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POLYNOMIAL-RATE CONVERGENCE TO
THE STATIONARY STATE FOR THE
CONTINUUM-TIME LIMIT OF
THE MINORITY GAME
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Abstract

In this paper we show that the continuum-time version of the minority game satisfies the
criteria for the application of a theorem on the existence of an invariant measure. We
consider the special case of a game with a ‘sufficiently’ asymmetric initial condition,
where the number of possible choices for each individual is S = 2 and � < +∞. An
upper bound for the asymptotic behavior, as the number of agents grows to infinity, of
the waiting time for reaching the stationary state is then obtained.
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1. Introduction

The minority game (MG) [4] is a simple model based on Arthur’s ‘El Farol’ bar problem [1],
which describes the behavior of a group of competing heterogeneous agents subject to the
economic law of supply and demand. An application of the MG is, for example, the microscopic
modeling of financial markets [3], [5], [6], [8].

In this paper the attention is focused on the continuum-time version of the MG (see, for
example, [2] and [7]), where the number of possible choices for each individual is S = 2.
In particular, we are interested in studying its long-time behavior, in terms of existence of
an invariant measure for its dynamical variables and convergence of the dynamical variables
distribution to it.

Let us fix some notation, consistent with the notation used in [9]. Consider the MG with
N agents. Its dynamics are defined in terms of dynamical variables Us,i(t), t = 0, 1, . . . , in
discrete time; these are scores corresponding to each of the possible agents’choices s = +1, −1.
Each agent takes a decision si(t) with

Pr{si(t) = s} = exp(�iUs,i(t))∑
s′ exp(�iUs′,i (t))

,

where �i > 0 and s′ ∈ {−1, +1}. The original MG corresponds to �i = ∞ and was generalized
to �i = � < ∞ [2]; here we consider the latter case.

The public information variable µ(t) is given to all agents; it belongs to the set of integers
{1, . . . , P } and can either be the binary encoding of the last M winning choices or drawn at
random from a uniform distribution; here we consider the latter case.
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Stationary state for the continuum-time minority game 377

The action a
µ(t)

si (t),i
of each agent depends on its choice si(t) and on µ(t). The coefficients

a
µ
s,i , called strategies, are uniform random variables taking values ±1 (Pr{aµ

s,i = ±1} = 1
2 )

independent of i, s, and µ.
Let us introduce the following random variables (to ease the notation, the choices +1 and

−1 are shorted to + and −, respectively):

ξ
µ
i = a

µ
+,i − a

µ
−,i

2
, �µ =

N∑
i=1

a
µ
+,i + a

µ
−,i

2
,

and their averages

ξi� = 1

P

P∑
µ=1

ξ
µ
i �µ, ξiξj = 1

P

P∑
µ=1

ξ
µ
i ξ

µ
j .

The only relevant quantity in the dynamics is the difference between the scores of the two
strategies:

yi(t) = �
U+,i (τ ) − U−,i (τ )

2
,

where τ = t/�.
Let (�, F , P) be the probability space with respect to which all our random variables,

y = (yi)1≤i≤N , � = (�µ)1≤µ≤P , and ξ = (ξi)1≤i≤N , are defined.
As shown in [9], if P/N = α ∈ R+, S = 2, and �i = � > 0 for all i, the dynamics of the

continuum-time limit of the MG is given by the following N -dimensional stochastic differential
equation:

dyi(t) =
(

−ξi�−
N∑

j=1

ξiξj tanh(yj )

)
dt +Ai (y, N, �, ξ) dW(t), i = 1, . . . , N, (1.1)

where W(t) is an N -dimensional Wiener process and Ai is the ith row of the N × N matrix
A = (Aij ) such that

(AA�)ij (y, N, �, ξ) = �σ 2
N,�(y)

αN
ξiξj .

