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Calculating conjugacy classes in Sylow p-subgroups of finite
Chevalley groups of rank six and seven

Simon M. Goodwin, Peter Mosch and Gerhard Röhrle

Abstract

Let G(q) be a finite Chevalley group, where q is a power of a good prime p, and let U(q) be a
Sylow p-subgroup of G(q). Then a generalized version of a conjecture of Higman asserts that
the number k(U(q)) of conjugacy classes in U(q) is given by a polynomial in q with integer
coefficients. In [S. M. Goodwin and G. Röhrle, J. Algebra 321 (2009) 3321–3334], the first and
the third authors of the present paper developed an algorithm to calculate the values of k(U(q)).
By implementing it into a computer program using GAP, they were able to calculate k(U(q)) for
G of rank at most five, thereby proving that for these cases k(U(q)) is given by a polynomial in
q. In this paper we present some refinements and improvements of the algorithm that allow us
to calculate the values of k(U(q)) for finite Chevalley groups of rank six and seven, except E7.
We observe that k(U(q)) is a polynomial, so that the generalized Higman conjecture holds for
these groups. Moreover, if we write k(U(q)) as a polynomial in q − 1, then the coefficients are
non-negative.

Under the assumption that k(U(q)) is a polynomial in q − 1, we also give an explicit formula
for the coefficients of k(U(q)) of degrees zero, one and two.

1. Introduction

Let GLn(q) be the group of invertible n × n matrices with coefficients in the finite field Fq,
where q is a power of the prime p, and let Un(q) be the subgroup of unipotent upper triangular
matrices. A well-known conjecture attributed to Higman is that the number k(Un(q)) of Un(q)-
conjugacy classes in Un(q) is given by a polynomial in q with integer coefficients independent
of q, see [15]. This conjecture has attracted the interest of many mathematicians including
Thompson (‘k(Un(Fq))’, unpublished manuscript, http://www.math.ufl.edu/fac/thompson/
kUnFq.pdf) and Robinson [22].

Using computer calculations, Vera-López and Arregi verified in [23] that the conjecture
holds for n 6 13. The resulting polynomials have the additional property that, considered as
polynomials in q−1, their coefficients are non-negative integers. We also note that Evseev has
calculated these polynomials via an alternative approach, see [6].

Since the conjugacy classes of a finite group are in bijective correspondence with its complex
irreducible characters, one can also approach the conjecture via character theory. This has
been considered among others by André [2], Isaacs [19] and Lehrer [21].

In this paper, we consider a generalization of Higman’s conjecture. Let G(q) be a finite
Chevalley group, that is the group of Fq-rational points of a simple algebraic group G which is
defined and split over Fq. Assume that p is good for G(q) and let U(q) be a Sylow p-subgroup
of G(q). Then the generalized conjecture claims that the number k(U(q)) of U(q)-conjugacy
classes is given by a polynomial in q, and as a polynomial in q − 1 it has non-negative integer
coefficients.

There has been a lot of interest recently in the conjugacy classes and the complex characters
of U(q), some of which gives evidence for (the generalized) Higman’s conjecture. For example,
in [1], Alperin proved that the number k(Un(q),GLn(q)) of Un(q)-conjugacy classes in GLn(q)
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is given by a polynomial in q with integer coefficients. This was generalized by the first and
the third authors of the present paper in [12], where they showed that k(U(q), G(q)) is a
polynomial in q when the centre of G is connected and G is not of type E8. In case G is
of type E8, the number k(U(q), G(q)) is given by one of two polynomials, depending on q
mod 3. It is conceivable that similar PORC (Polynomial On Residue Classes) behaviour
occurs for k(U(q)) if G is of type E8. For other recent developments, see for example [13, 16,
17, 20].

An algorithm was introduced in [11] to calculate a parameterization of the conjugacy classes
of U(q), and thus determine k(U(q)). In this paper we describe an improved version of this
algorithm. Both versions of the program have been implemented in GAP [7]. The main idea
of the algorithm (which is based on the results in [9]) is to replace the task of counting
conjugacy classes by the geometric task of counting Fq-rational points of quasi-affine varieties
over finite fields, which parameterize the conjugacy classes of U(q). The goal of the program
is to determine these varieties and then calculate the number of Fq-rational points from the
polynomial equations which define them. In the previous version of the algorithm, it was
necessary to inspect some output of the program and complete some calculations by hand and
it was only possible to calculate k(U(q)) when the rank of G is at most five.

The improved version of the algorithm determines the polynomial equations much more
effectively, and is significantly better at calculating the number of rational points in the varieties
directly. With the aid of the improved version, we are able to prove the following theorem.

Theorem 1.1. Let G be a split simple algebraic group defined over Fq of rank at most seven,
excluding E7, where q is a power of a good prime p. Let U be a maximal unipotent subgroup
of G which is also defined over Fq. Then the number k(U(q)) of U(q)-conjugacy classes in U(q)
is given by a polynomial in q with integer coefficients. Furthermore, if one considers k(U(q))
as a polynomial in q − 1, then the coefficients are non-negative.

For G simple of type E7 the program is able to calculate the quasi-affine varieties
parameterizing the conjugacy classes of U . However, the polynomial equations determining
these varieties turn out to be complicated, so that the algorithm is not able to determine the
number of Fq-rational points in them. The situation for G of type B8, C8 and D8 is similar.

The theoretical background underlying our algorithm only holds for good primes. Therefore,
the values for k(U(q)) given in this paper are only valid in this case. In [4], Bradley and the
first author of the present paper calculated k(U(q)) for q a power of a bad prime and G of
rank at most four, excluding F4. In these cases k(U(q)) is again given by polynomials with
integer coefficients which are expectedly not the same as those for good p.

