
TPLP 23 (5): 1070–1093, 2023. c© The Author(s), 2022. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068422000382 First published online 20 October 2022

1070

An Application of a Runtime Epistemic
Probabilistic Event Calculus to Decision-making in

e-Health Systems

FABIO AURELIO D’ASARO
Department of Human Sciences, Ethos Group,

University of Verona, Verona, Italy
(e-mail: fabioaurelio.dasaro@univr.it)

LUCA RAGGIOLI, SALIM MALEK, MARCO GRAZIOSO and SILVIA ROSSI
Department of Electrical Engineering and Information Technologies,

University of Naples Federico II, Naples, Italy
(e-mails: luca.raggioli@manchester.ac.uk, smalek@fbk.eu, marco.grazioso@unina.it,

silrossi@unina.it)

submitted 22 June 2021; revised 29 June 2022; accepted 28 September 2022

Abstract

We present and discuss a runtime architecture that integrates sensorial data and classifiers with
a logic-based decision-making system in the context of an e-Health system for the rehabilitation
of children with neuromotor disorders. In this application, children perform a rehabilitation task
in the form of games. The main aim of the system is to derive a set of parameters the child’s cur-
rent level of cognitive and behavioral performance (e.g., engagement, attention, task accuracy)
from the available sensors and classifiers (e.g., eye trackers, motion sensors, emotion recognition
techniques) and take decisions accordingly. These decisions are typically aimed at improving
the child’s performance by triggering appropriate re-engagement stimuli when their attention is
low, by changing the game or making it more difficult when the child is losing interest in the
task as it is too easy. Alongside state-of-the-art techniques for emotion recognition and head
pose estimation, we use a runtime variant of a probabilistic and epistemic logic programming
dialect of the Event Calculus, known as the Epistemic Probabilistic Event Calculus. In particu-
lar, the probabilistic component of this symbolic framework allows for a natural interface with
the machine learning techniques. We overview the architecture and its components, and show
some of its characteristics through a discussion of a running example and experiments.

KEYWORDS: e-health, logic programming, answer set programming, sensor fusion, motor re-
habilitation

1 Introduction

In this paper, we present and discuss an architecture for integrating and reasoning about

sensors in the context of the AVATEA project (Advanced Virtual Adaptive Technologies

e-hEAlth). The final goal of the project is to design and implement an integrated sys-

tem to support the rehabilitation process of children with Development Coordination

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068422000382
https://orcid.org/0000-0002-2958-3874
mailto:fabioaurelio.dasaro@univr.it
https://orcid.org/0000-0002-3379-1756
mailto:luca.raggioli@manchester.ac.uk
mailto:smalek@fbk.eu
mailto:marco.grazioso@unina.it
mailto:silrossi@unina.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068422000382&domain=pdf
https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1071

Webcam

EEG

Layer of Sensors

Pose recognition
module

Emotion Recognition
Module

SVM

Layer of Classifiers

Domain Independent
Part

PEC-RUNTIME

Domain Dependent
Part

Game

Environment

Child

...

...

Fig. 1. The architecture of the AVATEA system. Several classifiers are applied to a stream of
data from different sensors. Note that a single sensor may produce data that is then fed into

two or more classifiers (e.g., in the case of the webcam). Timestamped output from the
classifiers is fed into PEC-RUNTIME, the logical core of the architecture. PEC-RUNTIME
processes this information together with some domain independent axioms and outputs its

decision to the environment (the game, in this case).

Disorders (DCDs). The system needs to integrate and control several components, in-

cluding an adjustable seat, various types of sensors, and an interactive visual interface to

perform rehabilitation exercises in the form of games (such games are sometimes called

exergames, presented by Vernadakis et al . 2015). One of the main goals of the project is

to automatize the therapeutic task, ideally without making it less effective. To this end,

we employ a logic-based AI engine that collects data from the environment and decides

what strategy may be implemented to make the video game as challenging as possible

while keeping the child engaged and attentive. For example, the engine may decide to

emit a sound if the visual attention of the user is detected to be low, or increase the video

game’s difficulty level if the sensors seem to indicate that the child is bored as s/he is

performing the task effortlessly.

Although this architecture has been specifically designed for the rehabilitation of chil-

dren with neuro-motor disorders, it can be more generally applied to any task requiring

a system to take runtime decisions according to a stream of sensorial data. It mainly

consists of four modules communicating with each other (see Figure 1). Layers of sensors

and classifiers (e.g., a webcam paired with head pose and emotion recognition algorithms)

collect and process information about the current state of the environment and the child

undergoing the rehabilitation process. This information is fed to a probabilistic logic

programming system, a modified version of the Epistemic Probabilistic Event Calculus

(EPEC for short, first introduced by D’Asaro et al. D’Asaro et al . 2017 as a non-epistemic

framework under the name PEC and extended in D’Asaro et al . 2020 to the epistemic

case). To guarantee good performance at runtime, in this work, we present a novel imple-

mentation of EPEC, dubbed PEC-RUNTIME, which implements a form of progression

(Lin and Reiter 1997). It is worth noting here that, unlike EPEC, PEC-RUNTIME

has a non-epistemic nature. However, since our application domain needs epistemic ac-

tions (namely, getting information from sensors), we use it to approximate the behav-

ior of EPEC based on the correspondence between epistemic and non-epistemic action

outlined in Section 2.3. PEC-RUNTIME processes the sensor data and takes decisions

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1072 F. A. D’Asaro et al.

according to a predefined strategy. Finally, the gaming platform actuates these decisions

and communicates the new state of the game to the layer of sensors.

EPEC (and consequently PEC-RUNTIME) is particularly well suited for this task as

its probabilistic nature facilitates the communication with probabilistic machine learning-

based classifiers. As it is a symbolic framework, it can also be used to provide accurate

human-understandable reports of the user activity at the end of each therapeutic session.

Typical feedback includes information about attention levels of the child (e.g., “The user

was highly engaged for 36 s during the session”), justification for the decisions taken

(e.g., “Switched to higher difficulty level as the user has been carrying out the exercise

correctly for the last 10 s”), as well as a complete report of what happened throughout

the therapeutic session (e.g., “The user was not visible at 15:43:23”, “Visual stimulus

presented at 15:43:24”, etc.) and a series of graphs for accurate tracking of user activity.

This paper extends (D’Asaro et al . 2019) and is organized as follows. In Section 2,

we overview the logical part of our architecture, EPEC, and show some of its features

through the discussion of a toy example. In Section 3, we discuss how we adapted

the original ASP-based inference mechanism of EPEC in order to work at runtime.

In Section 4, we briefly describe the layers of sensors and classifiers. In Section 5, we

demonstrate our approach in our use case and provide a systematic empirical evalua-

tion. In Section 6 we discuss related work, in particular probabilistic logic programming

languages for reasoning about actions and gamification techniques. Some final remarks

about directions for further work conclude the paper in Section 7.