If α > αc, where αc = 0.3374 . . . , marks the transition point from a symmetric (α < αc) to an
asymmetric phase (α > αc) characterized, respectively, by no predictability and predictability
(in the asymmetric phase the choices +1 and −1 do not appear with equal probabilities for a
given µ(t)), then the function σ 2

N,� : R
N → R+ is continuous and

lim
N→∞ sup

y∈RN

σ 2
N,�(y)

N
≤ 1

(see [2] and [9]).
In [9] the authors derived the full stationary distribution of y. Here, by proving that (1.1)

satisfies the criteria for the application of Veretennikov’s theorem (see [11] and Appendix A),
we show, for the continuum-time version of the MG with S = 2, a ‘sufficiently’ asymmetric
initial condition, and � < +∞ and α > αc, that, for N sufficiently large, the distribution ν(t)

of y converges almost surely (a.s.) with polynomial rate to an invariant measure νinv and that
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the waiting time for reaching the stationary state is at most O(|y(0)|2). For a finite asymmetric
initial condition, this means that the waiting time is at most O(N) or, since P/N = α > 0,
O(P/α).

The work is organized as follows. In Section 2 some preliminary computations useful to
characterize the asymptotic behavior of the drift coefficient of (1.1) are performed. In Section 3
Veretennikov’s theorem is applied to (1.1) with both finite and maximally (|y(0)| → ∞)
asymmetric initial conditions and an upper bound for the limiting behavior, as N grows to
infinity, of the waiting time for reaching the stationary state is obtained. In Section 4 some
conclusions are drawn, while Appendix A contains Veretennikov’s theorem.

2. Preliminaries

Let us start by proving some preliminary results which show that, despite the fact that the
coefficients present in the drift term of (1.1) are random variables assuming both negative and
positive values, as N grows to infinity, the behavior of (1.1) becomes dissipative and, hence,
suitable to the application of a stability theorem, such as Veretennikov’s theorem. For the sake
of notational simplicity, let us assume that P = N , i.e. α = 1. The results obtained still hold
for any α > 0. From now on, when defining a probability event, we shall omit the explicit
dependence of the random variables on the ωs, ω ∈ �.

Lemma 2.1. For every i = 1, 2, . . . ,

P

{
lim

N→∞ ξi� = 0 ∧ lim
N→∞ ξ2

i = a ∧ lim
N→∞

N∑
j=1, j 	=i

ξiξj = 0

}
= P

{
lim

N→∞ ξ2
i = a

}
,

where a is any constant.

Proof. Obviously, for every i,

P

{
lim

N→∞ ξi� = 0 ∧ lim
N→∞ ξ2

i = a ∧ lim
N→∞

N∑
j=1, j 	=i

ξiξj = 0

}
≤ P

{
lim

N→∞ ξ2
i = a

}
.

Hence, it remains to show that the inverse inequality also holds.
For every i,

P

{
lim

N→∞ ξi� = 0 ∧ lim
N→∞ ξ2

i = a ∧ lim
N→∞

N∑
j=1, j 	=i

ξiξj = 0

}

= P

{
lim

N→∞

(
1

N

N∑
µ=1

(
(a

µ
+,i )

2 − (a
µ
−,i )

2

4
+ ξ

µ
i

N∑
j=1, j 	=i

a
µ
+,j + a

µ
−,j

2

))

= 0 ∧ lim
N→∞ ξ2

i = a ∧ lim
N→∞

N∑
j=1, j 	=i

1

N

N∑
µ=1

ξ
µ
i ξ

µ
j = 0

}
. (2.1)

Since {ξµ
i }µ,i is a family of independent (on both µ and i) random variables, identically

distributed over the set {−1, 0, 1} and since (a
µ
+,i )

2 − (a
µ
−,i )

2 = 0, the right-hand side term
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of (2.1) is greater than or equal to

P

{
lim

N→∞
1

N

N∑
µ=1

N∑
j=1, j 	=i

a
µ
+,j + a

µ
−,j

2
= 0 ∧ lim

N→∞ ξ2
i = a ∧ lim

N→∞

N∑
j=1, j 	=i

1

N

N∑
µ=1

ξ
µ
j = 0

}

= P
{

lim
N→∞ ξ2

i = a
}

× P

{
lim

N→∞
1

N

N∑
µ=1

N∑
j=1, j 	=i

a
µ
+,j + a

µ
−,j

2
= 0 ∧ lim

N→∞

N∑
j=1, j 	=i

1

N

N∑
µ=1

ξ
µ
j = 0

}
.

