Matrix Differentiation of the Characteristic Function

By H. W. TURNBULL, St Andrews University.

(Received 12th January 1931. Read 16th January 1931.)

The following work is a sequel to three previous communications,¹ and more particularly to the first. The present object is to shew the effect of repeated operation with the matrix differential operator $\Omega \equiv \left[\frac{\partial}{\partial x_{ji}}\right]$, when it acts upon a scalar matrix formed from an *n* rowed determinant $|x_{ij}|$, or sums of principal minors, the n^2 elements x_{ij} being treated as independent variables. Thus when *z* is a scalar quantity Ωz means the matrix $[\partial z/\partial x_{ji}]$, whose ij^{th} element is the derivative $z/\partial x_{ji}$.

§1. Fundamental Formulae.

From the square matrix

$$\mathbf{X} = [x_{ij}] = \begin{bmatrix} x_{11} \dots x_{1n} \\ \dots \\ x_{n1} \dots x_{nn} \end{bmatrix}$$
(1)

there may be derived a determinant |X| and a characteristic function $\phi(\lambda)$, given by

$$\phi(\lambda) \equiv |\lambda I - X| \equiv \begin{vmatrix} \lambda - x_{11} & \dots & -x_{1n} \\ \dots & \dots & \dots \\ - x_{n1} & \dots & \lambda - x_{nn} \end{vmatrix}$$
(2)

$$= p_0 \lambda^n + p_1 \lambda^{n-1} + \ldots + p_{n-1} \lambda + p_n.$$
(3)

Clearly p_n is equal to $(-)^n |X|$, while $p_0 = 1$. The reciprocal of this polynomial $\phi(\lambda)$ can be expanded in the form

$$\psi(\lambda) = \frac{1}{\phi(\lambda)} = \frac{h_0}{\lambda^n} + \frac{h_1}{\lambda^{n+1}} + \frac{h_2}{\lambda^{n+2}} + \dots$$
(4)

- ¹ I. H. W. Turnbull, On differentiating a matrix, Proc. Edinburgh Math. Soc. (2), 1 (1927), 111-128.
- II. A matrix form of Taylor's Theorem (2), 2 (1929), 33-54.
- III. The invariant theory of bilinear forms, Proc. London Math. Soc. (1931).

for suitably large values of the modulus of λ , where the coefficients h_r are homogeneous products of the *n* latent roots λ_i of *X*, defined by $\phi(\lambda_i) = 0$. The coefficients *p* and *h* satisfy the well known Wronskian relations

$$h_r p_0 + h_{r-1} p_1 + h_{r-2} p_2 + \ldots + h_1 p_{r-1} + h_0 p_r = 0, \qquad (5)$$

where $r = 1, 2, \ldots$ The unit matrix is denoted by $I = [\delta_{ij}]$ in terms of the Kronecker delta; and an arbitrary constant matrix by $A = [a_{ij}]$. Both λ and the a_{ij} are independent of the x_{ij} , whereas the h_r and p_r are clearly functions of the x_{ij} . As usual s_r denotes the sum of the r^{th} powers of the *n* latent roots λ_i .

By $\Omega \theta$ is meant the matrix $[\partial \theta / \partial x_{ji}]$ whose ij^{th} element is $\partial \theta / \partial x_{ji}$, θ being a scalar quantity. Taking θ to be s, p and h in turn, the fundamental formulae of Ω differentiation (Cf. I, p. 119) are

$$\Omega s_r = r X^{r-1},\tag{6}$$

$$P_r = X^r + p_1 X^{r-1} + \ldots + p_{r-1} X + p_r I = -\Omega p_{r+1},$$
(7)

$$H_r = X^r + h_1 X^{r-1} + \ldots + h_{r-1} X + h_r I = \Omega h_{r+1}.$$
 (8)

It is useful to have a special notation P and H for these polynomial scalar functions of the matrix X, whose order is shewn by the suffix. Initially r is taken to be zero or a positive integer, so that $P_0 = H_0 = I$; when $r \ge n$, the right member of (7) disappears, p_r being zero, and the Cayley Hamilton equation

$$P_n \equiv \phi(X) \equiv X^n + p_1 X^{n-1} + \ldots + P_{n-1} X + P_n I = 0 \qquad (9)$$

is put in evidence.

