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A bound on the number of curves of a given degree

through a general point of a projective variety

Jun-Muk Hwang

Abstract

Let X be an irreducible projective variety of dimension n in a projective space and let x
be a point of X. Denote by Curvesd(X,x) the space of curves of degree d lying on X
and passing through x. We will show that the number of components of Curvesd(X,x)
for any smooth point x outside a subvariety of codimension �2 is bounded by a number
depending only on n and d. An effective bound is given. A key ingredient of the proof is
an argument from Ein, Küchle and Lazarsfeld’s work on Seshadri numbers.

1. Introduction

This work was motivated by the following result of Landsberg [Lan03].

Theorem 1 [Lan03, Theorem 1]. Let X be an irreducible projective variety of dimension n in a
projective space and let x ∈ X be a general point. Then the number of lines lying on X and passing
through x is either infinite or bounded by n!.

It is remarkable that the bound n! is optimal: it is achieved when X is a smooth hypersurface of
degree n in Pn+1. However, even if we disregard the optimality of the bound, the uniformity of the
bound is already quite remarkable. Namely, the fact that the bound depends only on the dimension n
of X is worth noting. When interpreted as such a uniform boundedness result, Theorem 1 naturally
leads to the following questions.

Question 1. What about curves of higher degree? Is the number of curves of degree d > 0 lying
on X and passing through a general point x ∈ X either infinite or bounded by a number depending
only on d and n?

Question 2. What about the case when there are infinitely many lines through a general point x?
Is the number of components of the space of lines lying on X and passing through a general point
x ∈ X bounded by a number depending only on n?

Question 3. What about non-general points? Is the number of lines lying on X through any given
point of X either infinite or bounded by a number depending only on n?

In Landsberg’s proof, the uniformity comes from his earlier result [Lan99] that a line osculating
to order n+1 at a general point of X must be contained in X. The differential geometric argument of
[Lan99] using the moving frame method seems difficult to generalize to handle the above questions.

In this paper, we introduce another approach to these questions, using tools from the study
of uniform lower bounds for the Seshadri numbers of an ample line bundle at general points of
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a variety [EKL95, HK03]. Apparently, there is no direct connection between the questions raised
above and Seshadri numbers. Nonetheless the arguments used in [EKL95] and [HK03] can be trans-
lated to apply here. Using this, we will get effective, albeit non-optimal, answers to Questions 1
and 2. Our result can be stated as follows. Let us denote by Curvesd(X,x) the space of curves of
degree d lying on a projective variety X and passing through a point x ∈ X. (See § 1.1 for a precise
definition.)

Theorem 2. Let n and d be two positive integers. Let X be an irreducible projective variety of
dimension n in a projective space and x ∈ X be a general point. Then the number of components
of Curvesd(X,x) is bounded by(

(2n + 2)((2nd)n − 1)
2n + 1

)(2n+2)(4d2−4d+2)

.

Regarding Question 3, the answer is plainly no. Let us look at two examples.

Example 1. Let P1 × P2 ⊂ P5 be the Segre embedding. Choose a curve C of degree � > 0 in P2.
Let X ′ be the surface P1 × C ⊂ P1 × P2. Pick a point o ∈ P1 and a point P in {o} × P2 ⊂ P1 × P2

outside X ′. Let X ⊂ P4 be the projection of X ′ from P . Then the image of {o} × C is a line in X
at a general point of which there are at least � + 1 lines. Given any dimension n � 2 and an integer
� > 0, by taking the Segre product of X with an irreducible variety of dimension n−2 containing no
lines, we get an example of an irreducible variety of dimension n where the number of lines through
a general point in a hypersurface is finite, but larger than �.

Example 2. Let k be an odd integer and consider the Fermat surface Xk
0 +Xk

1 +Xk
2 +Xk

3 = 0 in P3.
Then through the point (1,−1, 0, 0) there are at least k distinct lines defined by X0 + X1 = 0 and
X2 + e2πj

√−1/kX3 = 0, 1 � j � k. Given any dimension n � 2 and an integer M > 0, by taking the
Segre product of the Fermat surface with a smooth variety of dimension n − 2 containing no lines,
we get an example of a smooth variety of dimension n where the number of lines through any point
in a codimension-2 subset is finite, but larger than M .