Let ηj = ∑N
µ=1 ξ

µ
j and ζj = ∑N

µ=1(a
µ
+,j + a

µ
−,j )/2 (ηj and ζj both depend on N , but since,

for every N , E[ηj ] = E[ζj ] = 0, we omit explicitly writing the N dependence); {ηj + ζj =∑N
µ=1 a

µ
+,j }j is a family of independent, identically distributed random variables with mean

E[ηj + ζj ] = 0.
Since, by the law of large numbers (LLN),

P

{
lim

N→∞
1

N

N∑
j=1, j 	=i

(ηj + ζj ) = 0

}
= 1, P

{
lim

N→∞
1

N

N∑
j=1, j 	=i

ηj = 0

}
= 1,

it follows that

P

{
lim

N→∞
1

N

N∑
j=1, j 	=i

ζj = 0

}
= 1,

and the thesis follows.

Lemma 2.2. For every i = 1, 2, . . . ,

P
{

lim
N→∞ ξ2

i = 1
2

}
= 1.

Proof. Since E[(ξµ
i )2] = 1

2 , it is a consequence of the LLN.

Lemma 2.3. For every i = 1, 2, . . . ,

P

{
lim

N→∞ ξi� = 0 ∧ lim
N→∞ ξ2

i = 1

2
∧ lim

N→∞

N∑
j=1, j 	=i

ξiξj = 0

}
= 1.

Proof. It is an immediate consequence of Lemma 2.1 and Lemma 2.2.

Lemma 2.4. Let

Bi =
{

lim
N→∞ ξ2

i = 1

2

∧
j=1,2,..., j 	=i

lim
N→∞ ξiξj = 0

}
, i = 1, 2, . . . .

Then
P
{ ⋂

i=1,2,...

Bi

}
= 1.
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Proof. For every i = 1, 2, . . . ,

P(Bi) ≥ P

{
lim

N→∞ ξ2
i = 1

2

∧
j=1,2,..., j 	=i

lim
N→∞

1

N

N∑
µ=1

ξ
µ
j = 0

}

= P

{
lim

N→∞ ξ2
i = 1

2

} ∏
j=1,2,..., j 	=i

P

{
lim

N→∞
1

N

N∑
µ=1

ξ
µ
j = 0

}

= 1, (2.2)

where last equality is due to Lemma 2.2 and the LLN.
Let

D1 = B1, Di = Bi ∩ Bi−1, i = 2, 3, . . . .

Obviously, P{D1} = P{B1} = 1. Under the inductive hypothesis, P{Di−1} = 1; by (2.2),

P{Di} = P{Di−1 ∩ Bi} = P{Bi | Di−1} P{Di−1} = 1.

Since {Di}i∈N is a decreasing sequence,

P
{ ⋂

i=1,2,...

Bi

}
= P

{ ⋂
i=1,2,...

Di

}
= lim

i→∞ P{Di} = 1.

Let us define the following events:

A1 =
{

lim
N→+∞ lim

x1→±∞
1

N

(
ξ1�x1 + ξ2

1 tanh(x1)x1 +
N∑

j=2

ξ1ξj tanh(xj )x1

)
= 1

2

}
,

Ai =
{

lim
N→+∞ lim|x|→∞

1

N

(
ξi�xi + ξ2

i tanh(xi)xi +
N∑

j=1, j 	=i

ξiξj tanh(xj )xi

)
∈

[
0,

1

2

]}
,

for i = 2, 3 . . . and

E1 = A1, Ei = Ai ∩ Ei−1, i = 2, 3, . . . .

Lemma 2.5. For every i = 1, 2, . . . ,

P{Ai} = 1.

Proof. Since

lim
N→+∞ lim

x1→±∞
tanh(x1)x1

N
= 1 and lim

x1→±∞, xj →±∞
tanh(x1)x1

tanh(xj )x1
= ±1,

by Lemma 2.3, P{A1} = 1. For the Ai, i = 2, 3, . . . , if xi → ±∞, obviously, P{Ai} = 1. If
xi 	= ±∞, since tanh is a bounded odd function, by Lemma 2.3, P{Ai} = 1.

Lemma 2.6. For every i = 1, 2, . . . ,

P{Ei} = 1.

Proof. The proof is the same as Lemma 2.4 with Ei and Ai instead of Di and Bi .
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3. Convergence to the invariant measure

In this section we show that, for sufficiently large N , the distribution of the random vari-
able y, the score differences vector whose dynamics are described by the stochastic differential
equation (1.1), admits an invariant measure and we study the limiting behavior of the waiting
time for reaching the stationary state.