The reciprocal properties (7) and (8) are brought out very clearly by the following new proof, which is based on the inverse of the λ -matrix $\lambda I - X$.

Letting X_{ij} denote the cofactor of x_{ij} in the determinant |X|, we may write the reciprocal of the non-singular matrix X in the form

$$X^{-1} = [X_{ji}]/|X|.$$

But we have

$$X_{ji} = \frac{\partial}{\partial x_{ji}} |X|;$$

hence

$$[X_{ji}] = \Omega |X|, \quad X^{-1} = \Omega |X| / |X|.$$
(12)

Let each x_{ij} be replaced by $x_{ij} - \lambda a_{ij}$, where λ and a_{ij} are constants. This leaves $\partial/\partial x_{ji}$, and therefore Ω unaltered, but replaces the matrix X by $X - \lambda A$. Accordingly we have the relation

$$\frac{1}{X - \lambda A} = \frac{\Omega |X - \lambda A|}{|X - \lambda A|},$$
(13)

identically for all values of λ and a, a result which can also be exhibited as

$$\frac{1}{X - \lambda A} = \Omega \log |X - \lambda A|.$$
 (14)

In particular let A be replaced by the unit matrix I. Then

$$\begin{aligned} -\log |X - \lambda I| &= -\log \left(\lambda_1 - \lambda\right) \left(\lambda_2 - \lambda\right) \dots \left(\lambda_n - \lambda\right) \\ &= -\log \left(-\lambda\right)^n + \frac{s_1}{\lambda} + \frac{s_2}{2\lambda^2} + \frac{s_3}{3\lambda^3} + \dots \end{aligned}$$

for large enough values of the modulus of λ , while

$$(X - \lambda I)^{-1} = \frac{I}{\lambda} + \frac{X}{\lambda^2} + \frac{X}{\lambda^3} + \dots$$

Result (6) follows at once by substituting these values in (14) and comparing coefficients of corresponding negative powers of λ . More generally, if $A^{-1} = C$, the same procedure leads to the relation

$$\Omega_s (CX)^r = r (CX)^{r-1} C \tag{15}$$

in the notation of II, p. 37.

To obtain the relation (7), let (13) be written in the form

$$\frac{|\lambda A - X|}{\lambda A - X} = -\Omega |\lambda A - X|.$$
(16)

Treating numerator and denominator of the left member as a polynomial and a linear function of λ , we may perform ordinary long division in every case when A commutes with X. This is so when A = I, making the left member $\phi(\lambda) \div (I\lambda - X)$. The polynomial $\phi(\lambda)$ is given by (3); on carrying out the long division the result is

$$\frac{\phi(\lambda)}{I\lambda - X} = I\lambda^{n-1} + (X + p_1I)\lambda^{n-2} + \dots + (X^{n-1} + \dots + p_{n-1}I) + \frac{\phi(X)}{I\lambda - X}$$
$$= P_0\lambda^{n-1} + P_1\lambda^{n-2} + \dots + P_{n-1} + \frac{P_n}{I\lambda - X}.$$
(17)

Again from the right member of (16), with A = I, we obtain

$$-(\lambda^{n-1}\Omega p_1+\lambda^{n-2}\Omega p_2+\ldots+\Omega p_n),$$

since $\Omega \lambda^n = 0$. On multiplying throughout, here and in (17), by $I\lambda - X$, expanding, and equating coefficients of powers of λ , we obtain the relations (7), and also the Cayley Hamilton theorem implied by $\phi(X) = 0$.

Reciprocally, since $\phi(\lambda) \psi(\lambda) = 1$, it follows that

$$\{\Omega \phi(\lambda)\} \psi(\lambda) + \phi(\lambda) \Omega \psi(\lambda) = 0;$$

but, since

$$\phi(\lambda) = |\lambda I - X|,$$

we have

$$\frac{\Omega \phi(\lambda)}{\phi(\lambda)} = \frac{1}{X - \lambda I} = -\frac{\Omega \psi(\lambda)}{\psi(\lambda)}.$$
(18)