2 Overview of the language

In this section, we overview a subset of EPEC1 that is relevant to our application, and

show how it can be used to represent a domain. Similarly to other logical languages

for reasoning about actions, EPEC models a domain as a collection of fluents and ac-

tions. Moreover, EPEC represents time explicitly through instants. Fluents, actions and

instants constitute the principal sorts of EPEC. Actions are further sub-divided into

agent actions (under the control of the agent being modeled) and environmental actions

(performed by the environment). Fluents can take value in a set of values. Domain-

specific theories can be designed using EPEC propositions. As an illustration, we use the

following toy domain (inspired by the AVATEA use case) as our running example (but

you can see e.g., Acciaro et al . 2021 for other use cases):

Scenario 2.1

A child undergoes a simple attention test in which her level of visual attention is mea-

sured. The task consists in tracking a moving object on a screen. Therapists agree that

when the child is not looking at the object, there is 90% chance this is due to lack of

attention, and that when the child is looking at the object there is 100% chance s/he

is paying attention to the task. A webcam is used to track her gaze. Readings from the

webcam are only partly reliable due to hardware limitations, and are produced every

second. These readings are then piped into a specialized classifier which decides whether

1 The fully fledged framework was introduced in D’Asaro et al . (2020), and has some minor differences
from the version presented here.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1073

the child is looking at the object on the screen or not. The classifier also outputs a con-

fidence level for its classification. When the child is not looking at the screen, it may be

useful to play a sound in order to re-engage the child. Two seconds after the start of

the experiment, the child has been detected to be tracking the object on the screen with

confidence levels 0.25 and 0.13. What is the level of attention of the child at instant 2?

Should the sound be played at time 2?”.

We let the set of instants in our timeline be {0, 1, 2}, whose elements can be naturally

interpreted as seconds since the start of the experiment.

2.1 Syntax overview

The only fluent in our example scenario is Attention. It is boolean, that is, it may take

values � and ⊥. In EPEC, this is written

Attention takes-values {�,⊥}. (1)

In the example, we consider the agent to be an automated system that is respon-

sible for triggering a re-engagement strategy when necessary. On the other hand, the

child is considered part of the environment. Therefore, the actions are PlaySound and

TrackObject , where PlaySound is the agent action of playing a sound and TrackObject

is the environmental action which corresponds to the child tracking the object with her

eyes. The effects of not tracking the object are defined by the following proposition:

¬TrackObject causes-one-of {({¬Attention}, 0.9), (∅, 0.1)}. (2)

Looking at the object is never considered to be due to chance, therefore we also include

the following proposition:

TrackObject causes-one-of {({Attention}, 1)}. (3)

For what regards action PlaySound under the control of the agent, we want to formalize

the conditional plan stating that this action must be performed at instant 2 if the child

is believed to be distracted, that is, if the probability of Attention has fallen below a

predefined threshold, say 0.1. This can be written in EPEC as:

PlaySound performed-at 2 if-believes (Attention, [0, 0.1]). (4)

We consider the child to be initially paying full attention to the task. This

translates to:

initially-one-of {({Attention}, 1)}. (5)

Finally, the action TrackObject occurs twice at instants 0 and 1 with confidence 0.25

and 0.13 respectively. This translates to the following propositions:

TrackObject occurs-at 0 with-prob 0.25 (6)

TrackObject occurs-at 1 with-prob 0.13. (7)

In EPEC, Proposition (1) is known as a v-proposition (v for “value”), Propositions

(2) and (3) are known as c-propositions (c for “causes”), Proposition (4) is known

as a p-proposition (p for “performs”), Proposition (5) is known as an i-proposition (i

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1074 F. A. D’Asaro et al.

for “initially”), Propositions (6) and (7) are known as o-propositions (o for occurs).

Propositions (4), (6) and (7) are known as the narrative part of the domain.

The set of propositions {(1), . . . , (7)} constitutes what in EPEC is called a domain

description and is usually denoted by D (with appropriate subscripts and/or supercripts).

The narrative part of a domain is denoted by narr(D). A domain description is given

meaning using a bespoke semantics.

2.2 Semantics overview

The semantics of EPEC enumerates all the possible evolutions (worlds in the terminology

of EPEC) of the environment being modeled, starting from the initial state. It then

applies a series of standard reasoning about actions principles (e.g., persistence of fluents,

closed world assumption for actions) to filter out those evolutions of the environment that

do not make intuitive sense with respect to the given domain. The remaining worlds,

dubbed well-behaved worlds to indicate that they are meaningful with respect to the

given domain description, are assigned a probability value. Some well-behaved worlds for

our example domain can be depicted as follows:

W1

{Attention,
TrackObject ,

¬PlaySound}

{Attention,
¬TrackObject ,

¬PlaySound}

{¬Attention,
¬TrackObject ,

¬PlaySound}
0 1 2 I

W2

{Attention,
¬TrackObject ,

¬PlaySound}

{Attention,
¬TrackObject ,

¬PlaySound}

{Attention,
¬TrackObject ,

¬PlaySound}
0 1 2 I

World W1 represents a possible evolution of the environment starting from a state in

which the child is initially (at instant 0) fully attentive and tracking the object with

her eyes. At instant 1, the child is still paying attention to the task, but he/she is no

longer tracking the object. At instant 2, the child is distracted and again not tracking the

object. The sound is never played. EPEC’s semantics assigns a probability of 0.19575 to

this world, as this results from the product of 0.25 (due to proposition (6) and TrackObject

occurring at 0 in W1), 1 − 0.13 (due to proposition (7) and TrackObject not occurring

at 1 in W1) and 0.9 (due to proposition 2 and since not tracking the object at instant

1 caused Attention not to hold at instant 2). The intuitive meaning of world W2 and

its probability can be figured similarly. In W2 the child is always attentive but never

tracking the object, the sound is never played, and its probability is 0.006525.

There are 8 well-behaved worlds with respect to our example domain, and they are

such that their probabilities sum up to 1. Formal results about the semantics of EPEC

guarantee that this is always the case for any domain description and the corresponding

set of well-behaved worlds.

We now want to address the question “What is the level of attention of the child at

instant 2?”. EPEC first needs to query the domain description about the probability

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1075

of fluent Attention at instant 2. In EPEC, queries are expressed in the form of an

i-formula (i.e., a formula with instants attached). In our case, the query has the

form Q1 = [Attention]@2, but more complicated queries are also possible, for exam-

ple Q2 = ([¬Attention]@1 ∨ [¬TrackObject]@1) ∧ [Attention]@2. We say that i-formula

Q1 has instant 2 (as this is the only instant appearing in the formula) and that the

i-formula Q2 has instants > 0 (as all the instants appearing in the formula are strictly

greater than 0). Answering query [Attention]@2 amounts to summing the probabilities

of those well-behaved worlds in which the i-formula is true, that is, such that Attention

is true at instant 2. This results in 0.158275, and can also be written as:

D ||= [Attention]@2 holds-with-prob 0.158275.

Note that this value falls outside the interval [0, 0.1] in the precondition of Proposi-

tion (4). Therefore, EPEC deduces that the answer to our last question in Scenario 2.1

(“Should the sound be played at time 2?”) is no. Then, Proposition (4) does not fire

and the action PlaySound , under the control of the agent, is not played in any of the

well-behaved worlds.

