− τ µ

2

2

)
eµ+L and summing over µ ∈ L∗ we establish the

equality

R(b−)
m y

b−
2 ΘL,0,m,m(−τ , Z) = 4π2y2+

b−
2 Θ

(1)
L,0,m+2,m+2(−τ , Z).

But as Pm+2,m+2,0 is harmonic, Equation (6) shows that applying the

operator −4πiy2∂τ to y
b−
2 ΘL,m+2,m+2,0(τ, Z) yields the complex conjugate

of the latter expression, and complex conjugation inverts the sign of 4πi.

This proves the proposition.

We now turn to the

Proof of Lemma 2.5. Write the theta function Θ
(l)
L,k,n,n(−τ , Z) as in

Corollary 4.5. It suffices to fix µ ∈ L∗ and compare the coefficients of

e
(
− τ µ

2

2

)
eµ+L in both sides. Take some 0 6 p6 l, and apply Proposition 4.3

with the function f = f
(µ̃2)
k,n,p. The powers of 2πy and P1,0,0 from Corollary 4.5

and Proposition 4.3 merge to (2πy)n+l−1Pn−2−k,0,0 in the denominator, and

the remaining part of L(b−)f
(µ̃2)
k,n,p is(

l

p

)
Γ
(
l + b−

2

)
Γ
(
p+ b−

2

)[µ̃2
−
(
f

(µ̃2)
k,n,p

)′′
(µ̃2

+)− b−
2

(
f

(µ̃2)
k,n,p

)′
(µ̃2

+)

]
.
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As µ̃2
− = µ̃2 − µ̃2

+, and as one easily evaluates

(fwk,n,p)
′(T ) =−pfwk,n,p−1(T )− fwk+1,n,p(T ),

the part in brackets in the latter expression equals

(9)

f
(µ̃2)
k+2,n,p+1(µ̃2

+) +

(
2p+

b−
2

)
f

(µ̃2)
k+1,n,p(µ̃

2
+) + p

(
p+

b−
2
− 1

)
f

(µ̃2)
k,n,p−1(µ̃2

+).

We now write the denominator in the preceding constant as(
p+ b−

2

)
Γ
(
p+ 1 + b−

2

) , 1

Γ
(
p+ b−

2

) , and
1(

p− 1 + b−
2

)
Γ
(
p− 1 + b−

2

)
in front of the three terms in Equation (9) respectively, and after taking the

sum over p and gathering the functions with the same index p together, we

see that the quotient Γ
(
l + b−

2

)
/Γ
(
p+ b−

2

)
multiplies(

p− 1 +
b−
2

)(
l

p− 1

)
f

(µ̃2)
k+2,n,p +

(
2p+

b−
2

)(
l

p

)
f

(µ̃2)
k+1,n,p

+ (p+ 1)

(
l

p+ 1

)
f

(µ̃2)
k,n,p

(where we have omitted the variable µ̃2
+). Using the identity b

(
a
b

)
= a
(
a−1
b−1

)
we can write the latter expression as

l

[(
l − 1

p− 2

)
f

(µ̃2)
k+2,n,p(µ̃

2
+) + 2

(
l − 1

p− 1

)
f

(µ̃2)
k+1,n,p(µ̃

2
+) +

(
l − 1

p

)
f

(µ̃2)
k,n,p(µ̃

2
+)

]
+
b−
2

[(
l

p− 1

)
f

(µ̃2)
k+2,n,p(µ̃

2
+) +

(
l

p

)
f

(µ̃2)
k+1,n,p(µ̃

2
+)

]
.(10)

Now, differentiating k times and multiplying by (w − T )p takes the equality

(Tne−T )′ = (nTn−1 − Tn)e−T to f
(w)
k,n,p(T )− f (w)

k+1,n,p(T ) = nf
(w)
k,n−1,p(T ).

One application of this relation replaces f
(µ̃2)
k+1,n,p by f

(µ̃2)
k+2,n,p + nf

(µ̃2)
k+1,n−1,p,

and we also obtain

f
(µ̃2)
k,n,p = f

(µ̃2)
k+2,n,p + 2nf

(µ̃2)
k+1,n−1,p + n(n− 1)f

(µ̃2)
k,n−2,p.
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Each of the terms in Equation (10) thus contributes to the total coefficient

in front of f
(µ̃2)
k+2,n,p, which using the classical properties of the bino-

mial coefficients reduces to
(
l + b−

2

)(
l+1
p

)
. Using the recursive property of

the gamma function again, we obtain the coefficient
(
l+1
p

)
Γ
(
l + 1 +

b−
2

)
/Γ
(
p+ b−

2

)
, which together with

1

Pn−2−k,0,0(2πy)n+l−1
=

4π2y2

Pn−2−k,0,0(2πy)n+l+1

yields the coefficient appearing in front of f
(µ̃2)
k+2,n,p(µ̃

2
+) in the expansion

of 4π2y2Θ
(l+1)
L,k+2,n,n(−τ , Z) in Corollary 4.5. The total coefficient in front