Again by ordinary long division of the series (4) by $I - X\lambda^{-1}$, arranged in descending powers (all negative) of λ , we have

$$\frac{\psi(\lambda)}{I - X\lambda^{-1}} = \lambda^{-n} + (X + h_1 I) \lambda^{-n-1} + (X^2 + h_1 X + h_2 I) \lambda^{-n-2} + \dots$$

= $H_0 \lambda^{-n} + H_1 \lambda^{-n-1} + H_2 \lambda^{-n-2} + \dots$

Also

 $\Omega \psi (\lambda) = h_1 \Omega \lambda^{-n-1} + h_2 \Omega \lambda^{-n-2} + \dots$

On substituting in (18), clearing of fractions, and comparing coefficients as before, the relations (8) follow. Incidentally we have the result¹

$$\frac{1}{I\lambda - X} = \frac{P_0 \lambda^{n-1} + P_1 \lambda^{n-2} + \ldots + P_{n-2} \lambda + P_{n-1}}{(\lambda - \lambda_1) (\lambda - \lambda_2) \ldots (\lambda - \lambda_n)}$$
(19)
= $(H_0 + H_1 \lambda^{-1} + H_2 \lambda^{-2} + \ldots) (\lambda - \lambda_1) \ldots (\lambda - \lambda_n) \lambda^{-n-1}.$

These coefficients P and H are matrices which commute with X and with each other, since they are polynomials in X. From this relation each P_r can be deduced as a linear function of the H_s with $s \leq r$, the coefficients being polynomial expressions in the p's. Correlatively for H in terms of P. Also if the rth Wronskian relation (5) is written $w_r(h, p) = 0$, it follows that

$$w_r(H, p) = w_r(h, P).$$
 (20)

For example $H_2 p_0 + H_1 p_1 + H_0 p_2 = h_2 P_0 + h_1 P_1 + h_0 P_2$.

¹ Cf. L. E. Dickson, Modern Algebraic Theories (Chicago, 1926), 48, after replacing P_r by C_{n-1-r} .

H. W. TURNBULL

§2. The Converse Problem.

By solving the recurrence relations (7) and (8) for successive powers of X we obtain the following equations, in which an accent denotes the effect of the Ω operation:

$$\begin{array}{l} -p_1{'}=I = h_1{'},\\ -h_1 p_1{'}-p_2{'}=X = h_2{'}+h_1{'} p_1,\\ -h_2 p_1{'}-h_1 p_2{'}-p_3{'}=X^2 = h_3{'}+h_2{'} p_1+h_1{'} p_2, \end{array}$$

and in general (since $p_0' = h_0' = 0$),

$$-w_r(h, p') = X^{r-1} = w_r(h', p).$$
(21)

These follow at once from (18), on multiplying throughout by $\phi(\lambda) \psi(\lambda)$ (which is unity), then expanding each of the three expressions in descending powers of λ , and again equating coefficients. These alternative expressions for a power of X lead to the theorem:

The $(r-1)^{\text{th}}$ power of a matrix X is obtained by Ω differentiation from the rth Wronksian relation, either by treating the p's as constants, or else by treating the h's as constants and affixing a negative sign to the result.

§ 3. Successive Ω differentiation.

THEOREM I. Any two consecutive coefficients p_r , p_{r+1} of the characteristic function $\phi(\lambda)$ satisfy the matrix differential equation

$$\Omega^2 p_{r+1} = (n-r) \Omega p_r. \tag{22}$$

Proof. The left member of this equation denotes the effect of Ω operating upon Ωp_{r+1} , and is therefore equal to

$$-\Omega (X^{r} + p_{1} X^{r-1} + \ldots + p_{r-1} X + p_{r} I).$$

Now, by I, p. 117 (2),

$$\Omega X^{\nu} = s_0 X^{\nu-1} + s_1 X^{\nu-2} + \ldots + s_{\nu-1} I, \qquad (23)$$

where $s_0 = n$. Also $\Omega p_{r_{-\nu}} X^{\nu} = p_{r_{-\nu}} \Omega X^{\nu} + (\Omega p_{r_{-\nu}}) X^{\nu}$. Let this last be simplified, by use of (7) and (23), and arranged in descending powers of X. On summing the results for $\nu = 0, 1, 2, \ldots, r$ we have

