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Introduction

Two sets of r + 2 points, Pit P'v each spanning a projective space of
r + 1 dimensions, [r + 1], which has no solid ([3]) common with that
spanned by the other, are said to be projective from an [r — 1], if here is an
[r — 1] which meets the r + 2 joins Pj-P^. It is to be proved that the two
sets are projective, if and only if the r -\- 2 intersections Ai of their corre-
sponding [r]s lie in a line a. At are said to be the arguesian points and a the
arguesian line of the sets. When r = 1, the proposition becomes the well-
known Desargues' two-triangle theorem (3) in a plane. Therefore in analogy
with the same we name it as the Desargues' theorem in [2r]. Following Baker
(1, pp. 8—39), we may prove this theorem in the same synthetic style by
making use of the axioms and the corresponding proposition of incidence in
[2r+ 1] or with the aid of the Desargues' theorem in a plane and the axioms
of [2r] only. But the use of symbols makes its proof more concise; the alge-
braic approach adopted here is due to the referee (Arts. 2, 3, 5, 6, 7). Pairs of
sets of r + p points each projective from an [r — 1] are also introduced to
serve as a basis for a much more thorough investigation.

1. Synthetic Outline

Following Coxeter (4, p. 7), first we observe that the theorem is obvious
almost when the 2 [r + l]s of the 2 sets meet in a line a and therefore both
lie in a [2r + 1], because in this case the projections from the transversal
[r — 1] of the r + 2 joins of their corresponding points are the r -f- 2 points
Ao which all lie in a. The theorem for the sets in a [2r] arises as a limiting
case.

2. The Two Theorems

To avoid the considerations of continuity, we may formulate the theorems
for [2r + 1 ] and [2r] separately as follows:

I. Given 2 sets of r + 2 points, Pit P'it each spanning [r + 1], and between
them spanning [2r + 1], the necessary and sufficient condition that there should
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bean [r — 1] which meets the r + 2 lines Pt P\ is that each of ther + 2 pairs of
[r]ss uch as [Po, • • •, P ^ Pi+1, • • •, P r + 1 ] <m^ [P'o, • • •, P ^ , P'i+X, - • •, Pr'+1]
should have a common point A{.

II. Given 2 sets of r + 2 points, Pit P't, each spanning [r + 1], #m£ between
them spanning [2r], the necessary and sufficient condition that there should be
an [r — 1] which meets the r + 2 /zWs Pz P | «s that the r + 2 points of concur-
rence Ai of the pairs of [r]s such as [Po, • • •, P ^ , Pi+1, • • •, Pr +i] ««^
[PQ, • • •, Pf_1} Pf+i, • • •, P'r+il should be collinear.

3. The Proofs of these Theorems

We may use Baker's method (6) of "point symbols" and "algebraic sym-
bols", or treat "points" as being represented by vectors with 2r -\- 2 com-
ponents, the vectors Pt and kPt corresponding to the same point. There are
either two (in [2r + 1]) or three (in [2r]) identities (or "syzygies") connect-
ing the 2r + 4 point symbols (or vectors) Pit P\.

Theorem I. Assume the r + 2 lines PiP'i are met by an [r — 1], and that
by an adjustment of multipliers the points in which the [r — 1] meets the
lines are Pt -\- P\. Since these r + 2 points lie in [r — 1], there are 2 syzy-
gies, say 2l+1 {Pj + P't) = °> To+1 kAPi + P't) = °- F r o m t h e s e w e deduce
r + 2 relations such as

r+l

This is the condition that the 2 [r]s quoted in the theorem have common the
point Ai = ^ (ki — kj)Pj = — 2 (̂ » ~ kj)P'i- The converse can be proved
equally simply.

Theorem II. The algebraic part of the argument from the existence of the
[r — 1] to the collinearity of the r + 2 points is identical with that above.

For the converse we assume that among the 2r + 4 points there are 3
syzygies, say £ (Pt + Pj) = 0,2 A,P, + 2 ^-P,' = 0, 2 *<P« + 2 KP'^Q.
It has to be shown that if these are such that the r + 2 points 4̂t- are col-
linear, then the r + 2 lines have a transversal [> — 1]. The plane in which
the 2 [> + l]s meet is U°H°K° where

and the points ^ are

,̂ = (*,*; - ^.)c/° + (^ - ^;.)^° + (A; - <
The r + 2 points of this form are collinear, if and only if multipliers p, q, r
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can be found such that

PM - h<kt) + q(kt - k't) + r(h't ~ ht) = 0.

From this the existence of the transversal [r — 1] can be deduced.