For this purpose, we perform an opportune rescaling of the variable y and show that the
dynamics of the rescaled variable z satisfy the criteria for the application of Veretennikov’s
theorem (see Theorem A.1 in Appendix A or [11]). As a second step, we extend the thesis of
Veretennikov’s theorem to the original random variable y.

Veretennikov’s theorem gives, under quite general regularity assumptions, a condition that
suffices to ensure the existence of an invariant measure and the convergence to it for the
distribution of a random variable satisfying a stochastic differential equation. The criteria for
the application of such a theorem to a stochastic differential equation are based on the evaluation
of the drift term on the initial condition that must be such that |y(0)| 	= 0; this means that we
must avoid a game where all the agents have a symmetric initial condition (i.e. y(0) = 0).
We focus our attention on two cases: a game where there exists at least one agent having a
maximally asymmetric initial condition (|yi(0)| → ∞) irrespective of the other agents (they
may or may not have symmetric initial conditions), and a game where |y(0)| < ∞ and the
number of agents with an asymmetric initial condition (yi(0) 	= 0) is O(N). The former case
corresponds to a game where there is at least one agent who plays the same strategy from the
beginning (a so called producer), while the latter case corresponds to a game where the number
of agents who perceive a strategy to be more successful than another one from the beginning
is O(N).

Let bN
i (ξ , �, x) : ({−1, 0, 1}P×N, R

P , R
N) → R be defined as

bN
i (ξ , �, x) = ξi� +

N∑
j=1

ξiξj tanh(xj ), i = 1, 2, . . . , N,

and
bN(ξ , �, x) = (bN

i (ξ , �, x))1≤i≤N.

Equation (1.1) can be written in the form

dy(t) = −bN(ξ , �, y) dt + A(y, N, �, ξ) dW(t). (3.1)

Obviously, bN(ξ , �, y) is a Borel-measurable, locally bounded function.
Let c be a bounded constant (that may depend on N ) greater than 1 and z = cy; under this

rescaling of the variable y, (3.1) becomes

dz(t) = −cbN

(
ξ , �,

z

c

)
dt + cA

(
z

c
, N, �, ξ

)
dW(t). (3.2)

Before going on to study the limiting behavior of (3.2) as N grows to infinity, let us prove
the nondegeneracy of the the diffusion matrix A, a necessary condition for the application of
Veretennikov’s theorem.

Proposition 3.1. There exists N̂ > 0 such that, for every N > N̂ , the diffusion matrix A is a.s.
nondegenerate.
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Proof. Nondegenerancy is equivalent to the following condition:

inf
y

inf
ξ

inf|x|=1
xAA�(y, N, �, ξ)x� > 0,

where � is fixed and x ∈ R
N .

Since σ 2
N,� > 0, it is sufficient to show that

P

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
N→∞

⎛
⎜⎜⎜⎜⎝

ξ2
1 ξ1ξ2 · · · ξ1ξN

ξ2ξ1 ξ2
2 · · · ξ2ξN

...
...

...
...

ξNξ1 ξNξ2 · · · ξ2
N

⎞
⎟⎟⎟⎟⎠ = aI

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 1,

where a is a positive constant and I is the identity matrix.
This follows from Lemma 2.4 and, hence, we obtain the thesis.

3.1. Minority game with a maximally asymmetric initial condition

We consider a game where there exists at least one producer, that is, an agent i such that
|yi(0)| → ∞. We show that, under an appropriate choice of the constant c, system (3.2)
satisfies the criteria for the application of Veretennikov’s theorem and then we extend the results
of Veretennikov’s theorem to the original system (3.1). To ease the notation, let y(0) = x and
let 〈·, ·〉 denote the Euclidean scalar product in R

N .

Proposition 3.2. We have

P

{
lim

N→∞ lim|x|→∞
〈bN(ξ , �, x), x〉

N
≥ 1

2

}
= 1.

Proof. We have

P

{
lim

N→∞ lim|x|→+∞
〈bN(ξ , �, x), x〉

N
≥ 1

2

}

= P

{
lim

N→+∞ lim|x|→+∞
1

N

N∑
i=1

(
ξi�xi + ξ2

i tanh(xi)xi +
N∑

j=1, j 	=i

ξiξj tanh(xj )xi

)
≥ 1

2

}

= P

{ ∞∑
i=1

lim
N→+∞ lim|x|→+∞

1

N

(
ξi�xi + ξ2

i tanh(xi)xi +
N∑

j=1, j 	=i

ξiξj tanh(xj )xi

)
≥ 1

2

}

≥ P
{ ⋂

i=1,2,...