These examples suggest that the following result of ours gives a more or less optimal answer to
Question 3.

Theorem 3. Let X be an irreducible projective variety of dimension n in a projective space.
Then there exists a subvariety R of codimension �2 in the smooth locus of X such that, for any
smooth point of X off R, the number of components of Curvesd(X,x) is bounded by a number νn,d

depending only on n and d.

For an explicit value of the bound νn,d, see Definition 4.
The rough idea of the proofs of Theorems 2 and 3 is the following. First we will explain in § 2

how to obtain a bound depending on the degree of X. Here the main ingredient, in addition to
some elementary projective geometry, is the effective bound on the number of components of Chow
varieties obtained in recent works on effective bounds on the number of maps dominating varieties
of general type (see e.g. [Gue99] and [Tsa98]). Now to prove Theorems 2 and 3, the strategy is to
study the foliation on X generated by curves of degree d, to be constructed in § 3. This foliation
has the property that its general leaf contains all curves of degree d lying on X passing through a
general point of the leaf, and it is the foliation of minimal rank with this property. Thus to prove
Theorem 2, we may replace X by a leaf of the foliation. The heart of the proof of Theorem 2 is to
show that the degree of the leaf can be bounded in terms of n and d. This is achieved in § 4 by using
an argument from Ein, Küchle and Lazarsfeld’s work on Seshadri numbers [EKL95]. The proof of
Theorem 3, presented in § 5, is by an induction argument using Theorem 2 and by a study of the
foliation in codimension 1.
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Bound on the number of curves through a point

1.1 Notation and conventions
(1) Throughout this paper, we will work over the complex numbers.

(2) A variety need not be irreducible, but has finitely many components. For a variety Y ,
#Y denotes the number of irreducible components of Y .

(3) By a curve of degree d on an irreducible projective variety Y in a projective space, we mean
an irreducible reduced subvariety of dimension 1 lying on Y which has degree d with respect
to the hyperplane line bundle of the projective space.

(4) For an irreducible subvariety Y in a projective space, denote by Chow1,d(Y ) the Chow variety
of effective 1-cycles of degree d on Y (see [Kol96, I.3] for the definition). Denote by Curvesd(Y )
the quasi-projective subvariety in Chow1,d(Y ) parametrizing curves of degree d on Y . For a
point y ∈ Y , denote by Curvesd(Y, y) the subvariety of Curvesd(Y ) parametrizing members
passing through y.

(5) We will say that a property holds at a general point of an irreducible quasi-projective variety Y
if it holds for a non-empty Zariski-open subset of Y . It holds at a very general point if it is
satisfied off the union of countably many proper closed subvarieties of Y .

2. A bound depending on the degree of the variety

Let us start by recalling the following elementary fact.

Proposition 1. Let X ⊂ PN be an irreducible projective variety and let x ∈ X be a smooth point.
Let π : X̃ → X be the blow-up of X at x and let E be the exceptional divisor. Denote by H the
hyperplane divisor on PN . Then 2π∗H − E is a very ample divisor on X̃ . If the degree of X is a,
the degree of X̃ with respect to 2π∗H − E is 2na − 1.

Proof. Let π′ : P̃N → PN be the blow-up of PN at x and let E′ ⊂ P̃N be the exceptional divisor.
More precisely, P̃N is the subvariety of PN ×PN−1 which is the closure of the graph of the projection
of PN to a hyperplane PN−1 with the vertex x and E′ is the inverse image of x in P̃N under the
projection p1 : P̃N → PN . Then E′ is biregular to PN−1 by the projection p2 : P̃N → PN−1. Let H
be the hyperplane divisor on PN and let H ′ be the hyperplane divisor on PN−1. Then the divisor

(p∗1H + p∗2H
′)|
P̃N

= 2π′∗H − E′

is very ample on P̃N . The proper image of X in P̃N is X̃ and the divisor E ⊂ X̃ is just the restriction
of E′ to X̃. Thus 2π∗H − E = (2π′∗H − E′)|X̃ is very ample on X̃. The degree is

(2π∗H − E)n = 2na − 1

from a = Hn and En = (−1)n−1.