$$\Omega^2 p_{r+1} = q_0 X^{r-1} + q_1 X^{r-2} + \ldots + q_{r-2} X + q_{r-1} I,$$

where

$$q_m = -(s_m + p_1 s_{m-1} + \ldots + p_m s_0) + (r - m) p_m$$

After using the Newtonian relation

 $s_m + p_1 s_{m-1} + \ldots + p_{m-1} s_1 + m p_m = 0$

 q_m becomes $(r - n) p_m$. Hence

$$\Omega^{2} p_{r+1} = -(n-r) \left(X^{r-1} + p_{1} X^{r-2} + \ldots + p_{r-1} I \right) = (n-r) \Omega p_{r},$$

which proves the theorem.

THEOREM II. Correlatively, consecutive coefficients h_{r+1} , h_r satisfy the equation

$$\Omega^2 h_{r+1} = (n+r) \Omega h_r. \tag{24}$$

Proof. The proof is analogous to that of Theorem I, but utilizes the relation

$$s_m + h_1 s_{m-1} + \ldots + h_{m-1} s_1 = m h_m$$

As a consequence of these two theorems we may express each matrix P_{ν} and H_{ν} as a matrix derivative of p_{μ} and h_{μ} , respectively, provided that the suffix μ exceeds ν . For example,

$$\Omega^{3} p_{r+1} = (n-r) \Omega^{2} p_{r} = (n-r) (n-r-1) \Omega p_{r-1}.$$

This leads straightforwardly to the relations

$$\Omega^{n-r} p_n = \Omega^{n-r-1} p_{n-1} = 2! \ \Omega^{n-r-2} p_{n-2} = \dots$$

= $(n-r-1)! \ \Omega p_{r+} = -(n-r-1)! \ P_r,$ (25)

where r = 0, 1, ..., n - 1. In particul. r, when r = 0, the result may be written

$$\Omega^m p_m = -(n-1)! / (n-m)!, \quad 0 < m \leq n,$$
(26)

so that the effect of m operations with Ω upon the coefficient p_m in the characteristic function, yields a negative integer.

Similarly from Theorem II,

$$H_r = \Omega h_{r+1} = \frac{(n+r)!}{(n+r+1)!} \Omega^2 h_{r+2} = \frac{(n+r)!}{(n+r+2)!} \Omega^3 h_{r+3} = \dots$$
(27)

THEOREM III. Any power series

$$f(X) = a_0 I + a_1 X + a_2 X^2 + \dots$$
 (28)

with scalar coefficients a_i can be derived from the scalar matrix |X|I by means of a matrix operator $g(\Omega)$ which is a scalar polynomial, of order n, or less, in Ω .

H. W. TURNBULL

Proof. On substituting for powers of X from (21) we have

$$f(X) = \beta_0 p_1' + \beta_1 p_2' + \ldots + \beta_{n-1} p_n',$$

where

 $\beta_m = -a_m - a_{m+1}h_1 - a_{m+2}h_2 - \dots, \quad (m = 0, 1, 2, \dots).$ Also by (25),

$$p_1' = \Omega p_1 = rac{1}{(n-1)} \ \Omega^2 p_2 = \ldots = rac{1}{(n-1)!} \ \Omega^n p_n,$$

 $p_2' = \Omega p_2 = rac{1}{(n-2)!} \ \Omega^{n-1} p_n;$

and so on. Hence we have

$$f(X) = \left(\frac{\beta_0 \Omega^n}{(n-1)!} + \frac{\beta_1 \Omega^{n-1}}{(n-2)!} + \dots + \frac{\beta_{n-2} \Omega^2}{1!} + \beta_{n-1} \Omega\right) p_n.$$

= $(-)^n g(\Omega) p_n$, say.

The theorem follows since $p_n = (-)^n |X|$.

COROLLARY. Any polynomial f(X) of order r less than n can be derived from an earlier coefficient p_m by an analogous operator $g_m(\Omega)$, whenever m > r.