As mentioned in [11], it is straightforward to adapt the program to calculate the number
of M(q)-classes in N1(q)/N2(q), where M,N1, N2 are normal unipotent subgroups of a
Borel subgroup of G defined over Fq. For example, it is possible to calculate the number
k(U(q), U (l)(q)) of U(q)-conjugacy classes in the lth term of the descending central series of
U(q) for l ∈ N. We have done this for some cases where G is of type E7 and E8. Here we
also found that all values which we calculated were given by polynomials in q with integer
coefficients. While the previous version of the algorithm could calculate k(U(q), U (l)(q)) for G
of type E8 only for l > 10, the new version is able to compute all values for l > 7.

Our program is based on the algorithm outlined in [9] and also uses ideas by Bürgstein and
Hesselink [5] as well as Vera-López and Arregi [23].

We now give a brief outline of the structure of the paper. In § 2 we give a summary of the
theoretical results that the program is based on. The algorithm, with an emphasis on the
improvements that have been made, is described in § 3 and the results of our calculations are
presented in § 4. Finally, in § 5 we prove explicit formulas for the coefficients of k(U(q)) of
degrees zero, one and two, assuming that k(U(q)) is a polynomial in q − 1.
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2. Theoretical background

Let G be a connected reductive algebraic group, defined and split over the finite field Fq with
q elements, where q is a power of a prime p. Assume that p is a good prime for G and let K
be the algebraic closure of Fq. We identify G with its group of points over K and write G(q)
for the group of Fq-rational points of G. Let B be a Borel subgroup of G defined over Fq,
containing a maximal torus T defined over Fq. The unipotent radical U of B is also defined
over Fq and the group U(q) of Fq-rational points of U is a Sylow p-subgroup of G(q). We write
u for the Lie algebra of U and u(q) for its space of Fq-rational points.

Below we recall some of the results from [9, 10] on which our algorithm for calculating
k(U(q)) is based. We note that [8, Theorem 1.1] implies that some of the results in [9] hold in
greater generality than stated there and allow ourselves to give the more general statements
below. Thanks to [9, Proposition 6.2], we know that the conjugacy classes of U(q) are in
bijective correspondence with the adjoint U(q)-orbits in u(q), so we are henceforth primarily
concerned with these orbits.

Let Φ be the root system determined by G and T and let Φ+ be the set of positive roots
determined by B. Denote by 4 the partial order on Φ determined by Φ+. Let N be the
cardinality of Φ+ and fix an enumeration of Φ+ = {β1, . . . , βN} such that i 6 j whenever
βi 4 βj . Let gβ be the root subspace of g for β ∈ Φ, and fix a Chevalley basis {eβ | β ∈ Φ+}
for u with eβ ∈ u(q) for each β ∈ Φ+. For 0 6 i 6 N , we define

mi =

N⊕
j=i+1

gβj .

For x ∈ u, denote by x + Keβi + mi the coset {x + aieβi + mi | ai ∈ K} in u/mi. We have
the following dichotomy given by [9, Lemma 5.1]:

(I) either all elements of x+Keβi + mi are conjugate in u/mi by U (in which case we call i
an inert point of x); or

(R) no two elements of x+Keβi + mi are conjugate in u/mi by U (in which case we call i a
ramification point of x).

An element x =
∑N
i=1 aieβi ∈ u is said to be the minimal representative of its U -orbit if

ai = 0 whenever i is an inert point of x. It follows from [9, Proposition 5.4 and Lemma 5.5]
that each U -orbit in u contains a unique minimal representative. For our algorithm we use
the following characterization of minimal representatives, which follows immediately from the
discussion above.

Lemma 2.1. Let x =
∑N
j=1 ajeβj ∈ u. Then x is the minimal representative of its U -orbit if

ai = 0 whenever dim cu(x+ mi) = dim cu(x+ mi−1)− 1.

A crucial theoretical result is that one can view the minimal representatives as elements of
certain quasi-affine varieties. Let c ∈ {I,R}N and define

uc = {x ∈ u | i is an inert point of x if and only if ci = I}

and

Xc =

{ N∑
i=1

aieβi ∈ uc

∣∣∣∣ ai = 0 if ci = I

}
.

Then, as stated in [10, Lemma 4.2], we have that Xc is a locally closed subvariety of u, and the
adjoint U -orbits in u are in bijection with the points of

⋃
c∈{I,R}N Xc. Moreover, this implies

that the U(q)-orbits in u(q) are parameterized by the Xc(q) = Xc ∩ u(q).
In the next section we describe our algorithm for calculating k(U(q)). The idea of the

algorithm is to determine a decomposition of the varieties Xc as a disjoint union of locally
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closed subvarieties, where these subvarieties are given by the vanishing and non-vanishing of
explicitly determined polynomials. The key step in calculating these polynomials is to use the
characterization of minimal representatives given by Lemma 2.1. The algorithm then proceeds
to determine the number of Fq-rational points in these subvarieties.

3. The algorithm

In this section we describe our algorithm for calculating a parameterization of the adjoint
U -orbits in u and then determining k(U(q)). In particular, we outline the improvements to the
algorithm from [11] that have enabled us to calculate k(U(q)) for Chevalley groups of rank
six and seven. The proof given in [11, § 3] that the algorithm correctly determines all minimal
representatives of U(q)-orbits in u(q) remains valid here, so we only concentrate on explaining
the algorithm.

Before going into some details, we give an overview of how the algorithm works. As mentioned
in the previous section, it is based on explicitly determining the varieties Xc for c ∈ {I,R}N .

In fact, first we want to generalize our notation. Let c ∈ {I,R0,Rn}i for some i = 1, . . . , N .
Then we define

uc,i = {x+ mi ∈ u/mi | j is an inert point of x if and only if cj = I}

and

Xc =

{ i∑
j=1

ajeβj + mi ∈ uc,i

∣∣∣∣ aj = 0 if and only if cj ∈ {I,R0}
}
.