4. The Associated Arguesian Lines

The pair of sets of r -\- 2 points Pit P't projective from an [r — 1] give rise
to 2r+1 — 1 more such pairs obviously projective from the same [r — 1].
For there are 2 choices for every point, Pt or P't, to belong to a set independ-
ent of each other. For example, r + 2 pairs are of the type [P'Q, Plt • • -, Pr + 1],
[Po, Pi • --, P;+1]; (t2) pairs of the type [P'Q, P[, P2, • • -, Pr+1], (Po, Plt

P'2, ' ' ', P'r+1], and so on. Evidently every subset of r + 1 points belongs to
2 sets, e.g., [Px, • • •, Pr+1] belongs to [Po, • • •, Pr+1] and [PJ, Pv • • •, Pr + 1] .
Thus: there are in all 2r+1 arguesian lines, one for each pair of such sets, and
2r(r + 2) arguesian points, r + 2 on each line and each common to 2 lines, such
that every line meets r + 2 other lines, skew to each other.

It is assumed here that no r lines PtP^ lie in a \2r — 2]. For otherwise a
number of arguesian points coincide and the picture is no longer general.
For example, if the lines for i = 1, • • •, r lie in a [2r — 2], the 2 [r — l]s
[Pv - • -, Pr], [P'x, • - -, P'r] meet in a point which coincides with the 4 argue-
sian points [p0, • •., pr] • [ p ; . • •, p'r], [plt • •., pr+1j • [p;, • • •, p;+ 1] ,

; plt • • •, pr] • [p0, p[, • • -, P;J, [plt • • -, pr
r)

5. Redundant Coordinates

Let (xo x't) in the symbol foP,- + ^Pt') be taken as coordinates initially
in O + 3], The 2 syzygies U = 2 (Pf + P;.) = 0, i^ = J ^ ( P , + Pj) = 0
correspond to projections from [2r + 3] on to [2r + 1] from the points
whose symbols are £/ andi£. Thus ^ («fa;t. + u^) = 0 represents a prime in
[2r -f- 1] only if ^ ( î + *0 — 0 a n d 2 ^i(w» + ui) ~ ®> a n ( i a quadratic
form in a;,-, x\ represents a quadric in \2r + 1] only if in [2r + 3] it represents
a quadric cone with the line UK as vertex. It represents a quadric in a sub-
space of [2r + 1 ] only if the subspace is the projection of a space in \2r + 3]
that is tangent to the quadric in \2r + 3] at every point of UK.

6. Case r = 2

a) Take the two tetrads of points A, B, C, D; A', B', C, D' connected by
the two syzygies U = A+A' + B + B' + C + C' + D + D' = 0,

K = a{A+A') + b(B + B') +c{C + C) + d{D + D') = 0.

The first arguesian line contains the 4 points
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Interchanging Z), Z)', we find another arguesian line through (& — a)B +
(c — a)C + (d — #)Z)', say .001, etc. The 8 lines and 16 points can be ex-
hibited as the rows and columns of the scheme

.000
1.00
10.0
100.

0.00
.100
01.0
010.

00.0
001.
.010
0.10

000.
00.1
0.01
.001

i.e., they lie in a solid s, and are two tetrads of generators (6) of a quadric
surface q and their 16 common points.

b) The equations of s are k(x + #') + l(y + y') + M(Z + z') + n(t -f- t')
= 0 where k-\-lJ

rm-\-n = 0, ak + bl + cm + dn = 0, i.e.

(i) x +
1
a

x' y +
I
b

y' z +
1
c

z' t + t'
1
d

= 0

The transversal of the two solids A BCD, A'B'C'D' is the line [A + A',
B + Br, C + C, D + D']. s is the "harmonic conjugate" of this w.r. to
A, A'; B, B'\ C, C; D, D', viz., the solid

[A" = A ~ Af, B" = B - B', C" = C - C, D" = D -D'].

c) The equation of q is

(ii) XX

1
a
a2

yy
I
b
b*

zz'
1
c
c*

W
1
d

d*

= 0

since it is satisfied by the 16 points (b — a)B + (c — a)C + (d — a)D etc.,
i.e., (0, b — a, c — a, d — a, 0, 0, 0, 0) etc., and since further, in the [7] in
which the points A, • • •, D' are independent, the [5] with equations (i)
passes through U, K and lies in the tangent primes at those points to the
quadric sixfold of which the equation is (ii).

d) Further it can be seen immediately that the 4 points of each of the 4
sets such as .000, . 100, .010, .001 are coplanar. These points in fact lie in
the plane of which the equations are x — x' = 0, together with equations (i);
the 4 such planes are the faces1 of the tetrahedron T" = A"B"C"D".