A similar theorem holds for the derivation of a polynomial f(X)from a coefficient h_m of higher order. For example

$$egin{aligned} X^2 &= - igg(\, 1 + rac{h_1}{n-2} \, \Omega + rac{h_2}{(n-1) \, (n-2)} \, \Omega^2 igg) \, \Omega \, p_3 \ &= & \left(1 + rac{p_1}{n+2} \, \Omega + \, rac{p_2}{(n+1) \, (n+2)} \, \Omega^2 igg) \, \Omega \, h_3. \end{aligned}$$

THEOREM IV. The operator $\Omega e^{\lambda \Omega}$ has the same effect upon $p_n = \phi(0)$, that Ω has upon the characteristic function $\phi(\lambda)$.

Proof. We have
$$\Omega e^{\lambda \Omega} p_n = \left(\Omega + \lambda \Omega^2 + \frac{\lambda^2 \Omega^3}{3!} + \dots\right) p_n$$

= $\Omega (\lambda^n + p_1 \lambda^{n-1} + \dots + p_n)$, by (25),
= $\Omega \phi (\lambda)$,

which proves the theorem.

We are not however entitled to deduce the equality of $e^{\lambda\Omega}p_n$ and $\phi(\lambda)$, by operating with Ω^{-1} , since it by no means follows that when $\Omega Y = 0$, Y itself is zero.

https://doi.org/10.1017/S0013091500007811 Published online by Cambridge University Press

 $\mathbf{262}$

§4. Connection with invariant theory.

As has been pointed out in III (see Introduction), the Ω process is equivalent to polarization by use of a sum of symbolic operators

$$\left(u\left|\frac{\partial}{\partial a}\right)\left(x\left|\frac{\partial}{\partial a}\right\right)\equiv\left(\sum_{i=1}^{n}u_{i}\ \frac{\partial}{\partial a_{i}}\right)\left(\sum_{i=1}^{n}x_{j}\ \frac{\partial}{\partial a_{j}}\right),$$

where the matrix $[x_{ij}]$ is expressed in symbolic notation by various equivalents

$$[x_{ij}] = [a_i a_j] = [\beta_i b_j] = [\gamma_i c_j] = \text{etc.}$$
(29)

In fact Ω is given by

$$u \ \Omega \ \xi = \Sigma \left(u \left| \frac{\partial}{\partial a} \right) \left(\xi \left| \frac{\partial}{\partial a} \right) \right, \tag{30}$$

where the summation runs through the equivalent symbols, one term for each pair a, a. The ij^{th} element of Ω is given by the coefficient of $u_i \xi_j$ in this expression (30); and $u \Omega x$ denotes the bilinear differential form $\sum u_i \frac{\partial}{\partial x_{ji}} \xi_j$ in the usual matrix product notation. The quantities p_r are now invariants of the bilinear form $\sum u_i x_{ij} \xi_j$; namely

$$p_1 = -(a \mid a), \quad p_2 = \frac{1}{2!} (ab \mid a\beta), \quad p_3 = -\frac{1}{3!} (abc \mid a\beta\gamma), \quad \dots \quad (31)$$

Since the effect of the right hand operation in (30) is to replace each pair a, a in the operand by u, x, formulae (7) are now almost intuitive. For example

$$u \,\Omega \,\xi \,p_2 = \frac{1}{2!} \left(\left(ub \,|\, \xi\beta \right) + \left(au \,|\, a\xi \right) \right) = a_a \,u_\xi - a_\xi \,u_a,$$

since the symbols a, a are equivalent to b, β .

Translated back into the original notation this becomes

 $u\left(\Omega p_{2}\right)\xi=-u\left(X+p_{1}I\right)\xi$

identically for all u and ξ . Whence

$$X + p_1 I + \Omega p_2 = 0$$

and similarly for all relations (7).

H. W. TURNBULL

Repeated Ω operation now appears as repeated polarization. For example

$$u \Omega^2 \xi = \Sigma \left(u \left| \frac{\partial}{\partial a} \right) \left(\frac{\partial}{\partial a} \left| \frac{\partial}{\partial b} \right) \left(\frac{\partial}{\partial \beta} \right| \xi \right),$$

summed for all pairs of distinct equivalent symbols a, a and b, β . When this acts, for example, upon p_3 it strikes out two symbols a, band two symbols a, β in every possible way, replacing them by the single u and ξ . This leads to the result

 $\Omega^2 p_3 = (n-2) \Omega p_2 = -(n-2) (X + p_1 I),$

and similarly for other cases.

 $\mathbf{264}$