We define mc to be the number of j with cj = Rn. Denote by 1 6 k1 < . . . < kmc 6 N the
indices with ckj = Rn and define βc,j = βkj . Then we can write each element of Xc in the
form xc(a) + mi :=

∑mc
j=1 ajeβc,j + mi, where a ∈ (K×)mc . Thus we can canonically identify

Xc with a subvariety of (K×)mc .

Each Xc can be written as a disjoint union Xc =
⋃lc
ι=1X

ι
c, where

Xι
c := {xc(a) + mi ∈ Xc | f(a) = 0 for all f ∈ Aιc and g(a) 6= 0 for all g ∈ Bιc},

and Aιc, B
ι
c ⊆ K[t1, . . . , tmc ]. We call the Xι

c families of minimal representatives. Given A,B ⊆
K[t1, . . . , tmc ], we define

Xc,A,B := {xc(a) + mi ∈ Xc | f(a) = 0 for all f ∈ A and g(a) 6= 0 for all g ∈ B}.

Thus we have Xc =
⋃lc
ι=1Xc,Aιc,B

ι
c
. Note that Xc might be a single family (and often is).

The goal of the algorithm is to calculate Aιc, B
ι
c ⊆ K[t1, . . . , tmc ] as above for each c ∈

{I,R0,Rn}N . Then the U -orbits in u are parameterized by the union of all the Xι
c, and k(U(q))

is given by the sum of the |Xι
c(q)|.

During the main loop of the algorithm we are considering c ∈ {I,R0,Rn}i−1 and looking at a
family Xc,A,B . We also have a ‘stack’ of other families that we will consider later: the algorithm
is a depth-first backtrack algorithm which calculates each family to the end, before considering
the next family from the stack.

The key step involves determining the variety X+1
c,A,B , which consists of elements of the form

xc(a) + beβi + mi such that xc(a) + mi−1 ∈ Xc,A,B and xc(a) + beβi + mi is the minimal
representative of its U -orbit. To do this we first calculate dim cu(xc(a) + mi) so we can apply
Lemma 2.1 to determine conditions on a for whether i is an inert or ramification point of
xc(a). Then the main objective is to decompose X+1

c,A,B into families. The algorithm ends
up with triples (cι, Aι, Bι) for ι = 1, . . . , kc, c

ι = (c, ci) with ci ∈ {I,R0,Rn} and Aι, Bι ⊆
Z[t1, . . . , tmcι ] with A ⊆ Aι and B ⊆ Bι. Moreover, these triples are such that we have a
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disjoint union

X+1
c,A,B =

kc⋃
ι=1

Xcι,Aι,Bι . (3.1)

The determination of these families is sometimes easy, for example often we have that i is
an inert point for all xc(a) with xc(a) + mi−1 ∈ Xc,A,B . However, determining (cι, Aι, Bι)
may require some complicated analysis of polynomials. A major improvement in the level of
analysis applied here is one of the significant additions to the previous algorithm from [11].

The algorithm then proceeds by considering (c1, A1, B1) and adding (cι, Aι, Bι) for ι =
2, . . . , kc to the stack.

After all of the families Xc,A,B have been processed, the number of Fq-rational points
|Xc,A,B(q)| is determined. These numbers are summed together to calculate k(U(q)).
Considerable improvement to the processes for calculating |Xc,A,B(q)| are made in this new
algorithm. In particular, the algorithm aims to ensure that the polynomials in the sets A and
B are linear in one indeterminate, which enables the calculation to be made.

We proceed to give a more detailed description of the algorithm. First we need to give some
notation that is required in this explanation.

Let g be the Lie algebra of G and gC be the Lie algebra over C of the same type. Fix a
Chevalley basis of gC and denote by gZ the Z-lattice spanned by this Chevalley basis, so that
g ∼= K ⊗Z gZ. Define

ũ := Z[t1, . . . , tm]⊗Z uZ,

where m := max{mc | c ∈ {I,R0,Rn}N , Xc 6= ∅}. We allow ourselves to view eβj ∈ ũ, where
eβ1

, . . . , eβN are elements of the Chevalley basis of uZ. For i 6 N and c ∈ {I,R0,Rn}i, we
define

xc(t) :=

mc∑
j=1

tjeβc,j ∈ ũ.

For a = (a1, . . . , amc)∈ (K×)mc , we define xc(a) ∈ u by substituting tj = aj in xc(t). Let

y1, . . . , yN be indeterminates. It is shown in [11, § 3] that
∑N
j=1 yjeβj ∈ cu(xc(a)) if and only

if (y1, . . . , yN ) is a solution of a certain system of linear equations

N∑
k=1

P cjk(a)yk = 0,

where P cjk(t) ∈ Z[t] are linear polynomials determined by the Chevalley commutator relations.
To find out for which a we have dim cu(xc(a)+mi) < dim cu(xc(a)+mi−1), so that Lemma 2.1
can be applied, one has to check for which a the rank of the matrix (P cjk(a))j,k ∈ Mat(i−1)×N (Z)
increases when one appends the ith row.