Ai

}

= P
{ ⋂

i=1,2,...

Ei

}
.

Since {Ei}i∈N is a decreasing sequence,

P
{ ⋂

i=1,2,...

Ei

}
= lim

i→+∞ P{Ei}.

By applying Lemma 2.6, the thesis follows.
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Corollary 3.1. There exist Ñ > 0 and M0 > 0 such that, for every N > Ñ ,

〈
bN(ξ , �, x),

x

|x|
〉

>

(
N

2
− 1

)
1

|x| , |x| ≥ M0 a.s.

Proof. It is an immediate consequence of Proposition 3.2.

Proposition 3.3. Equation (3.2) with c > 1 + 2/(N/2 − 1) satisfies a.s. condition (A.1) in
Appendix A with r = c(N/2 − 1) > N/2 + 1.

Proof. It is an immediate consequence of Corollary 3.1 and Proposition 3.1.

In Proposition 3.4, below, Veretennikov’s theorem is applied to (3.2), while the existence of
an invariant measure for y and the rate of convergence to it is derived in Corollary 3.2, below.

Proposition 3.4. Let ν(t) be the distribution of z(t) = (zi(t))1≤i≤N satisfying (3.2) with initial
condition z(0) and c > 1+2/(N/2 − 1). For sufficiently large N , there exists a.s. an invariant
measure νinv for z such that

|ν(t) − νinv| ≤ m(1 + |z(0)|l )(1 + t)−(k+1),

where m is a positive constant, 0 < k < c(N/2−1)−N/2−1, 2k+2 < l < 2c(N/2−1)−N ,
and |ν(t) − νinv| is the total variation distance between ν(t) and νinv, i.e. |ν(t) − νinv| :=
supA∈B

Rd
|ν(t)(A) − νinv(A)|.

Proof. It is a consequence of Proposition 3.3 and Theorem A.1.

Corollary 3.2. Let ν′(t) be the distribution of y(t) = (yi(t))1≤i≤N satisfying (3.1) with initial
condition y(0), and let c = 1 + 2/(N/2 − 1) + 2/(N/2 − 1)2. For sufficiently large N , there
exists a.s. an invariant measure ν′

inv for y such that

|ν′(t) − ν′
inv| ≤ m′(1 + |cy(0)|l )(1 + t)−(k+1), (3.3)

where m′ is a positive constant, 0 < k < 2/(N/2 − 1), and 2k + 2 < l < 2 + 4/(N/2 − 1).

Proof. Since the limit, as N grows to infinity, of c is 1 and z = cy, for sufficiently large N ,
|ν′(t) − ν′

inv| = m′|ν(t) − νinv|, and the thesis follows from Proposition 3.4.

3.2. Minority game with a finite asymmetric initial condition

Now we move on to a game where |y(0)| < ∞ and the number of agents with an asymmetric
initial condition (yi(0) 	= 0) is O(N).

Let y(0) = x and N ′ = #{yi : yi(0) 	= 0}, and suppose that N ′ = O(N), i.e. limN→∞ N ′/N
= γ, 0 < γ ≤ 1; moreover, let βi = tanh(xi)xi and β = min{βi : βi 	= 0}. To ease the
notation, let us suppose that x1 is such that β = tanh(x1)x1.

Proposition 3.5. We have

P

{
lim

N→∞
〈bN(ξ , �, x), x〉

N
≥ 1

2
βγ

}
= 1.
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Proof. We have

P

{
lim

N→∞
〈bN(ξ , �, x), x〉

N
≥ 1

2
βγ

}

= P

{
lim

N ′→∞
γ

N ′
N ′∑
i=1

(
ξi�xi + ξ2

i tanh(xi)xi +
N ′∑

j=1, j 	=i

ξiξj tanh(xj )xi

)
≥ 1

2
βγ

}

≥ P

{
lim

N ′→∞

(
ξ1�x1 + ξ2

1 tanh(x1)x1 +
N ′∑

j=1, j 	=1

ξ1ξj tanh(xj )x1

)
= 1

2
β

}

= 1,

where the last equality is a consequence of Lemma 2.3.