2.3 Simulating epistemic actions via c-propositions and o-propositions

The reader may have noticed that our target application domain mainly deals with

sensors. In its original formulation (D’Asaro et al . 2020), epistemic modeling is reserved to

an additional, type of propositions, called s-propositions (s for “senses”), of the following

form:

S senses F with-accuracies M (8)

for an action S, a fluent F and some matrix M representing the accuracy of A when

sensing F . Given their role within EPEC, we would need s-propositions to model sen-

sors in our domain. However, s-propositions add a layer of complexity that in this work

we would like to avoid due to the necessity of taking decisions at runtime. In this sec-

tion, we show a possible translation procedure of s-propositions into pairs composed

by a c-proposition and an o-proposition. This aims to demonstrate that one can make

“improper” use of c-propositions and o-propositions (that are typically used for effec-

tors) as a means to model epistemic aspects of a domain. Whether a sound and complete

translation is available remains however a subject for future work.

To illustrate, consider a simple domain description in which an agent (imperfectly)

tests twice for Flu:

Flu takes-values {�,⊥} (9)

initially-one-of {({Flu}, 0.7), ({¬Flu}, 0.3)} (10)

Test senses Flu with-accuracies

(
0.8 0.2

0.4 0.6

)
(11)

Test performed-at 0 (12)

Test performed-at 1 (13)

which means that the Test has the effect of producing knowledge about whether the agent

has Flu with associated confusion matrix

(
0.8 0.2

0.4 0.6

)
, where 0.8 is the true positives rate

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1076 F. A. D’Asaro et al.

and 0.6 is the true negatives rate. The domain description above entails the following

b-proposition (b for “believes”):

at 2 believes [Flu]@0 with-probs (14)

{(〈{Test , ((Test ,Flu), false)}@0, {Test , ((Test ,Flu), false)}@1〉, 0.136, 0.206), (15)

(〈{Test , ((Test ,Flu), false)}@0, {Test , ((Test ,Flu), true)}@1〉, 0.184, 0.609), (16)

(〈{Test , ((Test ,Flu), true)}@0, {Test , ((Test ,Flu), false)}@1〉, 0.184, 0.609), (17)

(〈{Test , ((Test ,Flu), true)}@0, {Test , ((Test ,Flu), true)}@1〉, 0.496, 0.903)}. (18)

This proposition may be interpreted as saying that an agent sitting at instant 2, having

tested for Flu twice, is in one of the four following knowledge states:

• The test came up negative twice (as in the case of (15)). Given the initial knowledge

about the distribution of Flu, this is likely to happen with probability 0.136. In

this case, the agent will believe that the probability of [Flu]@0 decreased from the

initial value 0.7 to 0.206.

• The test came up negative at instant 0 and positive at instant 1 (as in the case of

(16)). This is likely to happen with probability 0.184, and in this case the agent

will believe that the probability of [Flu]@0 is 0.608.

• The test came up positive at instant 0 and negative at instant 1 (as in the case of

(17)). This is likely to happen with probability 0.184, and in this case the agent

will believe that the probability of [Flu]@0 is 0.608.

• The test came up positive twice (as inthe case of (18)). This is likely to happen

with probability 0.496, and in this case the agent will believe that the probability

of [Flu]@0 is 0.903.

This syntax shows the epistemic core of EPEC, which allows one to reasoning about

past, present and future: for example, note that in (14) we reason about the perspective

of an agent at instant 2 who is reasoning about whether it had Flu at instant 0 in the

past. This powerful syntax comes at expenses of computational efficiency, and therefore

in this work we adopt a number of simplifications due to the fact that we only need to

reason about the present. The first of such simplifications is that we drop s-propositions

and simulate them via o-propositions and c-propositions, in a way that we now aim to

make clearer.

Assume that the agent modeled in the domain description above tests positive twice.

Then, we may note that substituting the s-proposition (11) and the two p-propositions

(12) and (13) with

Test causes {({Flu}, 1)} (19)

Test occurs-at 0 with-prob 0.412 (20)

Test occurs-at 1 with-prob 0.452 (21)

yields

D ||= [Flu]@2 holds-with-prob 0.903 (22)

which matches with the result in (18), and therefore we may say that simulates it.

Although a formal characterization of the translation from s-proposition to c-propositions

and o-propositions is beyond the scope of this work, note that an s-proposition for a

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1077

boolean fluent F of the form

S senses F with-accuracies

(
a 1− a

b 1− b

)
(23)

is simulated either by a c-proposition

S+ causes-one-of {({F}, 1)} (24)

and an o-proposition

S+ occurs-at I with-prob
p(a− b)

p(a− b) + b
(25)

if S is performed at I and produces a positive result, or by a c-proposition

S− causes-one-of {({¬F}, 1)} (26)

and an o-proposition

S− occurs-at I with-prob
(p− 1)(a− b)

p(a− b) + b− 1
(27)

if S is performed at I and produces a negative result, where p is the probability such

that

D ||= [F]@I with-prob p

in the domain D under consideration. This informally shows that it is possible to

meaningfully interpret c-propositions and o-propositions as epistemic actions in place of

s-propositions, and justifies their employment to perform sensing.

3 A runtime adaptation of EPEC

The subset of EPEC introduced in Section 2 is sufficient to handle domains that re-

quire limited epistemic functionalities. For this special class of domains, one can use the

non-epistemic framework to approximate the behavior of EPEC and efficiently compute

probabilities of queries at runtime, at the expense of the ability to reason about the

past. These assumptions are not restrictive for our use case, as we only need to reason

about the present state of the world and possibly react at runtime. In this section, we

provide details about an implementation, dubbed PEC-RUNTIME, that exploits these

restrictions to provide a fast reasoning system that overcomes the limitations of other

implementations of EPEC in terms of computation time. PEC-RUNTIME is publicly

available.2

PEC-RUNTIME is based on PEC-ASP, an Answer Set Programming implementation

of the non-epistemic fragment of EPEC that was presented in D’Asaro et al . (2017) and

based on ASP grounder and solver clingo (Gebser et al . 2014). PEC-ASP and PEC-

RUNTIME share the same syntax and domain-independent part of the implementation.

In addition, PEC-RUNTIME exploits clingo’s integration with Python to control the

grounding and solving process.

2 https://gitlab.com/fdasaro/pec-runtime.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://gitlab.com/fdasaro/pec-runtime
https://doi.org/10.1017/S1471068422000382

1078 F. A. D’Asaro et al.

One of the main problems of PEC-ASP is that it is an exact inference mechanism,

which needs to enumerate all the well-behaved worlds that satisfy a given query. The

number of worlds typically grows exponentially with the size of the narrative. As an

illustration, consider the simple domain consisting of one fluent F , one action A, set of

instants {0, 1, . . . , N − 1} for some N > 0, the i-proposition

initially-one-of {(F, 1)} (28)

and N o-propositions

A performed-at I with-prob 0.5 (29)

one for each I in the set of instants. This simple domain description has well-behaved

worlds of the following form:

{F, ±A} {F, ±A} {F, ±A}
0 1 . . .

. . .