Now we give the data that the algorithm is holding at any point during a run. Note that the
first three data elements c, A and B uniquely determine a family Xι

c which we also denote by
Xc,A,B as above. We give some explanation of the meaning of the data here, but parts can only
be fully understood once we have described the algorithm (we use speech marks to identify
terminology that has not been explained):
• the tuple c ∈ {I,R0,Rn}i which determines xc(t) ∈ ũ;
• the set A of polynomials in Z[t] which vanish on Xι

c;
• the tuple B of polynomials in Z[t] which have no roots in Xι

c;
• for each f ∈ A ∪ B, we have associated σ(f), which is either equal to zero or an

indeterminate tj in which f is linear;
• the matrix Q(t) ∈ Mati×N (Z[t]) which comprises the first i rows of (P cjk(t))j,k in row-

reduced form;
• the tuple π containing the ‘pivots’ used for the first i row-reductions of Q(t);
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• the stack S := {(c, A,B, π, σ,Q(t))}, an ordered subset of

N⋃
i=1

{I,R0,Rn}i × P(Z[t])×
⋃
i∈N

Z[t]i ×
N⋃
i=1

{0, 1, . . . , N}i ×
⋃
i∈N
{0, t1, . . . , tm}i

×Mati×N (Z[t])

containing information about families that the program has not processed yet;
• the ‘good-families’ set γ, which contains for each family already processed enough data

from which to recover the number of Fq-rational points in the family;
• the ‘bad output’ O := {(c, A,B)}, a subset of

{I,R0,Rn}N × P(Z[t])×
⋃
i∈N

Z[t]i

containing sufficient information about each ‘bad’ family.
At the beginning of the program, we have the configuration:
• c := (Rn);
• A := ∅;
• B := ∅;
• σ := ∅;
• π := (0);
• Q(t) := 0 ∈ Mat1×N (Z[t]);
• O := ∅;
• γ := ∅; and
• S := {((R0),∅,∅, (0),∅, 0)}.

The main loop in the algorithm is explained as follows. At each point we are considering a
family Xι

c = Xc,A,B as above. In the explanation below we sometimes speak of relevant a, by
which we mean a such that xc(a) ∈ Xc,A,B .

Case 1. If the length i− 1 of c is smaller than N , then we generate the ith row of the matrix
(P cjk(t))j,k and append it to Q(t). Then the following operations are applied to row reduce the
ith row. For all 1 6 j 6 i− 1 with πj 6= 0, we modify the ith row Qi(t) of Q(t) by setting

Qi(t) := Qi(t)
Qj,πj (t)

gcd(Qi,πj (t), Qj,πj (t))
−Qj(t)

Qi,πj (t)

gcd(Qi,πj (t), Qj,πj (t))
.

Note that this leads to Qi,πj (t) = 0 for all j with πj 6= 0. Here the SINGULAR [14] interface for
GAP is used to calculate the greatest common divisors; this always outputs a common divisor,
though for complicated polynomials this may not be the greatest common divisor, but this
does not effect the validity of the algorithm.

The next step depends on the set Li of non-zero polynomials in Qi(t) which are not divisible
by any polynomial in A.

Case 1a: Li = ∅. In this case, we have that i is a ramification point of xc(a) for all relevant
a, and we set:
• π := (π, 0);
• c := (c,Rn); and
• S := S ∪ {((c,R0), A,B, π, σ,Q(t))}.

Case 1b. There exists Qi,l(t) ∈ Li such that Qi,l(t) is a monomial or divides an f ∈ B. In
this case, we have that i is a inert point of xc(a) for all relevant a, and we set:
• π := (π, l); and
• c := (c, I).
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Case 1c: Li 6= ∅, but no Qi,l(t) as in Case 1b exists. In this case i can be either an inert
point or a ramification point of xc(a) for relevant a. Here we pick a Qi,l(t) ∈ Li that is minimal
with respect to a total order on Z[t], comparing first the number of terms of two polynomials,
then their degrees and finally their leading coefficients. Then we apply some new subroutines,
the polynomial-resolving subroutine and the stack-generating subroutine and update the data
as specified by these subroutines.

These subroutines are a substantial improvement on the algorithm from [11]. Their aim is
to determine the triples (cι, Aι, Bι) for ι = 1, . . . , kc mentioned above such that (3.1) holds.

The algorithm aims to construct the sets Aι and Bι so that each polynomial in Cι :=
(Aι\A) ∪ (Bι\B) is linear in one of the indeterminates tj . Often the elements of Cι are
irreducible factors of Qi,l(t). Though the situation can get considerably more complicated:
when a polynomial f = h1tk+h2 is linear in the indeterminate tk, where h1, h2 ∈ Z[t1, . . . , tm]
are polynomials not involving tk, then it is also necessary to consider when the polynomials h1
and h2 give zero values. The SINGULAR [14] interface for GAP is also used in these processes.

The variable σ is used to record which indeterminate a polynomial in A or B is linear in.
So if we have found that f = h1tk + h2 is linear in tk, then we set σ(f) = tk. If f is not linear
in any indeterminate, then we set σ(f) = 0. If there is more than one such tk, the program
chooses the tk which is most ‘suitable’ for subsequent calculations.

Often when we have a polynomial f ∈ A which is linear in an indeterminate we perform a
substitution to reduce the number of indeterminates. This is done when tk appears linearly
in some f = h2tk − h1 ∈ A. Then we substitute tk for h1/h2 in Q(t) as well as in all other
elements of A ∪B.

A ‘trick’ that the program sometimes uses in the polynomial resolving subroutine is to make
a linear change of coordinates in the indeterminates so that a polynomial becomes linear in an
indeterminate. For example, there might be a polynomial of the form f(t) = (t1+t2)2+t1 ∈ A.
Since neither t1 nor t2 appear linearly in f(t), we cannot solve for either of them. By introducing
a new variable z2 := t1 + t2 and replacing f(t) by z22 + t1, we are able to solve for t1 and then
make a substitution. Implementing routines to look for such substitutions was a huge challenge,
and then it also involved updating other parts of data accordingly.

When these two subroutines are complete the algorithm has calculated the 4-tuples
(cι, Aι, Bι, σι). Then the data is updated as follows:

• π := (π, l);
• c := c1 = (c, I);
• A := A1 = A;
• B := B1;
• σ := σ1; and
• S := S ∪ {(cι, Aι, Bι, π, σι, Q(t)) | ι = 2, . . . , kc}.

Case 2. If c has length N , then we have determined the family Xc,A,B . The program now
applies a subroutine on (c, A,B, σ) to attempt to calculate the number of Fq-rational points
of the family Xc,A,B . This subroutine is called the nice conditions subroutine; it constitutes a
major improvement on the algorithm from [11].