Proposition 2. Let x be a smooth point of an irreducible projective variety X ⊂ PN . Assume that
a general member of each component of Curvesd(X,x) has multiplicity � m at x for some positive
integer m. Let π : X̃ → X be the blow-up of X at x. Identify X̃ as a subvariety of a projective
space via the very ample divisor 2π∗H − E of Proposition 1. Then

#Curvesd(X,x) �
m∑

i=1

#Curves2d−i(X̃).

Proof. Fix an integer i, 1 � i � m. Let Curves′2d−i(X̃) be the union of the components of
Curves2d−i(X̃) whose members have intersection number i with E. Any member of Curves′2d−i(X̃)
is sent by π to a curve of degree d passing through x which has multiplicity i at x. This induces
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a morphism

π∗ :
m⋃

i=1

Curves′2d−i(X̃) → Curvesd(X,x).

Since a general member of each irreducible component of Curvesd(X,x) has multiplicity � m,
the morphism π∗ is dominant on each irreducible component of Curvesd(X,x). Thus

#Curvesd(X,x) �
m∑

i=1

#Curves′2d−i(X̃) �
m∑

i=1

#Curves2d−i(X̃).

Proposition 3. Let X ⊂ PN be an irreducible projective variety and let x be a general point of X.
Then a general member of any component of Curvesd(X,x) is smooth at x.

Proof. Let B be a component of Curvesd(X) whose members sweep out an open subset of X and
let G ⊂ B × X be the subvariety defined by the incidence relation

G = {(b, x) ∈ B × X,x ∈ Cb},
where Cb denotes the curve in X corresponding to b ∈ B. It is clear that G contains a unique
irreducible component Go of dimension dimB + 1. There exists an open subset X ′ ⊂ X such
that, for each x ∈ X ′, the intersection pr−1

X (x) ∩ G is contained in Go. By shrinking X ′, we may
assume that each component of pr−1

X (x) ∩ G has dimension dim B + 1 − dimX for each x ∈ X ′.
Let Sx ⊂ G ∩ pr−1

X (x) be the subvariety defined by

Sx := {(b, x), Cb is singular at x}.
Suppose Sx contains some components of G∩ pr−1

X (x) for general x ∈ X ′. Then the union of the Sx

as x varies defines a subset of G of dimension dimB + 1. This implies that, for a general x ∈ X ′,
we have the equality Sx = G∩ pr−1

X (x). This is absurd because some member of B must be smooth
at x. Hence Sx contains no component of G∩ pr−1

X (x) for a general x ∈ X. Since this is true for any
finitely many possible choices of the component B, Proposition 3 is proved.

We will use an effective bound on the number of components of the Chow variety. There are a
number of results obtained in this direction (see e.g. [Gue99] and [Tsa98]). For example, the bound
given in [Gue99] implies the following proposition.

Proposition 4 [Hei03, Proposition 3.6]. The number of components of the Chow variety
Chowk,δ(Y ) parametrizing subvarieties of dimension k and degree δ in a projective variety Y of
degree δ′ in PN ′ is bounded by(

(N ′ + 1)max{δ, δ′}
N ′

)(N ′+1)
[
δ
(

δ+k−1
k

)
+
(

δ+k−1
k−1

)]
.

Definition 1. Given positive integers n, d and a, define

µn,d,a :=
d∑

i=1

(
(2n + 2)max{2d − i, 2na − 1}

2n + 1

)(2n+2)(4d2−4di+i2+1)

and

λn,d,a :=
(

(2n + 2)max{2d − 1, 2na − 1}
2n + 1

)(2n+2)(4d2−4d+2)

.

Proposition 5. Let X ⊂ PN be an irreducible projective variety of dimension n and degree a.
Let x be a smooth point of X. Then

#Curvesd(X,x) � µn,d,a.
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Bound on the number of curves through a point

If furthermore x is a general point of X, then

#Curvesd(X,x) � λn,d,a.

