Matrix Differentiation of the Characteristic Function

By H. W. Turnbull, St Andrews University.

(Received 12th January 1931. Read 16th January 1931.)
The following work is a sequel to three previous communications, ${ }^{1}$ and more particularly to the first. The present object is to shew the effect of repeated operation with the matrix differential operator $S 2 \equiv\left[\frac{\partial}{\partial x_{j i}}\right]$, when it acts upon as scalar matrix formed from an n rowed determinant $\left|x_{i j}\right|$, or sums of principal minors, the n^{2} elements $x_{i j}$ being treated as independent variables. Thus when z is a scalar quantity Ωz means the matrix $\left[\partial z / \partial x_{j i}\right]$, whose $i j^{\text {th }}$ element is the derivative $z / \partial x_{j i}$.
§ 1. Fundamental Formulae.
From the square matrix

$$
\mathrm{X}=\left[x_{i j}\right]=\left[\begin{array}{c}
x_{11} \ldots \ldots \tag{1}\\
\ldots \ldots \\
\ldots \\
x_{n 1} \ldots .
\end{array} x_{n n} .\right]
$$

there may be derived a determinant $|X|$ and a characteristic function $\phi(\lambda)$, given by

$$
\begin{align*}
\phi(\lambda) & \equiv|\lambda I-X| \equiv\left|\begin{array}{c}
\lambda-x_{11} \ldots \ldots \cdots x_{1 n} \\
\cdots \cdots \cdots \cdots \cdots \\
-x_{n 1} \ldots \lambda-x_{n n}
\end{array}\right| \tag{2}\\
& =p_{0} \lambda^{n}+p_{1} \lambda^{n-1}+\ldots \ldots+p_{n-1} \lambda+p_{n} . \tag{3}
\end{align*}
$$

Clearly p_{n} is equal to $(-)^{n}|X|$, while $p_{0}=1$. The reciprocal of this polynomial $\phi(\lambda)$ can be expanded in the form

$$
\begin{equation*}
\psi(\lambda)=\frac{1}{\phi(\lambda)}=\frac{h_{0}}{\lambda^{n}}+\frac{h_{1}}{\lambda^{n+1}}+\frac{h_{2}}{\lambda^{n+2}}+\ldots . \tag{4}
\end{equation*}
$$

${ }^{1}$ I. H. W. Turnbull, On differentiating a matrix, Proc. Edinburgh Math. Soc. (2), 1 (1927), 111-128.
II. A matrix form of Taylor's Theorem (2), 2 (1929), 33-54.
III. The invariant theory of bilinear forms, Proc. London Math. Soc. (1931).
for suitably large values of the modulus of λ, where the coefficients h_{r} are homogeneous products of the n latent roots λ_{i} of X, defined by $\phi\left(\lambda_{i}\right)=0$. The coefficients p and h satisfy the well known Wronskian relations

$$
\begin{equation*}
h_{r} p_{0}+h_{r-1} p_{1}+h_{r-2} p_{2}+\ldots+h_{1} p_{r-1}+h_{0} p_{r}=0 \tag{5}
\end{equation*}
$$

where $r=1,2, \ldots$ The unit matrix is denoted by $I=\left[\delta_{i j}\right]$ in terms of the Kronecker delta; and an arbitrary constant matrix by $A=\left[a_{i j}\right]$. Both λ and the $a_{i j}$ are independent of the $x_{i j}$, whereas the h_{r} and p_{r} are clearly functions of the $x_{i j}$. As usual s_{r} denotes the sum of the $r^{\text {th }}$ powers of the n latent roots λ_{i}.

By $\Omega \theta$ is meant the matrix [$\partial \theta / \partial x_{j i}$] whose $i j^{\text {th }}$ element is $\partial \theta / \partial x_{j i}$, θ being a scalar quantity. Taking θ to be s, p and h in turn, the fundamental formulae of Ω differentiation ($C f . \mathrm{I}, \mathrm{p} .119$) are

$$
\begin{gather*}
\Omega s_{r}=r X^{r-1} \tag{6}\\
P_{r}=X^{r}+p_{1} X^{r-1}+\ldots+p_{r-1} X+p_{r} I=-\Omega p_{r+1} \tag{7}\\
H_{r}=X^{r}+h_{1} X^{r-1}+\ldots+h_{r-1} X+h_{r} I=\Omega h_{r+1} \tag{8}
\end{gather*}
$$

It is useful to have a special notation P and H for these polynomial scalar functions of the matrix X, whose order is shewn by the suffix. Initially r is taken to be zero or a positive integer, so that $P_{0}=H_{0}=I$; when $r \geqslant n$, the right member of (7) disappears, p_{r} being zero, and the Cayley Hamilton equation

$$
\begin{equation*}
P_{n} \equiv \phi(X) \equiv X^{n}+p_{1} X^{n-1}+\ldots+P_{n-1} X+P_{n} I=0 \tag{9}
\end{equation*}
$$

is put in evidence.
The reciprocal properties (7) and (8) are brought out very clearly by the following new proof, which is based on the inverse of the λ-matrix $\lambda I-X$.