The first step in the nice conditions subroutine involves checking whether each polynomial
f ∈ A∪B is linear in some tj , that is f = h1tj+h2, where h1, h2 ∈ K[t1, . . . , tmc ] not involving
tj . This is first done using σ, but further checks are made to see if elements in A ∪ B have
become linear in an indeterminate as a consequence of substitutions being made at some point
during the run. Then the values a for which f(a) = 0 are given by aj = −h2(a)/h1(a), so it is
relatively straightforward to count the number of a for which f(a) is zero or non-zero. If this
can be applied to all the f ∈ A ∪ B, then |Xc(q)| can be calculated. However, a great deal of
care needs to be taken here as there is a variety of potential complications, for example h1(a)
or h2(a) could be zero. Also there will be a number of dependencies between the conditions
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calculated for different f ∈ A∪B, so the algorithm is required to make many checks before it
is able to complete the calculation. If the subroutine is successful, then it outputs d = mc−|A|
and a tuple n(c, σ) which contains information about the number of indeterminates that can
take q−1− j values, for each possible j. The variables d and n(c, σ) are later used to calculate
|Xc,A,B(q)| as explained below.

The algorithm updates the data depending on the outcome of the nice conditions subroutine.
(1) If the subroutine fails to calculate the number of Fq-rational points in Xc,A,B , then it

sets O := O∪{(c, A,B)}. We name such families bad families, as in this case this output would
need to be analysed by hand to determine |Xc,A,B(q)|. For the cases where we have run the
algorithm, we end up with O = ∅, which is a significant betterment on the algorithm from [11].

(2) If the subroutine is successful in calculating |Xc,A,B(q)|, then we call the family a good
family. In this case γ is updated by setting γ := γ ∪ {(d, n(c, σ))}, where d = mc − |A| and
n(c, σ) are as above.

The algorithm proceeds by updating the data from the stack as follows. If S = ∅, then the
main loop terminates. Else we update the variables:

• (c, A,B, π, σ,Q(t)) =: top(S);
• S := S\{top(S)};

where top(S) is the last element in the ordered set S.
After the end of the main loop, the data from γ is used to calculate a polynomial Z(q).

This polynomial is the sum of |Xc,A,B(q)|, where (c, A,B) runs over all families of minimal
representatives for which the program calculated |Xc,A,B(q)|. When (c, A,B) corresponds to
the element (d, n(c, σ)) ∈ γ, we have

|Xc,A,B(q)| = (q − 1)d−
∑|σ|
j=1 n(c,σ)j

|σ|∏
j=1

(q − 1− j)n(c,σ)j .

We note that it turns out that in most cases A = B = ∅, so the cardinality is given by
|Xc,A,B(q)| = (q− 1)mc ; more complicated situations occur rarely when G has small rank, but
with increasing frequency for higher ranks. If O = ∅, then Z(q) = k(U(q)). Otherwise one
would have to calculate the number of the Fq-rational points of the families in O by hand. As
already mentioned, such hand calculations are not required for the cases on which we have run
the algorithm.

We remark that the usage of gZ makes it necessary to be careful about implicit divisions
occurring during the calculations. Therefore, the program records the primes that occur in
the numerator or denominator of any coefficient of a polynomial from A or B. These primes,
for which our results may not be valid, are then returned at the end. Fortunately, for all
calculations that we have completed, these primes were bad primes.

Finally we mention that the algorithm attempts to normalize coefficients when possible to
reduce the number of indeterminates required. The maximal torus T acts on the sets of minimal
representatives and can be used to normalize certain coefficients of xc(a) to be equal to one
as explained in [11, §3]. Let c ∈ {I,R0,Rn}N and let J be a linearly independent subset of
{βc,1, . . . , βc,mc}. Then we can find for any a ∈ (K×)mc an element b ∈ (K×)mc such that
bj = 1 if βc,j ∈ J and xc(a) = t · xc(b) for some t ∈ T . This implies that for i ∈ {1, . . . , N},
we have that i is an inert point of xc(a) if and only if it is an inert point of xc(b). This trick
is useful since it reduces the amount of indeterminates which arise in the program, though
we have to take care here: it may be the case that xc(a) and xc(b) are not conjugate by an
element of T (q). The algorithm has a routine to normalize coefficients to be equal to one as
above, as long as this is possible by elements in T (q).

We also remark here that for G(q) with root system of type B7 and C7, it turned out that
there are situations where, surprisingly, the normalization of certain coefficients leads to more
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complicated polynomials in the sets A and B. This meant that we sometimes had to override
some normalizations manually.

4. The results

Table 1 contains the values of k(U(q)) for G(q) simple of rank at most seven, except E7, written
as polynomials in v := q− 1. The polynomials up to rank five were already calculated in [11],
while the polynomials for G(q) of type Ar, r 6 12, were given in [23]. The newly obtained
polynomials are coloured red within the tables.

The time it takes to run the algorithm on the cases in Table 1 is less than a minute for rank
at most five, about half an hour for rank six and less than a day for the rank seven cases that
we have calculated. The difficulty in trying to calculate the polynomials for E7 stems from
the complexity of the encountered polynomials in the sets A and B, and not from the running
time, though it would take weeks for a complete run. Similarly for G of types B8, C8 and
D8, it is possible to run the program with running times of weeks, but it is not possible in a
reasonable time to calculate the polynomial from the output.

The most noteworthy observation is that, for fixed r, the polynomials for Br and Cr coincide.
This has already been noticed for r 6 5, and the equality still holds for r = 6, 7.

Another phenomenon that was already observed in [23] for type Ar and in [11] for rank
at most five is that the coefficients of k(U(q)) written as polynomials in v are non-negative
integers. A heuristic idea why this may be the case was given in [11].