Corollary 3.3. There exist Ñ > 0 and M0 > 0 such that, for every N > Ñ ,

〈
bN(ξ , �, x),

x

|x|
〉

> βγ

(
N

2
− 1

)
1

|x| , |x| ≥ M0 a.s.

Proof. It is an immediate consequence of Proposition 3.5.

Proposition 3.6. If 0 < βγ ≤ 1 then (3.2) with

c >
1

βγ

(
1 + 2

N/2 − 1

)

satisfies a.s. condition (A.1) in Appendix A with r = c(N/2 − 1) > N/2 + 1.

Proof. It is an immediate consequence of Corollary 3.3 and Proposition 3.1.

In Proposition 3.7, below, Veretennikov’s theorem is applied to (3.2), while the existence of
an invariant measure for y and the rate of convergence to it is derived in Corollary 3.4, below.

Proposition 3.7. Let ν(t) be the distribution of z(t) = (zi(t))1≤i≤N satisfying (3.2) with initial
condition z(0) and

c >
1

βγ

(
1 + 2

N/2 − 1

)
,

where 0 < βγ ≤ 1. For sufficiently large N , there exists a.s. an invariant measure νinv for z

such that
|ν(t) − νinv| ≤ m(1 + |z(0)|l )(1 + t)−(k+1),

where m is a positive constant, 0 < k < c(N/2 − 1) − N/2 − 1, and 2k + 2 < l <

2c(N/2 − 1) − N .

Proof. It is a consequence of Proposition 3.6 and Theorem A.1 in Appendix A.

Corollary 3.4. Let ν′(t) be the distribution of y(t) = (yi(t))1≤i≤N satisfying (3.1) with initial
condition y(0), and let

c = 1

βγ

(
1 + 2

N/2 − 1
+ 2

(N/2 − 1)2

)
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with 0 < βγ ≤ 1. For sufficiently large N , there exists a.s. an invariant measure ν′
inv for y

such that

|ν′(t) − ν′
inv| ≤ m′(1 + |cy(0)|l )(1 + t)−(k+1), (3.4)

where m′ is a positive constant, 0 < k < (N/2 + 1)(1/βγ − 1) + (1/βγ )2/(N/2 − 1), and
2k + 2 < l < N(1/βγ − 1) + 2/βγ + (2/βγ )2/(N/2 − 1).

Proof. Since the limit, as N grows to infinity, of c is 1/βγ and z = cy, for sufficiently large
N , |ν′(t) − ν′

inv| = m′|ν(t) − νinv|, and the thesis follows from Proposition 3.7.

3.3. Waiting time for reaching the stationary state

Corollaries 3.2 and 3.4 provide a rate of convergence toward the invariant distribution for
the score difference distribution; by making t explicit in (3.3) and (3.4), it is hence possible
to obtain the limiting behavior, as N grows to infinity, of the waiting time for reaching the
stationary state. Since the criteria for the application of Veretennikov’s theorem are sufficient
conditions for the existence of an invariant measure, the waiting time obtained may not be the
smallest one and, hence, we have to consider the upper bound of the waiting time for reaching
the stationary state.

Since the scores time is the ys time rescaled by �, i.e.

yi(t) = �

(
U+,i (t/�) − U−,i (t/�)

2

)
,

in studying the waiting time for reaching a stationary state for the MG we have to refer to the
time τ = t/�, that is, the own time of the scores Us,i corresponding to each agents possible
choices s = +1, −1.

In Proposition 3.8, below, the asymptotic behavior of the waiting time for reaching the
stationary state both for an MG with maximally and finite asymmetric initial conditions is
obtained.

Proposition 3.8. For every ε > 0, let T be such that

m′(1 + |cy(0)|l )(1 + T �)−(k+1) = ε,

where l and k are as in Corollaries 3.2 and 3.4 (for games with maximally and finite asymmetric
initial conditions, respectively).

