A CHARACTERIZATION OF THE TOPOLOGICAL DIMENSION

BY

GERD RODÉ

ABSTRACT. This paper gives a new characterization of the dimension of a normal Hausdorff space, which joins together the Eilenberg–Otto characterization and the characterization by finite coverings. The link is furnished by the notion of a system of faces of a certain type (N_1, \ldots, N_K) , where N_1, \ldots, N_K , K are natural numbers. It is shown that a space X contains a system of faces of type (N_1, \ldots, N_K) if and only if $\dim(X) \ge N_1 + \cdots + N_K$. The two limit cases of the theorem, namely $N_k = 1$ for $1 \le k \le K$ on the one hand, and K = 1 on the other hand, give the two known results mentioned above.

Let X be a normal Hausdorff space. The dimension of X is the largest natural number n such that there exists an essential mapping from X onto the n-dimensional simplex Δ_n , with n = 0 or $n = \infty$ in the limit cases.

Several other properties of X are known to be equivalent with dim X = n, see for example [4]. In this paper, we describe a further characterization of the dimension number, which turns out to be a simultaneous generalization of two well known results, due to P. Alexandroff [1] and due to S. Eilenberg and E. Otto [2].

DEFINITION. Let X be a topological space, and let K, N_1, \ldots, N_K be natural numbers. A system (A_n^k) $(1 \le k \le K \text{ and, for each } k, 0 \le n \le N_K)$ of closed subsets of X is called a system of faces of type (N_1, \ldots, N_k) , if

(i) $\bigcap_n A_n^k = \emptyset \qquad \forall k,$

(ii) If $(B_n^k)_{n,k}$ are closed subsets of X with $A_n^k \subset B_n^k \forall n, k$ and $\bigcup_n B_n^k = X \forall k$, then $\bigcap_{n,k} B_n^k \neq \emptyset$.

EXAMPLES. (a) $X = \Delta_2$, (A_0^1, A_1^1, A_2^1) are the three edges. (b) $X = \Delta_1 \times \Delta_1$, (A_0^1, A_1^1) and (A_0^2, A_1^2) are the two pairs of opposite edges. (c) $X = \Delta_2 \times \Delta_1$, (A_0^1, A_1^1, A_2^1) are the three side faces, and (A_0^2, A_1^2) are the bottom and the top face.

THEOREM. A normal Hausdorff space X possesses a system of faces of a given type (N_1, \ldots, N_K) if and only if the topological dimension of X is at least $N_1 + \cdots + N_K$.

Received by the editors December 30, 1980 and, in revised form, June 15, 1981. 1980 AMS Subject Classification: 54F45

The two special cases mentioned in the introduction are:

(1) K = 1. This well known characterization of the dimension is usually formulated in terms of open coverings of the space. See [1] and [4].

(2) $N_k = 1 \forall 1 \le k \le K$. This is essentially a characterization proved in [2] for separable metric spaces and in [3] for normal spaces. See also [4], p. 30.

Proof. Let the dimension of X be at least $N_1 + \cdots + N_K$. We have to construct a system of faces of type (N_1, \ldots, N_K) . First, we define such a system in the space

$$\Delta := \Delta_{N_1} \times \cdots \times \Delta_{N_K}:$$
$$M_n^k = \{ p \in \Delta \mid p_n^k = 0 \} \qquad (1 \le k \le K, 0 \le n \le N_k),$$

where p_n^k is the barycentric coordinate of the component p^k of p in Δ_{N_k} . (We don't need the fact that this is a system of faces in Δ , which indeed will follow from the proof using the fact that the identity on Δ is essential.)

We choose an essential function

 $\Phi: X \to \Delta,$

which exists by definition of the dimension, and since Δ is topologically the same as $\Delta_{N_1+\cdots+N_k}$. Now we transport the system (M_n^k) to X:

$$A_n^k := \Phi^{-1}(M_n^k) \,\forall n, k,$$

and verify that (A_n^k) is a system of faces in X.

Property (i) of the definition is fulfilled, since $\bigcap_n M_n^k = \emptyset \forall k$. Let (B_n^k) be closed subsets of X with $A_n^k \subset B_n^k \forall n, k$ and $\bigcup_n B_n^k = X \forall k$. In order to verify (ii), we have to show that $\bigcap_{n,k} B_n^k \neq \emptyset$. Assume the contrary.

By the "shrinking lemma", choose open sets U_n^k and V_n^k in X such that

$$A_n^k \subset U_n^k \, \forall n, k, \text{ and } \bigcap_n U_n^k = \emptyset \, \forall k,$$

 $B_n^k \subset V_n^k \, \forall n, k \text{ and } \bigcap_{n,k} V_n^k = \emptyset.$

Let $u_n^k: X \to [0, 1]$ be continuous such that

 $u_n^k = 0$ on A_n^k , $u_n^k > 0$ on the complement of U_n^k , $u_n^k < 1$ on B_n^k , and $u_n^k = 1$ on the complement of V_n^k .

Then $s^k := \sum_n u_n^k$ is >0 on X, since $\bigcap_n U_n^k = \emptyset$. We define

$$\varphi: X \to \Delta, \qquad \varphi(x)_n^k = s^k(x)^{-1} u_n^k(x) \ \forall x \in X.$$

https://doi.org/10.4153/CMB-1982-070-1 Published online by Cambridge University Press

488

Then φ is continuous and $\varphi(A_n^k) \subset M_n^k \forall n, k$, since $u_n^k = 0$ on A_n^k . Let $p \in \Delta$ be the point with the coordinates $p_n^k = (N_k + 1)^{-1} \forall n, k$. We show that $p \notin \varphi(X)$.