It is noteworthy that the constant coefficient of all calculated polynomials is equal to one.
We explain this and prove explicit formulas for the coefficients of degrees one and two in the
next section.

Table 1. k(U(q)) as polynomials in v = q − 1.

G(q) k(U(q))

A1 v + 1

A2 v2 + 3v + 1
B2 2v2 + 4v + 1
G2 v3 + 5v2 + 6v + 1

A3 2v3 + 7v2 + 6v + 1
B3, C3 v4 + 8v3 + 16v2 + 9v + 1

A4 5v4 + 20v3 + 25v2 + 10v + 1
B4, C4 v6 + 11v5 + 48v4 + 88v3 + 64v2 + 16v + 1
D4 2v5 + 15v4 + 36v3 + 34v2 + 12v + 1
F4 v8 + 9v7 + 40v6 + 124v5 + 256v4 + 288v3 + 140v2 + 24v + 1

A5 v6 + 18v5 + 70v4 + 105v3 + 64v2 + 15v + 1
B5, C5 2v8 + 24v7 + 132v6 + 395v5 + 630v4 + 500v3 + 180v2 + 25v + 1
D5 2v7 + 22v6 + 106v5 + 235v4 + 240v3 + 110v2 + 20v + 1

A6 8v7 + 84v6 + 301v5 + 490v4 + 385v3 + 140v2 + 21v + 1
B6, C6 v11 + 15v10 + 112v9 + 547v8 + 1845v7 + 4121v6 + 5701v5 + 4560v4 + 1960v3

+ 410v2 + 36v + 1
D6 v10 + 13v9 + 87v8 + 393v7 + 1157v6 + 2032v5 + 2005v4 + 1060v3 + 275v2 + 30v + 1
E6 v11 + 12v10 + 75v9 + 353v8 + 1286v7 + 3178v6 + 4770v5 + 4035v4 + 1800v3

+ 390v2 + 36v + 1

A7 4v9 + 74v8 + 496v7 + 1568v6 + 2604v5 + 2345v4 + 1120v3 + 266v2 + 28v + 1
B7, C7 v14 + 18v13 + 158v12 + 899v11 + 3740v10 + 11985v9 + 29328v8 + 52055v7

+ 62930v6 + 48797v5 + 22855v4 + 6020v3 + 812v2 + 49v + 1
D7 4v12 + 59v11 + 417v10 + 1913v9 + 6256v8 + 14289v7 + 21497v6 + 20188v5

+ 11305v4 + 3570v3 + 581v2 + 42v + 1
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Table 2. k(U(q), U (l)(q)) for E7 and E8 as polynomials in v = q − 1.

G(q) l k(U(q), U(l)(q))

E7 2 v14 + 14v13 + 92v12 + 380v11 + 1128v10 + 2675v9 + 5694v8 + 11565v7

+ 19486v6 + 21745v5 + 13976v4 + 4724v3 + 755v2 + 50v + 1
3 3v10 + 37v9 + 253v8 + 1193v7 + 3767v6 + 6724v5 + 6194v4 + 2798v3 + 560v2

+ 44v + 1
4 v9 + 13v8 + 94v7 + 512v6 + 1600v5 + 2312v4 + 1499v3 + 395v2 + 38v + 1

E8 7 2v13 + 28v12 + 188v11 + 822v10 + 2838v9 + 8987v8 + 25419v7 + 51513v6

+ 60889v5 + 37867v4 + 11140v3 + 1428v2 + 70v + 1
8 v12 + 14v11 + 94v10 + 449v9 + 1830v8 + 6381v7 + 16610v6 + 25867v5

+ 20935v4 + 7620v3 + 1155v2 + 64v + 1
9 v10 + 21v9 + 199v8 + 1125v7 + 4228v6 + 9382v5 + 10568v4 + 4955v3 + 912v2

+ 58v + 1
10 v9 + 17v8 + 135v7 + 719v6 + 2568v5 + 4652v4 + 3014v3 + 699v2 + 52v + 1

Eamonn O’Brien used the p-group conjugacy algorithms available in MAGMA [3] to confirm
the values for k(U(p)) in each of the cases in Table 1 for p the smallest good prime for G.

We also used a modification of our program to calculate the number k(U(q), U (l)(q)) of
U(q)-conjugacy classes in the lth term of the descending central series of U(q), for certain
groups and l ∈ N. Here we also see that these numbers are given by polynomials in v with
non-negative integer coefficients. The results of these calculations are presented in Table 2.

5. The coefficients of k(U(q)) of small degree

Assuming that k(U(q)) is a polynomial in v, we now prove that the coefficients of k(U(q)) of
degrees zero, one and two can be easily determined based on properties of the root system.
We start with an elementary lemma; since we were unable to find a proof in the literature, we
give a complete argument.

Lemma 5.1. Let Φ be an irreducible root system of rank r > 3. Let α, β and γ be three
pairwise distinct linearly dependent positive roots with ht γ > max{htα,htβ}. Then at least
one of the following statements is true:

• β − α ∈ Φ;
• γ − β ∈ Φ and γ − α ∈ Φ;
• γ − α ∈ Φ, but β + γ − α /∈ Φ; or
• γ − β ∈ Φ, but α+ γ − β /∈ Φ.

Proof. Choose an embedding of Φ into the real vector space V . It is a well-known fact (see
for example [18, Example 9.7]) that, if V ′⊆V is the subspace spanned by α and β, then
Φ ∩ V ′=: Φ′ is a root system of rank two. Since r> 3, we know that Φ′ is a proper root
subsystem of Φ. Because two distinct positive roots are linearly independent, γ can be written
as a linear combination of α and β, and thus γ lies in Φ′. Let Φ′+ := Φ′ ∩ Φ+, then the three
roots are also positive in Φ′, and ht γ > max{htα,htβ} stays true in Φ′.