It follows that

|ν′(T �) − ν′
inv| ≤ ε

and

(i) if |y(0)| → ∞,

lim
N→∞

T

|y(0)|2 = m′

ε�
,

(ii) if limN→∞ N ′/N = γ , where 0 < γ ≤ 1, N ′ = #{yi : yi(0) 	= 0}, and |y(0)| < ∞,

m′′

ε�
≤ lim

N→∞
T

|y(0)|2 ≤ lim
N→∞

m′′

ε�
|cy(0)|N(1/βγ−1)+2/βγ+(2/βγ )2/(N/2−1)−2, (3.5)
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(iii) under the same conditions as (ii), with βγ = 1,

lim
N→∞

T

|y(0)|2 = m′′

ε�
, (3.6)

where m′ and m′′ are positive constants.

Proof. (i) By Corollary 3.2, for sufficiently large N ,

T = (m′/ε(1 + |cy(0)|l ))1/(k+1) − 1

�
,

where m′ is a positive constant, 0 < k < 2/(N/2 − 1), and 2k + 2 < l < 2 + 4/(N/2 − 2).
In the limit N → ∞, we obtain c = 1, k = 0, and l = 2; it follows that

lim
N→∞

T

|y(0)|2 = m′

ε�
.

(ii) By Corollary 3.4,

(m′′/ε(1 + |cy(0)|2k+2))1/(k+1) − 1

�

< T

<
(m′′/ε(1 + |cy(0)|N(1/βγ−1)+2/βγ+(2/βγ )2/(N/2−1))) − 1

�
,

and (3.5) follows.

(iii) Since 0 < k < (N/2+1)(1/βγ −1)+ (1/βγ )2/(N/2 − 1) and 2k+2 < l < N(1/βγ −
1) + 2/βγ + (2/βγ )2/(N/2 − 1), in the limit N → ∞, we obtain c = 1, k = 0, and l = 2,
and (3.6) follows from (3.5).

Since, if the initial condition is finite, |y(0)|2 = O(N), and since P/N = α > 0, from
Proposition 3.8(iii), it follows that T = O(P/α�).

4. Conclusions

By applying Veretennikov’s theorem to the continuum-time version of the MG, we have
obtained an upper bound for the asymptotic behavior, as the number of agents grows to infinity,
of the waiting time for reaching the stationary state in the asymmetric phase (α > αc).

Since Veretennikov’s theorem gives a sufficient condition for the existence of an invariant
measure and it applies only to stochastic differential equations with nonnull initial conditions,
the waiting time obtained may not be the smallest one (it is an upper bound) and it holds only
for an MG with an asymmetric initial condition. The fewer agents with initial asymmetry in
evaluating their strategies, the stronger must be their asymmetry: if their number is o(N) then at
least one agent must have maximally initial asymmetry (|yi(0)| = ∞), while if their number is
O(N), the initial asymmetry must be inversely proportional to their fraction with respect to the
agents population size (βγ = 1). It follows that the single-agent’s weakest initial asymmetry
allowed by our result is xi such that xi tanh(xi) = 1 (xi ≈ 1.2), corresponding to a game where
all the agents (γ = 1) have an asymmetric initial condition. Our result is simply not applicable
to a game with initial asymmetry weaker than the previous game. It is worth noting that the
limit we have derived agrees with the rule of thumb in performing numerical simulations to
wait a number of time steps proportional to P/α� in order to reach the stationary state and that,
being T = O(P/α�), the time to equilibrium increases as α > αc goes toward αc.
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Appendix A.

Consider the n-dimensional stochastic differential equation

dX(t) = b(X(t)) dt + σ (X(t)) dW(t), X(0) = x ∈ R
n.

Here W(t) is an m-dimensional Wiener process with m ≥ n, b is a locally bounded Borel
function from R

n with values on R
n, and σ a bounded continuous nondegenerate matrix

n × m-function. Suppose that the drift term satisfies the following condition: there exist
constants M0 ≥ 0 and r > 0 such that

〈
b(x),

x

|x|
〉

≤ − r

|x| , |x| ≥ M0. (A.1)

Theorem A.1. (Veretennikov’s theorem [11].) Under assumption (A.1) with r > n/2 + 1, for
any 0 < k < r − n/2 − 1 with l ∈ (2k + 2, 2r − n),

|µx(t) − µinv| ≤ c(1 + |x|l )(1 + t)−(k+1),

where |µx(t) − µinv| is the total variation distance between µx(t) and µinv, c is a positive
constant, µx(t) is the distribution of Xt , x being the initial data, and µinv is the invariant
measure for Xt ; in particular, µinv does exists.
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