Proof. Using Proposition 2, we will bound #Curves2d−i(X̃) for 1 � i � m. We may project X̃ to
P2n+1 to count #Curves2d−i(X̃). Thus we can use Proposition 4 with N ′ = 2n + 1, δ = 2d − i,
δ′ = 2na−1 and k = 1. Noting that the multiplicity at x of any member of Curvesd(X,x) is bounded
by m = d, we get the first inequality. For a general point x ∈ X, we can set m = 1 in Proposition 2
by Proposition 3, which gives the second inequality.

3. Foliation generated by curves of degree d

Let X be an irreducible projective variety of dimension n in a projective space. Fix a positive
integer d. The goal of this section is to construct a foliation of minimal rank on an open subset
of X such that members of Curvesd(X,x) lie in the closure of the leaf through x for a general
x ∈ X. The construction is similar to the construction of Seshadri-exceptional foliation in [HK03].
Here we will do it with some more care because we have to study the foliation in codimension 1 for
Theorem 3. Let us start with the definition of a foliation. This may not be the standard definition,
but it will be convenient for us.

Definition 2. Let X be an irreducible projective variety. Denote by Sm(X) the smooth locus
of X. A subsheaf F of the tangent sheaf TSm(X) of Sm(X) is called a foliation on X if it satisfies
the following two conditions.

(1) The quotient TSm(X)/F is torsion-free on Sm(X). This implies that the open subset

Dom(F) := {x ∈ Sm(X), TSm(X)/F is locally free at x}
is the complement of a subvariety of codimension �2 in Sm(X).

(2) For each x ∈ Dom(F), there exists a complex analytic submanifold Fx ⊂ Dom(F) passing
through x, called the x-leaf of F , such that the fiber of F at each point y of Fx is the tangent
space of Fx at y.

Proposition 6. Let X be an irreducible projective variety. Suppose that, for each very general
point x ∈ X, we can assign an irreducible projective subvariety Zx such that, for a very
general point x ∈ X and a very general point y ∈ Zx, the two subvarieties Zx and Zy coincide.
Then there exists a unique foliation F on X such that the x-leaf Fx is an open subset of Zx for a
very general x.

Proof. By the countability of the components of the Hilbert scheme of X, there exists an irreducible
family of subvarieties ρ : U → D for some subscheme D ⊂ Hilb(X) such that, for a very general
point x ∈ X, the subvariety Zx is the image of a fiber of ρ by the evaluation morphism η : U → X.
The assumption that Zx = Zy for a very general x ∈ X and a very general y ∈ Zx implies that η
is birational. Consider the subsheaf F ′ of the tangent sheaf of Sm(X) defined by the push-forward
of the relative tangent sheaf of ρ restricted to η−1(Sm(X)). Define F to be the double-dual of F ′.
It is obvious that F is the unique foliation satisfying the desired property.

Proposition 7. Let X be an irreducible projective variety of dimension n in a projective space.
Fix a positive integer d. Then there exists a unique foliation F on X, which we will call the foliation
generated by curves of degree d, with the following properties.

(i) Each leaf of the foliation is a smooth quasi-projective subvariety in Dom(F).
(ii) For a general point x ∈ X, all members of Curvesd(X,x) are contained in the closure of the

leaf of the foliation passing through x.
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(iii) The foliation F is minimal with respect to (ii). In other words, if there exists a foliation G
satisfying (ii) then Fx ⊂ Gx for a general point x ∈ X.

Proof. For each x ∈ X, define

Cx := closure of
⋃

[C]∈Curvesd(X,x)

C.

Then Cx is a projective subvariety in X, not necessarily of pure dimension. Choose a smooth affine
open subset T ⊂ X and consider the incidence relation C ⊂ T × X defined by

C = {(t, x), x ∈ Ct}.
We may assume that the projection prT : C → T is flat by replacing T by an open subset of T .
Let us make this assumption. For an irreducible subvariety W ⊂ X intersecting T , let

CW := closure of
⋃

s∈W∩T

Cs.

This subvariety CW of X is not necessarily irreducible. But each component of CW contains W by
the flatness of prT : C → T . This implies that either every component of CW has dimension strictly
larger than W or CW = W . Note that when W is one point x ∈ T , CW = Cx.