Assume $x \in X$ with $\varphi(x) = p$. Then $\varphi_n^k(x) = (N_k + 1)^{-1}$ and $u_n^k(x) = s^k(x)(N_k + 1)^{-1} \forall n, k$. For each k, there exists some m, $1 \le m \le N_k$, with $x \in B_m^k$, since $\bigcup_n B_n^k = X$. Then we have $u_m^k(x) < 1$ and hence $u_n^k(x) < 1 \forall n$. This implies $x \in V_n^k \forall n, k$, since u_n^k is 1 on the complement of V_n^k . But this is not possible, since $\bigcap_{n \in V} V_n^k = \emptyset$. Hence $p \notin \varphi(X)$.

We now use the function φ to show that Φ is inessential. Consider

$$Y:=\bigcup_{n,k}A_n^k.$$

Then $Y = \Phi^{-1}$ (boundary Δ). Since $p \notin \varphi(X)$, there exists a function

 $\psi: X \to \text{boundary } \Delta, \quad \psi = \varphi \quad \text{on} \quad \varphi^{-1}(\text{boundary } \Delta) \supset Y.$

Note that φ and hence ψ maps A_n^k into $M_n^k \forall n, k$. Consider now the continuous extensions $\overline{\psi}, \overline{\Phi} : \beta X \to \Delta$ of ψ and Φ on the Stone-Čech compactification βX of X. Denoting the closure of a set $E \subset \beta X$ by \tilde{E} , we have

$$\overline{\psi}(\widehat{A}_n^k) \subset M_n^k$$
, and $\Phi(\widehat{A}_n^k) \subset M_n^k$,

since M_n^k is compact. From the convexity of M_n^k and from $\tilde{Y} = \bigcup \tilde{A}_n^k$ it now follows that the restrictions

$$\bar{\psi}': \tilde{Y} \rightarrow \text{boundary } \Delta,$$

 $\bar{\Phi}': \tilde{Y} \rightarrow \text{boundary } \Delta$

are homotopic: consider $(1-t)\overline{\psi}' + t\overline{\Phi}'$, $0 \le t \le 1$. Thus we can apply Borsuk's homotopy extension theorem in order to obtain a function

$$\overline{\Psi}: \beta X \rightarrow \text{boundary } \Delta$$

with $\overline{\Psi} = \overline{\Phi}$ on \overline{Y} . In particular, the restriction Ψ of $\overline{\Psi}$ on X fulfills $\Psi = \Phi$ on Y and $\Psi(X) \subset$ boundary Δ . Hence Φ is inessential, and we have a contradiction.

To prove the converse, assume now that X possesses a system of faces (A_n^k) of type (N_1, \ldots, N_K) . We have to show that the dimension of X is at least $N_1 + \cdots + N_K$. Thus we have to construct an essential function

$$\varphi: X \to \Delta_{N_1 + \dots + N_K} = \Delta_{N_1} \times \dots \times \Delta_{N_K} = : \Delta_X$$

Since $\bigcap_n A_n^k = \emptyset \ \forall k$, there exist continuous functions

$$\varphi_n^k : X \to [0, 1], \qquad \varphi_n^k = 0 \quad \text{on} \quad A_n^k, \qquad \sum_n \varphi_n^k = 1.$$

We show that the function $\varphi: X \to \Delta$, $\varphi(x)_n^k = \varphi_n^k(x) \forall x \in X$, is essential. Assume the contrary. Then there exists a continuous

$$\psi: X \rightarrow \text{boundary } \Delta, \qquad \psi = \varphi \quad \text{on} \quad \varphi^{-1}(\text{boundary } \Delta).$$

G. RODÉ

For all n, k define

$$B_n^k = \{ x \in X \mid \psi_n^k(x) \le (N_k + 1)^{-1} \}.$$

Then $B_n^k \subset X$ is closed, $A_n^k \subset B_n^k \forall n, k$, and $\bigcup_n B_n^k = X \forall k$, since it is not possible that $\psi_n^k(x) > (N_k + 1)^{-1} \forall n$ for some $x \in X : \sum_n \psi_n^k(x) = 1 \forall x \in X$. On the other hand, we have

$$\bigcap_{n,k} B_n^k = \{ x \in X \mid \psi_n^k(x) \le (N_k + 1)^{-1} \forall n, k \}$$
$$= \{ x \in X \mid \psi_n^k(x) = (N_k + 1)^{-1} \forall n, k \}$$
$$= \emptyset,$$

since $\psi(X) \subset$ boundary Δ . This is a contradiction to property (ii) of a system of faces, hence φ must be essential, and the dimension of X is at least $N_1 + \cdots + N_K$.

References

1. P. Alexandroff, Ueber die Dimension der Bikompakten Raeume. Comptes Rendus (Doklady) Académie des sciences, URSS, **26** (1940), 619–622.

2. S. Eilenberg and E. Otto, Quelques propriétés caractéristiques de la dimension. Fund. Math. **3** (1938), 149-153.

3. E. Hemmingsen, Some theorems in dimension theory for normal Hausdorff spaces. Duke Math. J. 13 (1946), 495-504.

4. J. Nagata, Modern Dimension Theory. Interscience, New York 1965.

DEPARTMENT OF MATHEMATICS University of California Santa Barbara California 93106

and

H.-LOENS-STR. 27 6602 Saarbruecken West Germany

490