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ABSTRACT

In an earlier note the present author deduced bounds for the approximation
error of stop loss premiums when the aggregate claims distribution is calculated
by a method introduced by Bertram. From the error bounds of the stop loss
premiums we deduced bounds for the approximation error of the cumulative
distribution and the discrete density of the aggregate claims. In the present note
we shall improve the bounds for the cumulative distribution and the discrete
density.
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Let X be the aggregate claims occurred in an insurance portfolio within a given
period and G its cumulative distribution. We assume that X is integer-valued
and non-negative with finite mean. Let g denote the discrete density and G the
stop loss transform of G, that is,

(1) g(x) = Pr(X=x) = G(x)-G(x-l) (x = 0, 1, 2, ...)

G(t) = Emax (X-1, 0) = EX-?,'^0 (1 -G (x ) ) ; (/ = 0, 1, 2,...)

the latter quantity is the pure premium for an unlimited stop loss treaty with
priority /.

For a positive integer m we introduce

Xm = X-mrm(X)

with rm(x) denoting the largest integer less than or equal to x/m. Let Gm be the
cumulative distribution of Xm and gm and Gm respectively its discrete density
and stop loss transform. We easily see that

0<Xm<m-l

gm(x) = 1,^0 g(x +km). (x = 0, 1, . . . , m- 1)

BERTRAM (1981) introduced a method for calculation of compound distribu-
tions, by which g is approximated by gm on the range {0, 1, ...,m-\}. It is
therefore of interest to study how well gm,Gm, and Gm approximate g, G, and G.
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Let

(2) Sm = Erm{X) = SgL, (1-<?(*/»-1))
Dm = E(X-Xm) = mSm.

In SUNDT (1986) we showed the following inequalities:

(3) G^(t)<G(t)<G^(t) + Dm (t = 0, \,...,m-\)

(4) Gm(x)-Dm<G(x)<Gm(x) (x = 0,l,...,m-l)

(5) \g(x)-gm{x)\<Dm. (* = 0, l , . . . , » i - l )

Formula (3) is a trivial consequence of Lemma 10.1 in SUNDT (1991).
As EX < oo and 0 < mrm (x) < x for all x and m with mrm (JC)_= 0 for m > x,

we see by bounded convergence that lirn^j ̂  Dm = 0. Thus Gm, Gm, and gm

converge uniformly towards respectively G, G, and g when m goes to infinity.
We see that if G(m- 1) = 1, then Dm = 0. In that case gm = g.

From (1) we see that the stop loss transform G satisfies the recursion

-\) + G(t-\)-\ ( r = l , 2 , . . . )

with initial value G(0) = EX. Analogously we have

~ ^ t-\)-\ (t=\,2,...)

with initial value Gm (0) = EXm. It is interesting to note that by applying EX
instead of EXm as initial value, we obtain_the upper bound in (3) instead of the
lower bound. In particular we see that G(t) is equal to the upper bound for
t = 0, and thus we believe that G(t) is closer to the upper bound than to the
lower bound for low values of ;.

We shall now show that we can replace Dm with Sm in (4) and (5). In practice
m will be a relatively large number, and thus this replacement implies a
considerable improvement of the inequalities.

For x = 0, 1, . . . , m — 1 we have

On the other hand, we have G(x) < Gm{x), and thus

(6) Gm(x)-(l-G(m-l))<G(x)<Gm(x).

Unfortunately G(m-l) would normally be unknown, and thus we cannot
immediately apply the lower bound in (6). However, as 1 — G(m— 1) < Sm, we
can replace 1 -G(m- 1) with Sm in the lower bound in (6), and thus we obtain

(7) Gm(x)-Sm<G(x)<Gm(x).

As
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is decreasing in x, G(x) is closest to the lower bound in (7) for high values of x.
For low values of x, the lower bound might be less than zero, and then it will
of course be of no practical interest.

We obviously have g(x) < gm(x). On the other hand, by (7)

g(x) = G(x)-G(x-l)zGm(x)-Sm-Gm(x-l) = gm(x)-Sm,

and we therefore obtain

gm(x)-Sm<g(x)<gm(x).

In practice G is usually a compound distribution. In that case EX can be
calculated as the product of the mean of the counting distribution and the
mean of the severity distribution. Unfortunately we will normally need the
values of Gm to calculate EXm (and thus Dm and Sm), and therefore we cannot
beforehand determine an m that will give a desired accuracy. What we could
do, is to first calculate a rough approximation or upper bound to,Sm to obtain
an idea of how large we should choose m. When gm has been found, we
calculate the correct value of Sm.

Let us look at the special case when the tail of G is exponentially bounded,
that is, there exist positive constants C and K such that

\-G{x)< Ce~KX

for all non-negative integers x. By applying this inequality to the sum in (2) we
obtain

CeK mCeK

Sm < Dm < .

We see that these bounds approach zero when m approaches infinity.
WILLMOT (1993) deduces an exponential bound for the tail of G for the case

when G is a compound geometric distribution.
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