An irreducible subvariety W is said to be saturated if CW = W . For each x ∈ T , there exists a
unique minimal saturated subvariety Zx containing x constructed as follows. Let Z1

x be a component
of Cx and inductively define Zi+1

x to be a component of CZi
x
. Then dim(Zi+1

x ) > dim(Zi
x) or

Zi
x = Zi+1

x = Zi+2
x = · · · . Thus Zn

x = Zn+1
x = · · · . Define Zx = Zn

x . Then Zx is saturated. We claim
that any saturated subvariety containing x contains Zx. In fact, if W is a saturated subvariety and
W ′ ⊂ W is any irreducible subvariety of W intersecting T , then CW ′ ⊂ W . Thus if x ∈ W , then
Zi

x ⊂ W inductively for all i.
We claim that Zx = Zy for a very general x ∈ X and a very general y ∈ Zx. Assuming the claim,

let us finish the proof of Proposition 7. By Proposition 6, we get a foliation F on X such that the
x-leaf Fx is an open subset of Zx for a very general x. This implies that, for a very general x,
the x-leaf Fx is quasi-projective and contains all members of Curvesd(X,x). But then the same
holds for a general x. This shows properties (i) and (ii). The condition (iii) follows from the fact
that Zx is the minimal saturated subvariety containing x for a general x.

Now to prove the claim, notice that dimZx = dim Zy for very general x and y. For a very general
x ∈ X and a very general y ∈ Zx, we have Zy ⊂ Zx by the saturatedness of Zx. Thus Zx = Zy by
dimZx = dimZy.

4. Proof of Theorem 2

Definition 3. Given positive integers n and d, define

λn,d := λn,d,(nd)n =
(

(2n + 2)((2nd)n − 1)
2n + 1

)(2n+2)(4d2−4d+2)

.

For a fixed d, λn,d is an increasing function of n.

We can restate Theorem 2 as follows.

Theorem 2 (restated). Let n and d be two positive integers. Let X be an irreducible projective
variety of dimension n in a projective space and x ∈ X be a general point. Then

#Curvesd(X,x) � λn,d.

The heart of the proof of Theorem 2 is the following proposition.
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Bound on the number of curves through a point

Proposition 8. Let X be a projective variety of dimension n in PN . Fix a positive integer d.
Assume that the foliation F generated by curves of degree d has rank n. Then the degree of X is
bounded by (nd)n.

Proof. The proof is a translation of [HK03, proof of Theorem 1]. We start by recalling the definition
of the multiplicity of an effective divisor along an irreducible subvariety. For an effective divisor D
on a variety Y and a non-singular point y ∈ Y , let my(D) denote the multiplicity of D at y. For an
irreducible subvariety Z ⊂ Y intersecting the smooth locus of Y , let mZ(D) denote my(D) at a
general point y ∈ Z.

Now assume that the degree of X is strictly bigger than (nd)n. Using the notation in the proof
of Proposition 7, let Γ ⊂ X × T be the closure of the graph of the inclusion T ⊂ X. From the
relation between the degree and the Hilbert polynomial of X,

dim H0(X,O(kH)) � (nd)n

n!
kn + O(kn−1).

As in [EKL95, 3.8], this implies that, if k � 0, there exists a divisor D ∈ |OX×T (pr∗1(kH))| with
mΓ(E) > kdn.

The following lemma is essentially equal to [EKL95, Lemma 3.5.1] or [HK03, Lemma 1]. Its proof
will be omitted.

Lemma 1. Let Z ⊂ X×T be an irreducible closed subvariety dominating both X and T . Then there
exists an irreducible closed subvariety CZ ⊂ X × T having the following properties:

(i) Z ⊂ CZ;

(ii) for general t ∈ T with the fiber Zt intersecting T , the fiber (CZ)t ⊂ X consists of some
components of CZt . Here Zt is regarded as a subvariety of X by the projection X × T → X
and CZt denotes the subvariety constructed in the proof of Proposition 7.