1 This observation is due to the referee.
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e) So far it has been assumed that the basic figure lies in [5]. If it lies in
[4], there will be an additional syzygy connecting A, • • •, D' and the figure
in [4] may therefore be considered as the projection of that in [5] from some
point, say H. The figure of the 8 arguesian lines will therefore not be affected,
unless H lies in s.

7. Case r = 3

a) Following the same line of argument, we find in [7] a configuration of
40 points which are collinear by sets of five on 16 lines.

b) Using in [5] redundant coordinates (x, y, z, t, u, x', y', z', t', u') and
two points of projection U, K from [7], we find: the figure lies in the [4] s
whose equations are

= 0,

which is the "harmonic conjugate" of the plane A -\- A', • • ', E -\- E'.
c) It lies 2 on the pencil of quadrics determined by

= 0.

d) The 8 points .0000, .1000, .0100, .0010, .0001, .1001, .0101, .0011
lie in a solid, viz., x — x' = 0, and are associated, for they all lie on the
quadrics (quadric surfaces in the solid) in the system

= 0.

The 5 such solids form the common self-polar simplex 2 of the pencil of
quadrics.

e) The system of quadrics (in [4]) in this case is "general", and the 16
lines form the general 165 figure lying on the Segre 2 quartic surface (2,
pp. 166—72). In case of general r we shall obtain a system of r — 1 linearly
independent quadrics in [r + 1], but they are not "general".

8. The Dual of 5-configurations

a) Let us recall the tetrads of coplanar arguesian points (Art. 6d) .000,
.100, .010, .001 and study their symbols as follows:

2 These observations are due to the referee.
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.000 = (b — a)B + (c — a)C + (d — a)D is equivalent to
(b - a)B" + (c - a)C" + (d - a)D" (Art. 6b) because of their
connecting syzygies (Art. 6a). Similarly

. 100 = (a- b)B" + (c - a)C" + (d - a)D",

.010 = (b - a)B" - (c - a)C" + (d - a)D",

.001 = (b - a)B" + (c - a)C" - (d - a)D".

Thus they form a quadrangle whose diagonal triangle is B"C"D". Similarly
behave the other such 3 tetrads of coplanar arguesian points in the other 3
respective faces of the tetrahedron T" which is then self-polar for the quadric
q (Art. 6c).

b) In the same manner we may observe that the octad of arguesian points
(Art. 7d) form the pair of tetrahedra, TA = (.0000, .1001, .0101, .0011),
T'A =(.1000, .0100, .0010, .0001) desmic with the tetrahedral face
TA = B"C"D"E" of the 4-simplex S" = A"B"C"D"E", where A" =
A — A', etc. Thus they form a closed set (5) w. r. to their diagonal tetrahe-
dron T'A' such that all quadrics, for which TA is self-polar, passing through
one of the 8 points pass through all of them. Similarly behave the other 4
such octads of arguesian points in the other 4 respective solid faces of 5".

c) Now we are in a position to state the general proposition as follows
(Arts. 3, 4, 7b): The 2r(r + 2) arguesian points arising from a fair of sets of
r + 2 -points Pit P\ projective from an [r — 1] distribute into r + 2 sets of 2r

each such that the points of a set form the vertices of the dual of an r-dimensional
S-configuration 3 whose diagonal r-simplex forms a prime face of the (r + 1)-
simplex with vertices at the r -f- 2 points Pt — P't which determine the "harmonic
conjugate" [r + 1] of the transversal [r — 1] of the r + 2 lines PfP^ (5).

d) The preceding proposition indicates the construction of the system of
r — 1 linearly independent quadrics in [r + 1] referred to above (Art. 7e) as
follows:

Construct the system of quadrics for which the simplex S" = P'o' • • • P'r'+1

is self-polar, where P" = Pt — P't. Let them further pass through 3 argue-
sian points, one in each of 3 prime faces of 5". This system then contains all
the 3 • 2r arguesian points in the 3 faces of 5" considered. For, the vertices
of the dual of an r-dimensional 5-configuration form a closed set (5) of 2r

points w. r. to their common diagonal r-simplex such that all the (r — 1)-
quadrics in the [r] of the r-simplex, for which it is self-polar, and which pass
through one of them, pass through all of them. Again each arguesian line
has just one arguesian point common with each prime face of 5" and there-
fore has 3 points common with the system of quadrics which then contain all
the arguesian lines as required.