of the function f
(µ̃2)
k+1,n−1,p in Equation (10) becomes (again, using binomial

identities) just
(
2l + b−

2

)(
l
p

)
, and the gamma quotient and the powers of

2πy and P1,0,0 complete the formula for the second asserted term. For

the remaining term n(n− 1)l
(
l−1
p

)
f

(µ̃2)
k,n−2,p from Equation (10) we use the

functional equation of the gamma function again to write Γ
(
l + b−

2

)
as(

l − 1 + b−
2

)
Γ
(
l − 1 + b−

2

)
, and we also decompose

Pn−2−k,0,0(2πy)n+l−1 = 4π2y2Pn−2−k,0,0(2πy)n−2+l−1.

Corollary 4.5 then establishes the remaining asserted term in a similar

manner. This completes the proof of the lemma.

We go on to the

Proof of Proposition 2.6. We prove the assertion by induction on s. The

case s= 0 is trivial. Denote the asserted coefficient corresponding to the hth

term in the expression for the image under (L(b−))s by as,h(y). We need to

evaluate ∑
h

as,h(y)L(b−)Θ
(h)
L,s+h,m+s−h,m+s−h,

and compare it with the asserted expression for s+ 1. Lemma 2.5

shows that for each h the L(b−)-image of the corresponding theta func-

tion is a linear combination of three theta functions, which correspond

to the index s+ 1 and the indices h− 1, h, and h+ 1. After apply-

ing the appropriate summation index changes, the coefficient which

we get in front of Θ
(h)
L,s+1+h,m−s−1+h,m−s−1+h in (L(b−))s+1ΘL,m,m,0 is
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4π2y2as,h−1(y) + (m− s+ h)

(
2h+

b−
2

)
as,h(y)

+
(m− s+ h)(m− s+ h+ 1)(h+ 1)

(
h+ b−

2

)
4π2y2

as,h+1(y).

Substituting the values of as,t for t being h− 1, h, and h+ 1, one easily

sees that all three terms yield the same multiplier m!(4π2y2)h

(m−s−1+h)! . Applying the

functional equation for the gamma function in the first and third term, we

obtain that the remaining expression equals

Γ
(
s+ b−

2

)
Γ
(
h+ b−

2

)[(h− 1 +
b−
2

)(
s

h− 1

)
+

(
2h+

b−
2

)(
s

h

)
+ (h+ 1)

(
s

h+ 1

)]
.

The same considerations we applied for evaluating the coefficient of f
(µ̃2)
k+2,n,p

in Lemma 2.5 show that the expression in brackets equals
(
s+ b−

2

)(
s+1
h

)
.

Applying the functional equation of the gamma function once more,

this yields the asserted value of as+1,h. This completes the proof of the

proposition.

Finally, we come to the

Proof of Proposition 2.7. We begin by proving that for any q ∈ N, the

action of the operator (−4πi)qδq
1− b−

2
+r+t−2l,τ

sends y
b−
2

+2lΘ
(l)
L,r,s,t(τ, Z) to

q∑
h=0

(
q

h

)
(4π2)hy

b−
2

+2l−2q+2h l!Γ
(
l + b−

2

)
(l − q + h)!Γ

(
l − q + h+ b−

2

)
×Θ

(l−q+h)
L,r+h,s+h,t+h(τ, Z).

For q = 0 the assertion is trivially true. We write the asserted function of y

preceding the theta function in the term corresponding to h in the sum aris-

ing from the index q as
(
q
h

)
(4π2)hbl−q+h(y). Given that this assertion holds

for q, we apply Equation (5) for the operator −4πiδ
1− b−

2
+r+t−2l+2q

acting

on each term, and observe that the resulting theta functions correspond to

the index q + 1 and to the summation indices h+ 1 and h. Moreover, after

the usual index change manipulations one sees that the total coefficient in
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front of the theta function with indices q + 1 and h is

(4π2)h
[(

q

h− 1

)
bl−q+h−1(y) +

(
q

h

)
(l − q + h)

×
(
l − q + h+

b−
2
− 1

)
bl−q+h(y)

y2

]
.

As the second term here is easily seen to be just
(
q

h−1

)
bl−q+h−1(y), the

inductive assertion follows from the classical property of the binomial

coefficients. With r = s= 0 and t= l = q =m the general formula from

above becomes

∑
h

(
m

h

)
Γ
(
m+ b−

2

)
Γ
(
h+ b−

2

) m!(4π2y2)h

h!
y
b−
2 Θ

(h)
L,h,h,m+h(τ, Z).

On the other hand, putting m= s in Proposition 2.6, multiplying by y
b−
2

(which commutes with differential operators in the variable Z), and taking

the complex conjugate of the result, yields precisely the same expression.

This proves the proposition.
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