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Abstract

A. D. Sands showed that there is a 1-1 correspondence between the prime ideals of an arbitrary
associative ring R and the complete matrix ring Mn(R) via P —» Mn(P). A structural matrix
ring M(B, R) is the ring of all n x n matrices over R with 0 in the positions where the n x n
Boolean matrix B,B a quasi-order, has 0. The author characterized the special ideals of
M(B, R'), in case R' has unity, for certain special classes of rings. In this note results of Sands
and the author are generalized to structural matrix rings over rings without unity. It turns
out that, although the class of prime simple rings is not a special class, Nagata's M-radical has
the same form in structural matrix rings as the special radicals studied by the author.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 21, 16 A 42.

1. Introduction

We work entirely in the category of associative rings, and presuppose a familiarity
with the basic results of radical theory, most of which can be found in [6], and of
special classes of rings and special radicals (see [1]). R will be a generic symbol
for a ring, and "ideal" will mean "two-sided ideal".

B = [bij] will be a reflexive and transitive n x n Boolean matrix, that is, an
n x n quasi-order, and Est will be the n x n Boolean matrix with 1 in position
(a, t) and 0 elsewhere. For 0 ^ V C R we set

M(B, V) := {X = [xij] € MB(V): bij - 0 => xi3 = 0},
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and we call M{B, R) a structural matrix ring. B determines and is determined by
the binary relation < B on n := { 1 , 2 , . . . , n } defined by i < B j •<> fyj = 1. This
quasi-order relation natural ly gives rise to the equivalence relation ~ B on n de-
fined by i ~ B j :•** * < B j and j < B i. Let /? be the number of equivalence classes
induced by ~ B on n , and let z\, z%,..., zp be their representatives. We use n^ to
denote the cardinality of z^'s equivalence class, ft G /3, and yi,p, V2,n, • • • i Vn^,^
to denote its elements, with yitli < j / t+i ,^ for i = 1 , 2 , . . . , nM — 1. Consider the
ring epimorphism

/ „ : M(B,R) -> Mn,,(JJ) defined by /„([<:„]) = [dst],

where dst = cVl iiVt M; 1 < s, t < nM. Then

Kp := {X = [xij] € M(B, R): x^ = 0 if i ~ B ^ and j ~ B 2^}

is the kernel of f^.
Theorems 1 and 2 of [5] characterize the prime (resp. prime maximal) ideals of

the complete matrix ring Mn(/2) as the sets Mn(P) corresponding to the prime
(resp. prime maximal) ideals P of R, and in [7] the prime (resp. maximal) ideals
of M(B,R'), R' a ring with unity, are characterized as the sets M(B,P) + K^
corresponding to the prime (resp. maximal) ideals P of R! and the ideals K^, \x e
/?, of M(B, R'). In fact, if C is a special class of rings such that S € C if and
only if Mn(5) € C whenever S has unity, then proposition 2.6 of [7] states that
the C-special ideals of M(B, R') are the sets SA(B,P') + K,i corresponding to the
C-special ideals P' of R' and the ideals K^fi € /?, of M(B,R'). We generalize
these results to structural matrix rings over a ring without unity and obtain
similarities to the case of a ring with unity as far as prime ideals are concerned,
but also a striking difference in the case of maximal ideals.

Theorem 2.7 of [7] shows that for the upper radical class R determined
by a special class C of rings satisfying the mentioned condition, the equality
£(M(B, R)) = M(B, £(.R))+nMe/3 <ix h o l d s f o r every ring R. The ideal f l ^ K^
is called the antisymmetric radical of M(B,R) in [7]. The M-radical of R is the
intersection of the prime ideals P of R such that R/P is a simple ring (see [4]),
that is, the intersection of the prime maximal ideals of R. We show that, al-
though the class of prime simple rings is not a special class (see Corollary 1 and
Theorem 5 of [3]), the equality M(M(B,R)) = M(B, M{R)) + DMe/9 <it holds for
the M-radical of a structural matrix ring.

We first state the following two easily-proved generalizations of Lemmas 1.6
and 1.7 of [7].

LEMMA 1.1. Let 0 € V C R. Then

, V) + f | K» = f | (M(B, V) + /(•„).
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LEMMA 1.2. LetOeVCR. Then f-1{MTtl.{y)) = M(B,V) + Kll.