N − 1 I

where ±A is either A or its negation ¬A. Clearly, there are 2N such worlds. Given that

F is always true in all of them, PEC-ASP needs to enumerate all 2N well-behaved worlds

even to answer a simple query such as [F]@N − 1. A strategy to tackle this problem is

to sample a number M 	 2N of well-behaved worlds and approximate the probability

of the query. This is the approach adopted by PEC-ANGLICAN, a probabilistic pro-

gramming implementation of PEC.3 However, this technique also suffers from scalability

and precision issues when dealing with large narratives as we describe in Section 5.1,

Experiment (a), and is mostly suited for offline tasks.

The approach we adopt here relies on a form of progression (Lin and Reiter 1997).

Given a domain description D and an instant I, knowledge about what happened before

instant I can be appropriately recompiled and mapped to a new domain description D≥I

that does not include any narrative knowledge about instants < I but agrees with the

original domain D on all queries about instants ≥ I. This requires exhaustively querying

D about the state of the environment at I, that is, if F1, . . . , Fn are all the (boolean)

fluents in the language, one must perform queries [±F1 ∧ · · · ∧ ±Fn]@I where ±Fi is

either Fi or its negation ¬Fi. These queries must be then recompiled into an appropriate

i-proposition.

We elaborate this procedure using our Scenario 2.1. Consider the domain description

D and instant 1. Since this domain has only one fluent, exhaustively querying D at 1

means finding the probabilities P1 and P2 such that

D ||= [Attention]@1 holds-with-prob P1 (30)

D ||= [¬Attention]@1 holds-with-prob P2. (31)

These values are P1 = 0.325 and P2 = 1−P1 = 0.675 (as it can be calculated, e.g., by

using PEC-ASP) and can be recompiled into the following i-proposition:

initially-one-of {({Attention}, 0.325), ({¬Attention}, 0.675)} (32)

3 https://github.com/dasaro/pec-anglican.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://github.com/dasaro/pec-anglican
https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1079

The domain description D≥1 consists of propositions (32), (1), (2), (3), (4) and (7).

Since the idea is that of discarding all knowledge about instants before 1, D≥1 has

corresponding domain language with set of instants {1, 2} (i.e., instant 0 was removed

from the language). Domain descriptions D and D≥I agree on all queries with instants

≥ I: for example, it is possible to show that MD≥1
([Attention]@2) = 0.158275, and we

have already calculated it is also the case that MD([Attention]@2) = 0.158275. Since

domain description D≥1 has fewer o-propositions than D , it also has fewer well-behaved

worlds (namely 5). In turn this intuitively means that, if a query only contains instants

≥ 1, it is computationally more convenient to query D≥1 rather than D .

Repeating the process on D and instant 2 produces the i-proposition

initially-one-of {({Attention}, 0.158275), ({¬Attention}, 0.841725)} (33)

and the domain description D≥2 consisting of propositions (33), (1), (2), (3) and (4). This

new domain description has only 2 well-behaved worlds. Clearly, MD≥2
([Attention]@2) =

0.158275 as this is encoded directly in the i-proposition, and this also equals

MD([Attention]@2) and MD≥1
([Attention]@2) as we have already calculated.

Note that the domain description D≥2 trivializes the task of deciding whether Propo-

sition (4) fires or not. In fact, it suffices to check whether its epistemic precondition

is satisfied or not by the i-proposition in D≥I . In this case, the epistemic precondition

requires Attention to be in the interval [0, 0.1], which is not the case as it can be imme-

diately seen by looking at the i-proposition (33) and considering that 0.158275 /∈ [0, 0.1].

As we show below, we can turn this intuition into an efficient procedure for updating

a domain description as new events are received and reason about this smaller domain,

instead of augmenting it with new propositions and reason about the full augmented

domain. The pseudo code of our PEC-RUNTIME procedure is as follows:

Algorithm 1: PEC-RUNTIME (Domain Description D , Classifiers C)

I = 0;

while session is not over do

currentIProp ← constructIProp(exhaustivelyQuery(D , I));

D ← D \ iprop(D) \ narr(D) ∪ {currentIProp};
for p-proposition p in D do

if p is satisfied in iprop(D) then

Execute p’s postconditions;

end

end

currentNarrative ← generateEventsFrom(C, I);

D ← D ∪ currentNarrative;

outputNarrative ← outputNarrative ∪ currentNarrative;

I ← I + 1;

end

return outputNarrative

The correctness of this algorithm is guaranteed by the following proposition.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1080 F. A. D’Asaro et al.

Fig. 2. Facial landmarks detected by the Head Pose Recognition module.

Proposition 3.1

Let D be any domain description such that D = D≤0. Then, MD>0
(ϕ) = MD(ϕ) for any

i-formula ϕ having instants > 0.

Proof

See Appendix B

4 Sensors and classifiers

In this section, we briefly overview the layers of sensors and classifiers we currently use

to detect user activity that is relevant to the rehabilitation task.

At the present stage, our main source of information is a 2D-webcam placed in front of

the children performing the rehabilitation task. The camera stream is mainly responsible

for the evaluation of the current pose of head and shoulders of the child, and to estimate

his/her emotional response to the interaction. Its output is processed by three modules:

Head Pose Recognition Module: We use the library Head Pose Estimation4 to

detect the facial landmarks (see Figure 2). A box containing the face and its surrounding

area is selected, resized, and normalized in order to use it as input for the facial-landmarks

detector, which is based on a CNN architecture. The facial-landmarks detection step

is carried out by a custom trained facial landmark detector based on TensorFlow and

trained on the iBUG datasets.5 It outputs 68 facial landmarks (2D points) as in Figure 2.

In turn, these landmarks are used to estimate the direction of gaze and quality of head

posture (Malek and Rossi 2021).

4 https://github.com/yinguobing/head-pose-estimation
5 https://ibug.doc.ic.ac.uk/.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://github.com/yinguobing/head-pose-estimation
https://ibug.doc.ic.ac.uk/
https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1081

Shoulders Alignment Module: We use PoseNet (Papandreou et al . 2018) to ex-

tract the skeleton joints coordinates from the camera frames. Then we compare these

coordinates to the horizontal plane. We use this estimation to determine whether the

child is assuming a correct posture while performing the rehabilitation.

Emotion Recognition Module: This module estimates the emotional response of

the child, and outputs a valence (Rescigno et al . 2020). This value represents how good

- or how bad - the emotion associated with the event or the situation was, and ranges

from −1 to +1. To this end we use the AlexNet model (Krizhevsky et al . 2012) trained

on the Affectnet Dataset (Mollahosseini et al . 2017).

In future extensions of this work we intend to combine data gathered with additional

sensory sources. Specifically, we will employ pillows equipped with pressure sensors,

mounted on the seat-back of the chair, to complement the evaluation of the Shoulders

Alignment Module and better evaluate whether the child is sitting correctly. We also

plan on complementing the Head Pose and Emotion Recognition Modules using an Eye

Tracker and EEG respectively.

5 Examples and discussion

In this section we demonstrate our approach by means of examples and experimental

results. Note that Experiment (a) was run on a Mid-2010 Apple MacBook Core 2 Duo

2.4 GHz with 8 GB of RAM, while Experiments (b), (c), (d), (e) and (f) were run on an

Apple Macbook Pro 2020 M1 with 16 GB of RAM.