Using Lemma 1 as in [EKL95, 3.7], we construct a nested sequence of irreducible subvarieties

Z0 ⊂ Z1 ⊂ · · · ⊂ Zi ⊂ · · · ⊂ Zn

in X × T as follows. Set Z0 = Γ. Then inductively define Zi+1 = CZi. From the construction,
(Zn)t = Zt for a general t ∈ T and Zn+1 = Zn. By the assumption that the rank of F is n, we have
X = Zx for a very general x. This implies that Zn = T × X.

Consider the multiplicities mZi(D). We have

mZ0(D) = mΓ(D) > kdn, mZn(D) = mX×T (D) = 0.

It follows that there is at least one index i, 0 � i � n − 1, such that

mZi(D) − mZi+1(D) > kd.

Now we use the following result from [EKL95].

Lemma 2 [EKL95, Proposition 2.3]. Let Y and T be smooth irreducible varieties, with T affine,
and suppose that Z ⊂ V ⊂ Y × T are irreducible subvarieties such that V dominates Y . Let L be
a line bundle on Y , and suppose given on Y × T a divisor D ∈ |pr∗Y L|. Then there exists a divisor
D′ ∈ |pr∗Y L| on Y × T whose support does not contain V such that

mZ(D′) � mZ(D) − mV (D).

First, let us assume that X is smooth. By Lemma 2, applied to L = H and Y = X,
there exists a divisor D′ ∈ |OX×T (pr∗X(kH))| such that mZi(D

′) > kd and Zi+1 is not contained
in the support of D′. Then for a general t ∈ T and x ∈ (Zi)t, mx(D′

t) > kd as in [EKL95, (3.9)].
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But there exists a curve C ′ of degree d on X passing through x which is contained in (Zi+1)t, but
not contained in the support of D′

t. Thus we get the contradiction

kd = k(H · C ′) = D′
t · C ′ � mx(D′

t) > kd.

Now when X has singularity, apply the same argument to Y = X̂ , a desingularization of X. We have

mẐi
(D̂) − mẐi+1

(D̂) > kd

for the proper images Ẑi and Ẑi+1 in X̂ of Zi and Zi+1 and the pull-back divisor D̂. Thus the same
contradiction occurs. This completes the proof of Proposition 8.

Proof of Theorem 2. We will use induction on the dimension n. It is obvious for n = 1. Suppose the
rank of F is n. Then the bound follows from Proposition 5 with a = (nd)n by Proposition 8.
Suppose the rank of F is r < n. If r = 0, or, equivalently, Curvesd(X,x) is empty for a general x,
there is nothing to prove. So let us assume that r � 1. For a general x ∈ X, we may assume that x
is a general point of Fy for some y ∈ X. By Proposition 7, part (ii) we have

#Curvesd(X,x) = #Curvesd(Fy, x).

But
#Curvesd(Fy , x) � λr,d � λn,d

by the induction hypothesis. This proves Theorem 2. �

5. Proof of Theorem 3

Definition 4. Given positive integers n and d, define inductively

ν1,d := 1,
νn,d := max{λn−1,d + νn−1,d, µn,d,(nd)n}.

For a fixed d, it is an increasing function of n.

We can restate Theorem 3 as follows.

Theorem 3 (restated). Let X be an irreducible projective variety of dimension n in a projective
space. Let R be the subvariety defined by

R := {x ∈ Sm(X),#Curvesd(X,x) > νn,d}.
Then the codimension of R ⊂ Sm(X) is �2.

Proof. We will use induction on the dimension n. Theorem 3 is obvious for n = 1.
Let F be the foliation generated by the curves of degree d. If the rank of F is n, the degree of X

is bounded by (nd)n. Thus by Proposition 5, we get

#Curvesd(X,x) � µn,d,(nd)n

at any smooth point x ∈ X. In other words, R = ∅.
Now suppose the rank of F is r < m and R contains a component V of codimension 1. Let v be

a general point of V . Then v ∈ Dom(F) from Definition 2, condition (1). Let F be the closure of
the v-leaf Fv. When r > 0, the set F ∩ V is of codimension �1 in F . By slightly moving v, we may
assume that v is a smooth point of F outside any given subset of codimension �2 in F . Then, by
the induction hypothesis, we have

#Curvesd(F, v) � νr,d.