There are three types of root systems of rank two which might appear as proper root
subsystems in an irreducible root system (G2 never does). We denote by δ and ε the simple
roots of Φ′ and proceed with case-by-case analysis.

Φ′ of type A1 ×A1. This is not possible, since α, β and γ are pairwise distinct.
Φ′ of type A2. We have a bijection between {α, β, γ} and Φ′+ = {δ, ε, δ+ ε}. Then γ = δ+ ε

due to the height condition, and then the second statement is true.
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Φ′ of type B2. Here Φ′+ = {δ, ε, δ + ε, δ + 2ε}. If γ = δ + ε, then the second statement is
true again. The remaining case is when γ = δ+ 2ε. If either α or β is δ+ ε, then the other one
is a simple root and the first statement holds. So suppose that {α, β} = {δ, ε}. Depending on
whether α is equal to δ or ε, the third or the fourth statement holds.

Lemma 5.2. Let I be a subset of Φ+, define

XI :=

{∑
β∈I

aβeβ

∣∣∣∣ aβ ∈ K×} ⊆ u

and let β1, . . . , βk be linearly independent roots in I. Let β̃j be the coordinate vector of βj
with respect to the base of Φ determined by Φ+, for 1 6 j 6 k. Let d1, . . . , dk be the diagonal
entries of the Smith normal form of the matrix (β̃1, . . . , β̃k) ∈ Matr×k(Z).

Then for each x ∈ XI(q), the size of the orbit T (q) · x is divisible by vk/d, where v := q − 1

and d :=
∏k
l=1 gcd{dl, v}.

Proof. Since β1, . . . , βk are linearly independent, they form a basis for the sub-lattice
L := Zβ1 + . . .+ Zβk ⊆ ZΦ. The theory of finitely generated abelian groups makes it possible
to find a basis χ1, . . . , χr of the character group X(T ) such that d1χ1, . . . , dkχk is a basis

for L. Write βj =
∑k
l=1 cljdlχl. Then the matrix (clj)l,j ∈ Matk×k(Z) is invertible and its

inverse (ajh)j,h ∈ Matk×k(Z) also has integer coefficients. Let ψ1, . . . , ψr ∈ X∨(T ) be dual to
χ1, . . . , χr with respect to the perfect pairing 〈·, ·〉 on X(T )×X∨(T ), that is 〈χj , ψl〉 = δjl.

It is known that βj ◦ ψl(b) = b〈βj ,ψl〉 for b ∈ K× and t · eβ = β(t)eβ for t ∈ T . By looking at
the coefficient of t · x belonging to eβ , we get that t =

∏r
l=1 ψl(bl) ∈ CT (x) satisfies

k∏
l=1

b
cljdl
l = 1 for all 1 6 j 6 k.

Moreover, it follows from
k∏
j=1

( k∏
l=1

b
cljdl
l

)ajh
= bdhh

that

CT (x) ⊆ S :=

{ r∏
l=1

ψl(bl)

∣∣∣∣ bl ∈ K× for all 1 6 l 6 r, bdll = 1 for all 1 6 l 6 k

}
.

If we take x ∈ XI(q) and consider the action of T (q) on XI(q), then CT (q)(x) ⊆ S(q). Because
of the condition on the bj to be djth roots of unity and to lie in Fq (that is to be vth roots of
unity as well), the order of S(q) is vr−kd, thus the order of CT (q)(x) divides this number. By

the orbit stabilizer theorem, T (q) · x has size vr/|CT (q)(x)|, which is divisible by vk/d.

Lemma 5.3. Let β1, . . . , βk be linearly independent roots in Φ+. Then:
(1) T acts transitively on X := {

∑k
j=1 ajeβj | aj ∈ K×}; and

(2) dim cu(x+ mi) = dim cu(y + mi) for all x, y ∈ X, 1 6 i 6 N .

Proof. (1) We define ψ1, . . . , ψr ∈X∨(T ) and d1, . . . , dk as in Lemma 5.2. For x :=
∑k
j=1

ajeβj ∈X and t =
∏r
l=1 ψl(bl) it follows that t · x =

∑k
j=1 b

dj
i ajeβj . By taking bj to be a

djth root of a−1j for all j, we see that x lies in the same T -orbit as
∑k
j=1 eβj . By transitivity,

all x ∈ X are T -conjugate.
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(2) Let x and y = t · x be in X. Then also x+ mi = t · (y + mi) for all 1 6 i 6 N . We get

tCU (x+ mi)t
−1 = {ũ := tut−1 ∈ U | u · (x+ mi) = x+ mi}

= {ũ ∈ U | ũt · (x+ mi) = t · (x+ mi)}
= {ũ ∈ U | ũ · (y + mi) = y + mi}
= CU (y + mi),

so dimCU (x+ mi) = dimCU (y + mi). Now (2) follows from [9, Corollary 4.3].

Theorem 5.4. If k(U(q)) is given by a polynomial in v := q−1, then the following statements
hold:

(1) the coefficient of degree zero equals one;
(2) the coefficient of degree one equals |Φ+|;
(3) the coefficient of degree two equals |{(βj , βk) ∈ Φ+ × Φ+ | j < k, βk − βj /∈ Φ}|.

Proof. (1) We want to prove that k(U(q))−1 is divisible by v/d for some fixed d ∈ N. First,
we note that there is exactly one family of minimal representatives with all coefficients being
zero, namely {0} ⊆ u. Now, if Xc is a different set of minimal representatives, then there is at
least one non-zero coefficient (that is mc > 0). Lemma 5.2 with k = 1 and β1 = βc yields that
there is a dc,v ∈ N such that the size of each T (q)-orbit on Xc(q) (and thus the cardinality of
Xc(q)) is divisible by v/dc,v. Take

dv := lcm{dc,v | Xc set of minimal representatives with mc > 0}.