5.1 Scalability

Experiment (a). To demonstrate that PEC-RUNTIME scales favorably compared with

PEC-ASP and PEC-ANGLICAN we tested the three implementations on a simple do-

main description in which an action repeatedly occurs and causes the probability of a

fluent to slowly decay:

F takes-values {�,⊥}
initially-one-of {({F}, 1)}

A causes-one-of {({¬F}, 0.2), (∅, 0.8)}
∀I, A performed-at I with-prob 0.5

where the set of instants is {0, 1, . . . , 15}. The probability of ¬F as calculated by the

three frameworks is shown in Figure 3. Table 1 summarizes the performances of PEC-

RUNTIME, PEC-ASP and PEC-ANGLICAN.

As it can be seen from these results, PEC-RUNTIME outperforms both PEC-ASP and

PEC-ANGLICAN on all queries. In terms of performance, PEC-ANGLICAN is close to

PEC-RUNTIME when only 100 well-behaved worlds are sampled. However, sampling

100 worlds causes precision issues as it is clear from Figure 3.

Experiment (b). In this experiment we consider the effect of varying the number

of actions in the domain description. To isolate the effect of actions from that of other

side-effects we consider domain descriptions of the simplest possible form:

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1082 F. A. D’Asaro et al.

0 2 4 6 8 10 12 14 16

0

0.5

1

Instant

P
ro

ba
bi

li
ty

Probability of ¬F (PEC-ASP, PEC-RUNTIME)
Probability of ¬F (PEC-ANGLICAN (100))

Fig. 3. Probability of F as a function of time for the example discussed in Section 5.1,
Experiment (a).

F takes-values {�,⊥}
initially-one-of {({F}, 1)}

∀I, A1 performed-at I with-prob 0.5

...

∀I, An performed-at I with-prob 0.5

where I = {1, . . . , 15} and we consider different values of n ranging from 0 to 15.

We evaluate the computation time for query [F]@I at all instants. Results are plotted

in Figure 4 and confirm the intuition that, at an instant I, computation time scales

exponentially with the number of action occurrences at that instant.

Experiment (c). To empirically evaluate the effect of the number of fluents in the

domain, we performed a similar experiment with domain descriptions of the following

forms:

F1 takes-values {�,⊥}
...

Fn takes-values {�,⊥}
initially-one-of {({F1, . . . , Fn}, 1)}

where I = {1, . . . , 15} and n ranges from 1 to 15. Results are shown in Figure 4, and

confirm the intuition that computational time scales exponentially as a function of the

number of fluents in the domain.

Experiment (d). This experiment combines (b) and (c) in that it shows how com-

putation time scales with both fluents and actions. The considered domain descriptions

are:

F1 takes-values {�,⊥}
...

Fn takes-values {�,⊥}

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1083

Table 1. Time (in seconds) to execute the query [¬F]@I in the example discussed in

Section 5.1. The numbers in bracket in the case of PEC-ANGLICAN refer to the number

of sampled well-behaved worlds used to approximate the result of the query. For every im-

plementation, reported times include grounding and processing of the domain description

PEC-ANG PEC-ANG PEC-ANG
Instant I PEC-ASP (100) (1000) (10000) PEC-RUNTIME

0 0.01 1.55 4.52 29.29 0.07
1 1260.24 1.58 3.23 29.02 0.19
2 2142.81 1.64 4.87 31.54 0.18
3 2557.31 1.58 5.46 33.04 0.17
4 2708.37 1.61 3.22 28.66 0.17
5 2911.29 1.61 3.69 32.92 0.22
6 3086.32 1.79 3.58 35.62 0.13
7 3147.04 1.56 3.70 26.98 0.22
8 3208.48 1.55 5.18 33.00 0.14
9 3251.10 1.53 3.33 32.79 0.19
10 3298.81 1.53 5.41 32.95 0.18
11 3316.88 1.60 4.66 28.72 0.13
12 3311.27 1.57 3.88 27.99 0.21
13 3338.23 1.55 1.50 27.62 0.18
14 3440.68 1.56 4.05 23.97 0.15
15 3368.67 1.80 4.65 24.85 0.13

Average: 2771.72 1.60 4.06 29.93 0.17

initially-one-of {({F1, . . . , Fn}, 1)}
∀I, A1 performed-at I with-prob 0.5

...

∀I, Am performed-at I with-prob 0.5

where I = {1, . . . , 15}, the number of fluents varies from 1 to 15 and the number of

actions varies from 0 to 15. Result are shown in Figure 5 and extend those of Figure 4.

Experiment (e). In this experiment we empirically evaluate the effect of initial con-

ditions, and show that computation time scales linearly with their number. To this aim,

we consider the following domain description:

F1 takes-values {�,⊥}
...

F10 takes-values {�,⊥}
initially-one-of {({F1, . . . , F10}, 1/n), . . . , ({¬F1, . . . , F10}, 1/n),

({¬F1, . . . ,¬F10}, 1/n)}
where I = {1, . . . , 15} and n ranges from 1 to 210, that is, the maximum number of

possible initial conditions with 10 fluents. Note that n is also the number of well-behaved

worlds considered by PEC-RUNTIME at each progression step. Results are shown in

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1084 F. A. D’Asaro et al.

0 2 4 6 8 10 12 14 16

0

20

40

60

Number of actions/fluents

Ti
m

e
(s

)
Actions
Fluents

Fig. 4. Time (in seconds) to query the domain in Section 5.1, Experiments (b) and (c),
expressed as a function of the number of actions and fluents. The results show averages over 15
runs – however, standard error was not plotted as it it significantly small (< 0.05 at all data

points).

Figure 6 and confirm the intuitive hypothesis that computational time scales linearly

with the number of initial conditions/well-behaved worlds.

Experiment (f). This experiment aims to study how PEC-RUNTIME behaves in a

more realistic domain where every sensor has a fixed probability p of producing a reading

at every instant. We consider the following domain descriptions:

F1 takes-values {�,⊥}
F2 takes-values {�,⊥}
F3 takes-values {�,⊥}
F4 takes-values {�,⊥}
F5 takes-values {�,⊥}

initially-one-of {({¬F1,¬F2,¬F3,¬F4,¬F5}, 1)}
¬A1 ∧ ¬A2 ∧ ¬A3 ∧ ¬A4 ∧A5 causes-one-of {({¬F1,¬F2,¬F3,¬F4, F5}, 4/5), (∅, 1/5)}

...

A1 ∧A2 ∧A3 ∧A4 ∧ ¬A5 causes-one-of {({F1, F2, F3, F4,¬F5}, 4/5), (∅, 1/5)}
A1 ∧A2 ∧A3 ∧A4 ∧A5 causes-one-of {({F1, F2, F3, F4, F5}, 4/5), (∅, 1/5)}

and, for every instant I and action A, the proposition

Ai performed-at I with-prob 0.5

has a some fixed probability p of being included in the domain description, where p varies

in the set {0.1, 0.2, . . . , 1}. Results are shown in Figure 7.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1085

80
50

50
50

10
10

10

10
10

1
1

1

0.1

0.1

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Number of flents

N
um

be
r

of
ac

ti
on

s

Fig. 5. Contour plot showing time (in seconds) to query the domain in Section 5.1,
Experiment (d), expressed as a function of the number of actions and fluents.