The same inequality holds for the case r = 0 because #Curvesd(F, v) = 0 in that case.
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Let Curvessd(X) be the union of components of Curvesd(X) whose members sweep out an open
subset of X, the superscript s indicating ‘sweeping’. Let Curvesns

d (X) be the union of the other
components of Curvesd(X), the superscript ns indicating ‘non-sweeping’. For a point x ∈ X, define

Curvessd(X,x) := Curvesd(X,x) ∩ Curvessd(X),
Curvesns

d (X,x) := Curvesd(X,x) ∩ Curvesns
d (X).

By definition,

Curvesd(X,x) = Curvessd(X,x) ∪ Curvesns
d (X,x),

which is not necessarily a disjoint union.

Lemma 3. The subvariety

{x ∈ X,#Curvesns
d (X,x) > λn−1,d}

has codimension �2 in X.

Proof. Let Locns be the subvariety of dimension � n − 1 in X which is the closure of the union of
members of Curvesns

d (X). If y ∈ X − Locns, then

Curvesns
d (X, y) = ∅.

At a general point y of a component Y of Locns,

#Curvesd(Y, y) � λn−1,d

by Theorem 2. Since there is no other component of Locns containing y by the generality of y,

#Curvesns
d (X, y) = #Curvesd(Y, y) � λn−1,d.

This proves the lemma.

Lemma 4. Suppose x is a point on Dom(F). Then any member of Curvessd(X,x) is contained in
the closure F of the x-leaf Fx; in other words,

Curvessd(X,x) ⊂ Curvesd(F, x).

In particular, #Curvessd(X,x) � #Curvesd(F, x) if x ∈ Dom(F).

Proof. Suppose not. Let C be a member of Curvessd(X,x) which is not contained in F . Deformations
of C sweep out an open subset of X by the definition of Curvessd(X,x). Since C is not contained
in F , a general deformation of C will not be tangent to the foliation F . Thus at a general point
y ∈ X, there is a curve of degree d through y which is not contained in the closure of the leaf of F
through y. This is a contradiction to Proposition 7, part (ii), and proves the lemma.

From Lemmas 3 and 4, if v is a general point of V ∩ Dom(F), then

#Curvesd(X, v) � #Curvesns
d (X, v) + #Curvessd(X, v)

= #Curvesns
d (X, v) + #Curvesd(F, v)

� λn−1,d + νr,d

� λn−1,d + νn−1,d

� νn,d.

This contradicts the choice of v ∈ R. This completes the proof of Theorem 3.
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EKL95 L. Ein, O. Küchle and R. Lazarsfeld, Local positivity of ample line bundles, J. Differential Geom.
42 (1995), 193–219.

Gue99 L. Guerra, Complexity of Chow varieties and number of morphisms on surfaces of general type,
Manuscripta Math. 98 (1999), 1–8.

Hei03 G. Heier, Effective finiteness theorems for maps between canonically polarized compact complex
manifolds, Preprint (2003), alg-geom/0311086.

HK03 J.-M. Hwang and J. Keum, Seshadri-exceptional foliations, Math. Ann. 325 (2003), 287–297.
Kol96 J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), vol. 32 (Springer,

Berlin, 1996).
Lan99 J. M. Landsberg, Is a linear space contained in a submanifold? On the number of derivatives needed

to tell, J. reine angew. Math. 508 (1999), 53–60.
Lan03 J. M. Landsberg, Lines on projective varieties, J. reine angew. Math. 562 (2003), 1–3.
Tsa98 I.-H. Tsai, Chow varieties and finiteness theorems for dominant maps, J. Algebraic Geom. 7 (1998),

611–625.

Jun-Muk Hwang jmhwang@kias.re.kr
Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Seoul, 130-722, Korea

712

https://doi.org/10.1112/S0010437X0500117X Published online by Cambridge University Press

mailto:jmhwang@kias.re.kr
https://doi.org/10.1112/S0010437X0500117X

	1 Introduction
	1.1 Notation and conventions

	2 A bound depending on the degree of the variety
	3 Foliation generated by curves of degree $d$
	4 Proof of Theorem 2
	5 Proof of Theorem 3
	References