8 "Dual of an r-dimensional 5-configuration": the system of points (± 1, ± 1, • • •, ± 1).
cf. (5).
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9. Projective Sets of r + 3 (r > 2) Points

a) Consider a pair of sets of r -f- 3 points, Pit P'v each spanning an [r + 2]
which has no [5] common with that spanned by the other, projective from
an [r — 1] such that it meets the r + 3 joins P^. They give rise to r + 3
arguesian lines, one for each pair of their corresponding subsets of r + 2
points each, which then evidently lie in a plane, referred as the arguesian
plane of the sets.

b) Further one pair of such projective sets gives rise to 2r+2 — 1 more
such pairs (cf. Art. 4). Thus: Given a pair of sets, of r + 3 points each,
projective from an [r — 1], there arise 2r+2 arguesian planes and 2r+1(r -f- 3)
arguesian lines, r + 3 lines in each plane, each line common to 2 planes which
then lie in a solid such that there are 2r+1(r + 3) such solids, each containing
2r + 5 lines. There are 2r(r£3) arguesian points, (r + 2)2 in each solid, each
lying on 4 lines and 4 planes which lie in a [4] such that there are 2r(r^3) such
[4]s in all, each containing 4 solids, 4 planes, 4(r + 2) lines and 2r2 ~\- 6r + 5
points.

c) We may introduce here an arguesian triangle too as one formed by a
triad of arguesian lines, that being possible in arguesian planes only with
vertices at 3 arguesian points therein. Evidently there are 2r+2(r£3) such
triangles, (rg3) in each plane. Thus: Through every vertex of an arguesian
triangle PQR there passes just one other arguesian plane determined by the
other 2 arguesian lines through it. The 3 such planes meet in pairs at the vertices
of another arguesian triangle P'Q'R' such that P, Q, R, P', Q', R' constitute
a "^-dimensional octahedron" with the 2 skew planes PQR, P'Q'R' as a pair of
its opposite planes, the other 3 pairs being PQ'R, P'QR', PQR', P'Q'R'> P'QR>
PQ'R'.

d) This ^-dimensional octahedron, or, say, ^-octahedron, occurs in many
contexts, e.g., as the Grassmann representative in [5] of the lines through the
vertices and in the faces of a tetrahedron in a solid. But for immediate ref-
erence we may note down here its make-up expressed symbolically following
Baker (6; 2, p. 104) as follows: 6(., 4, 4, 8, 5)12(2, ., 2, 5, 4)8(3, 3, . , 3 , 3)
12(4, 5, 2, ., 2)6(5, 8, 4, 4, . ) . That is, it has 6 vertices, 12 edges, 8 planes,
12 solids, 6 [4]s as its elements such that each vertex lies on 4 edges, 4 planes,
8 solids and 5 [4]s; each edge contains 2 vertices and lies in 2 planes, 5 solids
and 4 [4]s; and so on. From the above considerations we find that there are
in all 2r~1(r£3) 5-octahedra whose relations with the arguesian points and
lines w.r. to the arguesian triangles may be represented by the scheme:

2'f+3)(., 4, 4r + 4, r + 1) 2'+*(r + 3)(r + 2, ., 2('+2), ("+2))

2'+2C-+3)(3,3, . ,1) 2'-if+3)(6, 12, 8, . ) .

e) Now each 5-octahedron represents a [5] which contains, besides its
6 vertices, 4(r + 2) more arguesian points, and besides its 12 edges, 8r
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more arguesian lines. To sum up, the configuration of all the arguesian points,
lines, planes, and their solids, [4]s and [5]s may be put down in the following
scheme:

2r(r+3)(., 4, 4, 4r + 8, 2r2 + Qr + 5, {2r* + 6r2 + Ir + 3)/3)
+ 2, ., 2, 2r + 5, (r + 2)2, f+2) (2r + 3)/3)

)
( 3)((f + 2)2, 2r + 5, 2, ., r + 2, J(r + 2)(r + 1))

2r(rf) (2r2 + 6r + 5, 4r + 8, 4, 4, ., r + 1)
2r-1(r+3)(4rJ + 8r + 6, 8r + 12, 8, 12, 6, .).

f) The above proposition in regard to pairs of sets of r + 3 points pro-
jective from an [r — 1] holds good rather obviously in [2r -f 1] as well as
in [2r + 2].

10. Projective Sets of r + p Points (r > 2, 1 <p < 2r + 1)

Now it follows as an immediate consequence of what precedes that: / / 2
sets of r + p points, every subset of r + 1 points of either set spanning an [r]
which has no line common with the corresponding [r] of the other, be projective
from an [r — 1] such that it meets all the r + p joins of their corresponding
points, the ( ^ ) points of intersection of their corresponding [r]s all lie in a
[p — 1], by (r + 2)s on (^f) lines therein, each common to p — 1 of them.

Thanks are due to the referee for taking special pains to introduce his
elegant algebra thus enriching my ideas to a good extent, and to Professor
B. R. Seth for his generous, kind and constant encouragement in my pure
pursuits.
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