0 100 200 300 400 500 600 700 800 900 1,000

0

50

100

Number of initial conditions

Ti
m

e
(s

)

Initial conditions

Fig. 6. Time (in seconds) to query the domain in Section 5.1, Experiment (e), expressed as a
function of the number of initial conditions.

5.2 Effect of noise

One of the characteristics of EPEC (and its dialects) that makes it highly suitable as

an interface with machine learning algorithms is that it supports events annotated with

probabilities. If a classifier provides a confidence score for its output, it is possible to feed

such score into EPEC in the form of a probability. This may be useful to account for

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1086 F. A. D’Asaro et al.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

Instant

Ti
m

e
(s

)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Fig. 7. Time (in seconds) to query the example discussed in Section 5.1, Experiment (f). The
results show averages over 30 runs.

possible artifacts and flickering of a given classifier. For instance, consider a classifier C

that alternatively produces readings true and false for some characteristic F . This may

be represented in EPEC as the following stream of events:

Ctrue occurs-at 0 with-prob Ptrue

Cfalse occurs-at 1 with-prob Pfalse

Ctrue occurs-at 2 with-prob Ptrue

Cfalse occurs-at 3 with-prob Pfalse

...

Ctrue occurs-at 18 with-prob Ptrue

Cfalse occurs-at 19 with-prob Pfalse

where Ctrue (resp. Cfalse) is an event that causes the value of fluent F to be � (resp. ⊥),
that is:

Ctrue causes-one-of {({F}, 1)}
Cfalse causes-one-of {({¬F}, 1)}

and the truth value of f is initially unknown, that is:

initially-one-of {({F}, 0.5), ({¬F}, 0.5)}
We analyze the behavior of EPEC in different scenarios (corresponding to different values

for Ptrue and Pfalse):

Scenario (a). The classifier C produces true with high confidence and false with low

confidence, for example, Ptrue = 0.99 and Pfalse = 0.01. This domain description entails

“[F]@20 holds-with-prob P” where P ≈ 0.9899, which makes intuitive sense as the

false events have low confidence and are discarded as background noise.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1087

Scenario (b). The classifier C produces true and false with a high degree of uncer-

tainty. However, it assigns true a slightly higher degree of confidence, for example Ptrue =

0.501 and Pfalse = 0.499. This domain description entails “[F]@20 holds-with-prob P”

where P ≈ 0.653246, which reflects that such a sequence of events does not carry as much

information as in Scenario (a), due to the the small difference between Ptrue and Pfalse.

Scenario (c). The classifier C produces both true and false with low confidence, with

Ptrue � Pfalse. For example, let Ptrue = 0.49 and Pfalse = 0.01. This domain description

entails “[F]@20 holds-with-prob P” where P ≈ 0.979286, which again makes intuitive

sense as false readings are again discarded as background noise, with the repeated true

readings making the probability of F steadily grow throughout the timeline.

These scenarios show that EPEC is sensibly more accurate than any logical framework

that is not capable of handling probabilities in the presence of noisy sensors. In fact,

these frameworks would have to set a threshold, and only accept events with probabilities

higher than that threshold. In our example, setting a threshold for example of 0.5 would

lead to significant errors especially in Scenarios (b) and (c). In Scenario (b), all Cfalse

events would be discarded, implying that F is detected to hold true at instant 20 with

certainty (compare this to the probability 0.653246 assigned to the same query by EPEC).

In Scenario (c), all events would be discarded and it would not be possible neither that

F holds at 20 nor that it does not (compare again to the probability 0.979286 assigned

by EPEC).

5.3 An example from AVATEA

As discussed in Section 4, a layer of classifiers directly injects events into PEC-RUNTIME,

which merges them together and decides what action to take according to a predefined

conditional plan. We show how PEC-RUNTIME accounts for these classifiers in the

following example.

We use the Head Pose Recognition module to decide whether the child is looking at the

screen or not, and therefore this module can trigger an EyesNotFollowingTarget event

(and possibly an associated probability). Similarly, the Shoulders Alignment Module

triggers a BadPosture event if it detects that the child’s shoulders are not correctly

aligned. Finally, the Emotion Recognition Module triggers a LowValence event when it

thinks the child is experiencing negative valence. On the basis of these events, we aim

to evaluate the probabilities of TaskCorrect , that is, that the child is performing the

therapeutic task correctly, and Engagement , that is, that the child and engaged to the

task. Consider the following narrative of events:

EyesNotFollowingTarget occurs-at 0 with-prob 1

BadPosture occurs-at 0 with-prob 1

LowValence occurs-at 0 with-prob 1

EyesNotFollowingTarget occurs-at 1 with-prob 1

BadPosture occurs-at 1 with-prob 1

LowValence occurs-at 1 with-prob 1

EyesNotFollowingTarget occurs-at 2 with-prob 76/100

LowValence occurs-at 2 with-prob 87/100

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1088 F. A. D’Asaro et al.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Instant

P
ro

ba
bi

li
ty

Engagement
TaskCorrect
Threshold

Fig. 8. Engagement and TaskCorrect as a function of time in the example from Section 5.3.

EyesNotFollowingTarget occurs-at 3 with-prob 1

BadPosture occurs-at 3 with-prob 1

LowValence occurs-at 3 with-prob 1

EyesNotFollowingTarget occurs-at 7 with-prob 7/100

EyesNotFollowingTarget occurs-at 8 with-prob 89/100

EyesNotFollowingTarget occurs-at 9 with-prob 74/100

EyesNotFollowingTarget occurs-at 11 with-prob 1

These events are given a meaning by means of a domain description (see Appendix A

for the full domain) that specify what bearing each event has on fluents TaskCorrect and

Engagement .

Furthermore, consider a conditional plan of the following form:

∀I, PlaySound performed-at I if-believes (Attention, [0, 0.3])

∀I, LowerDifficultyLevel performed-at I if-believes (TaskCorrect , [0, 0.3])

which states that a sound must be played by the system whenever the Attention of the

child is low, and that the difficulty level must be lowered if the child does not manage to

perform it correctly.

PEC-RUNTIME works out the probabilities in Figure 8, and triggers decisions when

they fall below the given threshold. In particular, PlaySound is triggered at instant 4,

and LowerDifficultyLevel is triggered at instants 2, 3 and 4. It is worth noting here that

thresholds may induce the so-called rubberband effect, where abrupt probability changes

(due e.g., to noise) may lead to decisions being taken too frequently. Unfortunately, EPEC

(and therefore also PEC-RUNTIME) does not allow to control this effect, therefore we

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1089

implemented a bespoke semaphore in the underlying Python script that only allows

decision to be taken every 20 s.