We denote the set of prime ideals of R by spec(i2).

2. Prime and special ideals

For all /x, £ G /? such that zM < B Z$, we set

AM£ := {u G /?: z^ < B ZV and z,, < B Z«}-

For a ring R' with unity, a standard argument using the matrix units shows that
every ideal of M(B, R') has the form

Ae := {X = [xij\ G M(S,R'): 2:̂  € 0(A^) if i ~ B zM, j ~ B zc and zM < B ze}

for some set-inclusion preserving function

0: {A^: (i, f G /3 and zM < B Z$} —• {-4': A' is an ideal in R'},

that is, a function 0 such that AM$ C A ,̂, implies (̂AM )̂ C

PROPOSITION 2 . 1 . T/ie pnme ideals of M(B, R) are the sets M(B, P) + <„.
corresponding to the prime ideals P of R and the ideals /C^,/z € /?, ofM(B,R).

PROOF. Let /? > 1, otherwise the statement is just Theorem 1 of [5]. If
P 6 spec(iZ) and n e /?, then, by the same theorem, Mn ( j (P) G spec(Mn>l(i2)),
and so, by Lemma 1.2, M(B, P ) + K^ G spec(M(B, i?)).

Conversely, let P G spec(M(S, /?)), and imbed R in a ring R' with unity such
that R is an ideal in /?'. It is trivially seen that M(B, R) is an ideal in M(B, R'),
which implies that P is an ideal in M(B,R') (see Remark 2 (page 333) of [4]).
Hence, by the remark preceding this proposition, P = Ae for some set-inclusion
preserving function 0: {AM^: /i, £ G /3 and zM < B z^} -+ {yl': A' is an ideal in
R'}. Let n,£€0 such that ẑ , < B z^, and set A^ := {a G R: a = Xij for some
* ~ B ^M>i ~ B ^{ and X = [x^] G P}. Then it follows from the definition of A$
that A^ = ^(AM^), and so 0(A^) is an ideal in R. Furthermore, as mentioned
in the introduction, Z(M(B,R)) = M(B,Z(R)) + fl/ie^ ^ f o r e v e r y s P e c i a l

radical k determined by a special class C of rings such that S G C if and only if
M n (5) G C whenever S has unity, and so in particular for the prime radical B
(that is, Baer's lower radical), f|Me/J <n Q B{M{B, R)) C P . Therefore, ^ M ? = fi
if n ^ £. However ylM/i 5̂  i? for some fj, G /?, otherwise P = M (£?,#). We assert
now that {u G /9: A^^ ^ i?} = {^/}, for, if further Avv ^ i? for some rj ^ fi,
then we consider the ideals A$> and Ae" of M(B, .R) defined by

otherwise,
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Then Ao'A$" C P, but A$> <£ P and A$» <£ P, which contradicts the primeness
of P, and so our assertion is valid. It follows now from the form of Ae{= P) that
P = M(B,All,i) + Kf,, and so P contains the kernel of /M, which implies that
Mn/4(P) = /M(M(B,^4MM) + Ky) G spec(Mn(i(i?)). This completes the proof in
the light of Theorem 1 of [5].

EXAMPLE 2.2. If

D

1 1 1 0
1 1 1 0
0 0 1 0
1 1 1 1

then the prime ideals of M(B, R) are

p
p
0

.R

p
p
0
R

R
R
R
R

0"
0
0
R

[R R R 0
R R R 0
0 0 P 0
R R R R

for P € spec(ii).

and

"i? i? 12 0
i? 1? i? 0
0 0 R 0
R R R P

COROLLARY 2.3. 77ie semi-prime ideals o/M(B,R) are the sets Ae corre-
sponding to the set-inclusion preserving functions 0 mapping all the h.vv 's onto
semi-prime ideals of R and all the A^ 'a, p^<r, onto R.

Let C be a special class of rings such that T G C if and only if Mn(T) €
C. Examples of such rings are the classes of simple rings with unity, strongly
prime rings (see [2]) and, of course, prime rings. Note, however, that the latter
condition is stronger than condition I in [1] and in Proposition 2.6 of [7]:

I. If R' is a ring with unity, then R' e C if and only if Mn{R') € C. Since
every C-special ideal is prime, we can now generalize Proposition 2.1.