Then v/dv divides |Xc(q)| for all Xc with mc > 0. Thus v/dv divides k(U(q))− 1. Due to the
definition of the dc,v in Lemma 5.2, there is a d ∈ N such that dv divides d for all v ∈ N. Since
k(U(q)) is a polynomial in v, it follows that v/d divides k(U(q))− 1 as a polynomial.

Note that for k = 1 one can give a simpler argument because dc,v = 1 for all c, v. However,
the argument above is needed for (2) and (3).

(2) Let Xc be a set of minimal representatives with mc = 1, that is Xc ⊆ {ajeβj | aj ∈ K×}
for some 1 6 j 6 N . It follows from Lemma 5.3(1) and [9, Lemma 7.2] that |Xc(q)| = v. The
number of such sets is N = |Φ+|.

Now we consider sets of minimal representatives with mc > 1. Since two distinct positive
roots are linearly independent, we can use again Lemma 5.2 (this time with k = 2) and argue
as in (1) that k(U(q))− |Φ+|v − 1 is divisible by v2/d for some d ∈ N.

(3) Consider a set Xc ⊆ {ajeβj + akeβk | aj , ak ∈ K×} of minimal representatives that has
two non-zero coefficients, with j < k. Lemma 5.3(2) implies that whether k is an inert point
of x ∈ Xc only depends on j (and not on aj). Thus we can consider x := eβj + eβk . The fact
that k is a ramification point of x is equivalent to there being no positive root α such that
[eβj , eα] = ceβk , with c 6= 0 (else dim cu(x + mk) = dim cu(x + mk−1) − 1). By Chevalley’s
commutator formula, α = βk − βj , that is βk − βj must not be a root.

It follows that there are as many sets Xc of minimal representatives with mc = 2 as there
are tuples (βj , βk) of positive roots with j < k and βk−βj /∈ Φ. Because of Lemma 5.3(1) and
[9, Lemma 7.2], it follows that |Xc(q)| = v2 for these Xc.

Now, let Xc be a set of minimal representatives with more than two non-zero coefficients,
and let the first three of them (with respect to our ordering) belong to eβj , eβk and eβl . We first
want to prove that βj , βk and βl must be linearly independent. We can use again Lemma 5.3(2)
and consider the sum eβj + eβk + eβl . From the fact that j, k and l are ramification points we
can deduce the following facts.
• βk − βj is not a root. This follows similarly as in (2), because k is a ramification point.
• Not both βl − βj and βl − βk are roots. Otherwise, if βl − βj =: βm and βl − βk =: βn,

then l being a ramification point implies that there is a dependence between the

https://doi.org/10.1112/S1461157013000284 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000284


calculating conjugacy classes in sylow p-subgroups 121

coefficients of eβm and eβn in cu(eβj + eβk + eβl). This dependence could have only
originated from an earlier inert point s, and so [eβm , eβk ] and [eβn , eβj ] must be non-
zero elements from the root space eβs . Using again Chevalley’s commutator formula, we
get that βm + βk = βj + βn. Together with βm + βj = βk + βn this leads to βj = βk, a
contradiction.

• If βl − βj =: βm is a root, then βk + βm is also a root. Since l is a ramification point in
spite of [eβj , eβm ] = ceβl for some c 6= 0, the centralizer cu(eβj + eβk + eβl) must consist
of elements with the coefficient of eβm being zero. This must originate from an earlier
inert point s < l, which means that [eβm , eβk ] = ceβs for some c 6= 0. The Chevalley
commutator formula yields that βm + βk = βs.

• If βl − βk is a root, then βj + βl − βk is also a root. This follows analogously to the
previous statement.

If our group G has rank one or rank two, the statement of the theorem follows from the
respective polynomials which are known. If the rank of G is bigger than two, then the linear
independence is a direct result of Lemma 5.1, using contraposition.

Now we can again use Lemma 5.2 (with k = 3) and argue as in (1) and (2) that

k(U(q))− |{(βj , βk) ∈ Φ+ × Φ+ | j < k, βk − βj /∈ Φ}|v2 − |Φ+|v − 1

is divisible by v3/d for some d ∈ N.

We summarize the idea behind the proof of the formulas in Theorem 5.4. Suppose that we
have a set J of k positive roots in a root system of rank r > k, where k 6 3. If there exists a
family Xc of minimal representatives such that the non-zero coefficients of the elements of Xc

correspond to the roots in J , then the roots in J must be linearly independent. This statement
is trivial for k = 1 and k = 2, but some work is required for k = 3.

Example 5.5. It is not possible to use a similar argument in order to determine a formula
for the coefficients of degrees three and higher: let Φ be of type C5 with basis {α1, . . . , α5},
where α5 is long, and consider J := {α2, α5, α3 + α4 + α5, 2α3 + 2α4 + α5}. Then the set

Xc := {x = a1eβ1 + . . .+ aneβn | ai 6= 0 ⇔ βi ∈ J}

is a family of minimal representatives that occurs for type C5, but the roots in J are not
linearly independent any more. So the aforementioned statement does not hold for k > 3.
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6. A. Evseev, ‘Reduction for characters of finite algebra groups’, J. Algebra 325 (2011) 321–351.
7. The GAP group, ‘GAP—groups, algorithms, and programming, version 4.3’, 2002,

http://www.gap-system.org.
8. S. M. Goodwin, ‘Relative Springer isomorphisms’, J. Algebra 290 (2005) 266–281.
9. S. M. Goodwin, ‘On the conjugacy classes in maximal unipotent subgroups of simple algebraic groups’,

Transform. Groups 11 (2006) 51–76.
10. S. M. Goodwin, ‘Counting conjugacy classes in Sylow p-subgroups of Chevalley groups’, J. Pure Appl.

Algebra 210 (2007) 201–218.
11. S. M. Goodwin and G. Röhrle, ‘Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley

groups’, J. Algebra 321 (2009) 3321–3334.
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