These decisions are forwarded to the game. At the end of each therapeutic session, this

narrative is saved to a file so that it can be used to provide feedback to the therapists

and re-consulted if needed. In this scenario, PEC-RUNTIME provides feedback such as

“The child performed the task correctly for a total of 10 instants out of 13 (76.9%). The

game difficulty was lowered at instants 2, 3 and 4 as s/he was unable to perform the

exercise. His attention was lowest at instant 4.”. A graph similar to that in Figure 8 is

also shown to the therapists, so that they can have a quick overview of the session.

6 Related work

To our knowledge, our architecture is one of the first that merges gamification strategies

for rehabilitation and probabilistic logic programming techniques. In the following, we

briefly survey these two fields, and motivate our design choices.

6.1 Gamification

Gamification strategies consist in using game-like elements (e.g., points, rewards, perfor-

mance graphs, etc.) in serious contexts such as ours. These have proven to be extremely

successful to engage young children in diagnostic and therapeutic exercises, even before

the advent of digital gaming. While games to test cognitive capabilities (Belpaeme et al .

2012) do not form a sharply defined class, games designed to test and improve motor

skills are usually referred to as exergames. The effects of exergames have been found to

be generally positive (Vernadakis et al . 2015). Gamification systems are usually effec-

tive in engaging young users in playful activities, while adapting the current challenge

according to level of user competence. Sessions are typically logged in order to provide

detailed feedback to therapists. On the cognitive side, these adaptive systems have been

designed to evaluate subjective well-being (Wu et al . 2019) and phonological acquisition

(Origlia et al . 2017) among others. Adaptive exergames have been used for example in

the context of children with spinal impairments (Mulcahey et al . 2008), and to test gross

motor skills (Huang et al . 2018).

(Deep) Machine Learning techniques are not advantageous in the case of exergames if

they are used alone, as they must be trained on big amounts of data even when expert

knowledge can be (relatively) easily extracted from experts and encoded in symbolic form

(e.g., using logic programming), with the further advantage that symbolic knowledge can

be used to automatically produce explanations and reports. As a centralized reasoning

system, we use probabilistic logic programming techniques instead. These systems are a

convenient option as they allow both for the representation of formal constraints needed

to implement a clinically effective exercise, and for the statistical modeling of intrinsically

noisy data sources.

6.2 Probabilistic reasoning about actions

Recently, logic-based techniques have been successfully applied to several fields of

Artificial Intelligence, including among others event recognition from security cameras

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

1090 F. A. D’Asaro et al.

(Skarlatidis et al . 2015a,b), robot location estimation (Belle and Levesque 2018),

understanding of tenses (Van Lambalgen and Hamm 2008), natural language process-

ing (Nadkarni et al . 2011), probabilistic diagnosis (Lee and Wang 2018) and intention

recogntion (Acciaro et al . 2021). Given the importance of Machine Learning and Prob-

ability Theory in AI, these frameworks and languages have gradually started employing

probabilistic semantics (Sato 1995) to incorporate and deal with uncertainty. This has

given birth to the field of Probabilistic Logic Programming (Riguzzi 2018), and we are

particularly concerned with Probabilistic Reasoning about Action frameworks as they

can deal with agents interacting with some (partially known) environment. For example

Bacchus et al . (1999), Belle and Levesque (2018), that are based on the Situation Cal-

culus ontology (Reiter 2001), can model imperfect sensors and effectors. The Situation

Calculus’ branching structure makes these frameworks mostly suitable for planning un-

der partial states of information. A recent extension of language C+ (Giunchiglia et al .

2004), dubbed pBC+, is presented in Lee and Wang (2018). The authors show how

pBC+ can be implemented in LPMLN, a probabilistic extension of ASP that can be

readily implemented using tools such as LPMLN2ASP (Lee et al . 2017). Unlike our

work, which focuses on runtime reasoning, pBC+ is mostly suited for probabilistic diag-

nosis and parameter learning. The two languages MLN-EC (Skarlatidis et al . 2015b) and

ProbEC (Skarlatidis et al . 2015a) extend the semantics of the Event Calculus (Kowalski

and Sergot 1986; Miller and Shanahan 2002) ontology, using Markov Logic Networks

(Richardson and Domingos 2006) and ProbLog (De Raedt et al . 2007) to perform event

recognition from security cameras. In their proposed case study, the logical part of the

architecture receives time-stamped events as inputs and processes them in order to detect

complex long-term activities (e.g., infer that two people are fighting from the fact that

they have been close to each other and moving abruptly during the last few seconds).

Given their semi-probabilistic nature, these frameworks are able to handle uncertainty

in the input events (ProbEC) or in the causal rules linking events and fluents (MLN-

EC) but they do not deal with any form of epistemic knowledge. On the other hand,

EPEC (D’Asaro et al . 2020) has the advantage of being based on the Event Calculus

(making it particularly well suited for Event Recognition tasks) and being able to deal

with epistemic aspects. Its semantics abstracts from any specific programming language

and therefore it lends itself to task-specific optimizations, such as the runtime adaptation

presented in this work.

7 Conclusion and future work

To summarize, the contribution of this paper is two-fold:

• It presents an architecture, currently being actively developed and tested, for the

rehabilitation of children with DCDs. The suggested approach mixes machine learn-

ing, logic-based and gamification techniques.

• It introduces an novel implementation of a state-of-the-art probabilistic logic pro-

gramming framework (EPEC) that can work at runtime.

The logical framework plays the role of an interface between the exergame and the

machine-learning techniques, and is mainly used for two reasons: (i) guide the exergame

according to a predefined strategy that is hard-encoded in the domain description, and

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1091

(ii) provide human-understandable feedback after each therapeutic session, that can be

used to log user performance over time.

Nonetheless, there is much room for extending the scope and functionalities of our

application. As we collect data about the users of our system, we can compare the

decisions taken by the system to those that therapists and psychologists would take, and

adapt our domain descriptions accordingly. In the future, we would like to do this semi-

automatically by learning the probabilities in our domain descriptions from data-streams

annotated by experts.

It is also possible to expand the feedback functionalities of our system. At the moment,

feedback includes a series of graphs about the level of engagement of the patient and

limited textual reports about his/her performance level (see Section 5.3). However, a full

history of what happened throughout each therapeutic session is recorded in an EPEC-

readable narrative. Implementing a device to automatically translate these narratives into

natural language would greatly enhance the transparency of our system, and constitutes

a future step of this work. In fact, “explanations” coming from our system are limited to

plots such as the one depicted in Figure 8, that shows what the engagement level of the

child is throughout the therapeutic session, and reasons behind decisions are explained in

terms of trespassed thresholds. Transforming them into natural language would greatly

enhance intelligibility of our system.

Conflicts of interest

The authors declare they were partially supported by MIUR within the POR Campania

FESR 2014-2020 AVATEA “Advanced Virtual Adaptive Technologies e-hEAlth” research

project.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068422000382.

References

Acciaro, G. D., D’Asaro, F. A. and Rossi, S. 2021. Predicting humans: A sensor-based
architecture for real time intent recognition using problog. In Proceedings of the 22nd Work-
shop “From Objects to Agents”, Bologna, Italy, September 1–3, 2021, R. Calegari, G. Ciatto,
E. Denti, A. Omicini and G. Sartor, Eds. CEUR Workshop Proceedings, vol. 2963. CEUR-
WS.org, 72–82.