THEOREM 2.4. Let C be a special class of rings such that T G C if and
only ifMn(T) G C. The C-special ideals ofM(B,R) are the sets M{B,P) +
Ky corresponding to the C-special ideals P of R and the ideals K^, fj. G /?, of
M{B,R).
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PROOF. See the proof of Proposition 2.6 of [7].

3. Maximal and prime maximal ideals

It follows from Theorem 2.4 that the maximal ideals M of M(B,R) such that
M(B, R)/M has unity, are the sets M(B, N) + K^ corresponding to the maximal
ideals N of R such that R/N has unity and the ideals K^,n G /J, of M(B,R).
Since a characterization of the maximal ideals of Mn(R), the "simplest" struc-
tural matrix ring, has not yet been obtained, one cannot expect the maximal
ideals of M(B, R), in general, to have the form in Theorem 2.4. What is surpris-
ing, however, is that not even the antisymmetric radical Pl̂ e/} ^M °f M(B, R) is,
in general, contained in the maximal ideals of M(B, R), that is, the form of the
ideals in Theorem 2.4 breaks down:

EXAMPLE 3.1. Consider the ideal {0,2,4,6} of Z8 as the ring R, and let
N := {0,4}. Then N is maximal, but not prime, in R, and R/N is without
unity. If

"1 01 , \R 0B = [ l l j ' then [N R
is a maximal ideal in M(B, R). Note that this does not correspond to a set-
inclusion preserving function 0.

The prime maximal ideals of a structural matrix ring still have the form in
Theorem 2.4.

THEOREM 3.2. The prime maximal ideals ofM(B, R) are the sets M(B, P)+
Kf, corresponding to the prime maximal ideals P of R and the ideals K^, n € /?,
ofM(B,R).

PROOF. We first show that every prime maximal ideal P of M(B,R) has the
asserted form. By Proposition 2.1, P — M(B,P) + /CM for some P € spec(i?),
/i € /?. If P is not maximal in R, then M(B,P) + K^ is strictly contained in
M(B,A) + Kfi ^ M(B,R) for some proper ideal A of R strictly containing P,
which contradicts the maximality of M{B, P) + Kfi. Hence, P is a prime maximal
ideal of R.

Conversely, let P be a prime maximal ideal of R, and let fi € /J. Then,
by Proposition 2.1, M{B,P) + K^ € spec(M(B,R}). Let M be an ideal of
M(B,R) strictly containing M{B,P) + <„. Then f»(M) strictly contains
U(M(B,P) + KJ = MnM(P), and so, by Theorem 2 of [5], /„(>/) = MB(,(fl).
Keeping in mind that M contains the kernel of f^, it follows from Lemma 1.2
that N = M(B, R), which completes the proof.

https://doi.org/10.1017/S1446788700030135 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030135


[6] Special ideals in structural matrix rings 225

We conclude this section by showing t h a t the maximal ideals of M(B, R) which

have the form M(B, P) + K^ for some (maximal, of course) ideal P of R, are

prime.

PROPOSITION 3 . 3 . Let P be a maximal ideal of R, and let fj. e P- Then

M(B,P) + Kfi is maximal in M(B,R) if and only if P is prime in R.

PROOF. An easy argument using Theorem 4 of [5] and Theorem 3.2 yields

the result.

4. Nagata's M-radical

THEOREM 4 . 1 .

PROOF. Let /z e P, and set Ly. := f\{M(B,P) + K^: P is a prime maximal
ideal of R}. Then, by Theorem 3.2, M(M(B, R)) = P|M€/, £M. But /CM, the kernel
of f^, is contained in £M, and so

= Pi fp l (P|{/M(M(S, P) + Kfi): P is a prime maximal ideal of I
/iG/3

= P | f~x (P|{MnM (P) • P is a prime maximal ideal of R}j

The assertion follows now from Lemmas 1.1 and 1.2.

As in Corollary 2.9 of [7] we see that the M-radical carries over from R to
M(5, R) in the simplest possible way, that is, M{M{B, R)) = M(B, M{R)) if and
only if <B is an equivalence relation.
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