Bacchus, F., Halpern, J. Y. and Levesque, H. J. 1999. Reasoning about noisy sensors and
effectors in the situation calculus. Artificial Intelligence 111, 1–2, 171–208.

Belle, V. and Levesque, H. J. 2018. Reasoning about discrete and continuous noisy sensors
and effectors in dynamical systems. Artificial Intelligence 262, 189–221.

Belpaeme, T., Baxter, P. E., Read, R., Wood, R., Cuayáhuitl, H., Kiefer, B.,
Racioppa, S., Kruijff-Korbayová, I., Athanasopoulos, G., Enescu, V., Looije, R.,
Neerincx, M., Demiris, Y., Ros-Espinoza, R., Beck, A., Cañamero, L., Hiolle, A.,
Lewis, M., Baroni, I., Nalin, M., Cosi, P., Paci, G., Tesser, F., Sommavilla, G. and

Humbert, R. 2012. Multimodal child-robot interaction: Building social bonds. Journal of
Human-Robot Interaction 1, 2, 33–53.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

http://doi.org/10.1017/S1471068422000382
http://doi.org/10.1017/S1471068422000382
https://doi.org/10.1017/S1471068422000382

1092 F. A. D’Asaro et al.

D’Asaro, F. A., Bikakis, A., Dickens, L. and Miller, R. 2017. Foundations for a proba-
bilistic event calculus. In Proceedings of the 14th International Conference Logic Programming
and Nonmonotonic Reasoning, LPNMR 2017, M. Balduccini and T. Janhunen, Eds. Springer
International Publishing, Cham, 57–63.

D’Asaro, F. A., Bikakis, A., Dickens, L. and Miller, R. 2020. Probabilistic reasoning
about epistemic action narratives. Artificial Intelligence 287, 103352.

D’Asaro, F. A., Origlia, A. and Rossi, S. 2019. Towards a logic-based approach for multi-
modal fusion and decision making during motor rehabilitation sessions. In Proceedings of the
20th Workshop “From Objects to Agents” (WOA).

De Raedt, L., Kimmig, A. and Toivonen, H. 2007. Problog: A probabilistic prolog and its
application in link discovery. In IJCAI, vol. 7, 2462–2467.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2014. Clingo = ASP + con-
trol: Preliminary report. In Proceedings of Technical Communications of the 30th Inter-
national Conference on Logic Programming (ICLP’14), M. Leuschel and T. Schrijvers,
Eds. Theory and Practice of Logic Programming, Online Supplement, vol. 14(4–5). URL:
http://arxiv.org/abs/1405.3694v1.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N. and Turner, H. 2004. Nonmonotonic
causal theories. Artificial Intelligence 153, 1-2, 49–104.

Huang, C.-Y., Tung, L.-C., Chou, Y.-T., Wu, H.-M., Chen, K.-L. and Hsieh, C.-L. 2018.
Development of a computerized adaptive test of children’s gross motor skills. Archives of
Physical Medicine and Rehabilitation 99, 3, 512–520.

Kowalski, R. and Sergot, M. 1986. A logic-based calculus of events. New Generation Com-
puting 4, 1, 67–95.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. 2012. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing Systems.
1097–1105.

Lee, J., Talsania, S. and Wang, Y. 2017. Computing lpmln using asp and mln solvers. Theory
and Practice of Logic Programming 17, 5–6, 942–960.

Lee, J. and Wang, Y. 2018. A probabilistic extension of action language bc+. Theory and
Practice of Logic Programming 18, 3–4, 607–622.

Lin, F. and Reiter, R. 1997. How to progress a database. Artificial Intelligence 92, 1,
131–167.

Malek, S. and Rossi, S. 2021. Head pose estimation using facial-landmarks classification for
children rehabilitation games. Pattern Recognition Letters 152, 406–412.

Miller, R. and Shanahan, M. 2002. Some alternative formulations of the event calculus. In
Computational Logic: Logic Programming And Beyond. Springer, 452–490.

Mollahosseini, A., Hasani, B. and Mahoor, M. H. 2017. Affectnet: A database for fa-
cial expression, valence, and arousal computing in the wild. IEEE Transactions on Affective
Computing 10, 1, 18–31.

Mulcahey, M., Haley, S. M., Duffy, T., Ni, P. and Betz, R. R. 2008. Measuring physical
functioning in children with spinal impairments with computerized adaptive testing. Journal
of Pediatric Orthopedics 28, 3, 330.

Nadkarni, P. M., Ohno-Machado, L. and Chapman, W. W. 2011. Natural language pro-
cessing: an introduction. Journal of the American Medical Informatics Association 18, 5,
544–551.

Origlia, A., Cosi, P., Rodà, A. and Zmarich, C. 2017. A dialogue-based software architec-
ture for gamified discrimination tests. In GHITALY@ CHItaly.

Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J. and Murphy, K. 2018.
Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based,
geometric embedding model. In Proceedings of the European Conference on Computer Vision
(ECCV), 269–286.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

http://arxiv.org/abs/1405.3694v1
https://doi.org/10.1017/S1471068422000382

An application of a runtime epistemic probabilistic event calculus 1093

Reiter, R. 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press.

Rescigno, M., Spezialetti, M. and Rossi, S. 2020. Personalized models for facial emotion
recognition through transfer learning. Multimedia Tools and Applications 79, 47, 35811–35828.

Richardson, M. and Domingos, P. 2006. Markov logic networks. Machine Learning 62, 1,
107–136.

Riguzzi, F. 2018. Foundations of Probabilistic Logic Programming. River Publishers Series in
Software Engineering. River Publishers.

Sato, T. 1995. A statistical learning method for logic programs with distribution semantics.
In Proceedings of the 12th International Conference on Logic Programming (ICLP95). Cite-
seer.

Skarlatidis, A., Artikis, A., Filippou, J. and Paliourasz G. 2015a. A probabilistic logic
programming event calculus. Theory and Practice of Logic Programming 15, 213–245.

Skarlatidis, A., Paliouras, G., Artikis, A. and Vouros, G. A. 2015b. Probabilistic event
calculus for event recognition. ACM Transactions on Computational Logic (TOCL) 16, 2, 11.

Van Lambalgen, M. and Hamm, F. 2008. The Proper Treatment of Events, vol. 6. John Wiley
& Sons.

Vernadakis, N., Papastergiou, M., Zetou, E. and Antoniou, P. 2015. The impact of
an exergame-based intervention on children’s fundamental motor skills. Computers & Educa-
tion 83, 90–102.

Wu, Y., Cai, Y. and Tu, D. 2019. A computerized adaptive testing advancing the measurement
of subjective well-being. Journal of Pacific Rim Psychology 13, 1–10.

https://doi.org/10.1017/S1471068422000382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000382

	Introduction
	Overview of the language
	Syntax overview
	Semantics overview
	Simulating epistemic actions via c-propositions and o-propositions

	A runtime adaptation of EPEC
	Sensors and classifiers
	Examples and discussion
	Scalability
	Effect of noise
	An example from AVATEA

	Related work
	Gamification
	Probabilistic reasoning about actions

	Conclusion and future work
	References