Letting $X_{i j}$ denote the cofactor of $x_{i j}$ in the determinant $|X|$, we may write the reciprocal of the non-singular matrix X in the form

$$
X^{-1}=\left[X_{j i} \bar{J} /|X|\right.
$$

But we have

$$
X_{j i}=\frac{\partial}{\partial x_{j i}}|X|
$$

hence

$$
\begin{equation*}
\left[X_{j i}\right]=\Omega|X|, \quad X^{-1}=\Omega|X| /|X| . \tag{12}
\end{equation*}
$$

Let each $x_{i j}$ be replaced by $x_{i j}-\lambda a_{i j}$, where λ and $a_{i j}$ are constants. This leaves $\partial / \partial x_{j i}$, and therefore Ω unaltered, but replaces the matrix X by $X-\lambda A$. Accordingly we have the relation

$$
\begin{equation*}
\frac{1}{\bar{X}-\lambda A}=\frac{\Omega|X-\lambda A|}{|\bar{X}-\lambda A|} \tag{13}
\end{equation*}
$$

identically for all values of λ and a, a result which can also be exhibited as

$$
\begin{equation*}
\frac{1}{X-\lambda A}=\Omega \log |X-\lambda A| \tag{14}
\end{equation*}
$$

In particular let \boldsymbol{A} be replaced by the unit matrix I. Then

$$
\begin{aligned}
-\log |X-\lambda I| & =-\log \left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right) \\
& =-\log (-\lambda)^{n}+\frac{s_{1}}{\lambda}+\frac{s_{2}}{2 \lambda^{2}}+\frac{s_{3}}{3 \lambda^{3}}+\ldots
\end{aligned}
$$

for large enough values of the modulus of λ, while

$$
-(X-\lambda I)^{-1}=\frac{I}{\lambda}+\frac{X}{\lambda^{2}}+\frac{X}{\lambda^{3}}+\ldots
$$

Result (6) follows at once by substituting these values in (14) and comparing coefficients of corresponding negative powers of λ. More generally, if $A^{-1}=C$, the same procedure leads to the relation

$$
\begin{equation*}
\Omega_{s}(C X)^{r}=r(C X)^{r-1} C \tag{15}
\end{equation*}
$$

in the notation of II, p. 37 .
To obtain the relation (7), let (13) be written in the form

$$
\begin{equation*}
\frac{|\lambda A-X|}{\lambda A-\bar{X}}=-\Omega|\lambda A-X| \tag{16}
\end{equation*}
$$

Treating numerator and denominator of the left member as a polynomial and a linear function of λ, we may perform ordinary long division in every case when A commutes with X. This is so when $A=I$, making the left member $\phi(\lambda) \div(I \lambda-X)$. The polynomial $\phi(\lambda)$ is given by (3); on carrying out the long division the result is

$$
\begin{align*}
\frac{\phi(\lambda)}{I \lambda-X}= & I \lambda^{n-1}+\left(X+p_{1} I\right) \lambda^{n-2}+\ldots+\left(X^{n-1}+\ldots+p_{n-1} I\right) \\
& +\frac{\phi(X)}{I \lambda-\bar{X}} \\
= & P_{0} \lambda^{n-1}+P_{1} \lambda^{n-2}+\ldots+P_{n-1}+\frac{P_{n}}{I \lambda-X} \tag{17}
\end{align*}
$$

Again from the right member of (16), with $A=I$, we obtain

$$
-\left(\lambda^{n-1} \Omega p_{1}+\lambda^{n-2} \Omega p_{2}+\ldots+\Omega p_{n}\right)
$$

since $\Omega \lambda^{n}=0$. On multiplying throughout, here and in (17), by $I \lambda-X$, expanding, and equating coefficients of powers of λ, we obtain the relations (7), and also the Cayley Hamilton theorem implied by $\phi(X)=0$.

Reciprocally, since $\phi(\lambda) \psi(\lambda)=1$, it follows that

$$
\{\Omega \phi(\lambda)\} \psi(\lambda)+\phi(\lambda) \Omega \psi(\lambda)=0 ;
$$

but, since

$$
\phi(\lambda)=|\lambda I-X|
$$

we have

$$
\begin{equation*}
\frac{\Omega \phi(\lambda)}{\phi(\lambda)}=\frac{1}{X-\lambda I}=-\frac{\Omega \psi(\lambda)}{\psi(\lambda)} . \tag{18}
\end{equation*}
$$

Again by ordinary long division of the series (4) by $I-X \lambda^{-1}$, arranged in descending powers (all negative) of λ, we have

$$
\begin{aligned}
\frac{\psi(\lambda)}{I-X^{-1}} & =\lambda^{-n}+\left(X+h_{1} I\right) \lambda^{-n-1}+\left(X^{2}+h_{1} X+h_{2} I\right) \lambda^{-n-2}+\ldots \\
& =H_{0} \lambda^{-n}+H_{1} \lambda^{-n-1}+H_{2} \lambda^{-n-2}+\ldots
\end{aligned}
$$

Also

$$
\Omega \psi(\lambda)=h_{1} \Omega \lambda^{-n-1}+h_{2} \Omega \lambda^{-n-2}+\ldots
$$

On substituting in (18), clearing of fractions, and comparing coefficients as before, the relations (8) follow. Incidentally we have the result ${ }^{1}$

$$
\begin{align*}
\frac{1}{I \lambda-X} & =\frac{P_{0} \lambda^{n-1}+P_{1} \lambda^{n-2}+\ldots+P_{n-2} \lambda+P_{n-1}}{\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)} \tag{19}\\
& =\left(H_{0}+H_{1} \lambda^{-1}+H_{2} \lambda^{-2}+\ldots\right)\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{n}\right) \lambda^{-n-1}
\end{align*}
$$

These coefficients P and H are matrices which commute with X and with each other, since they are polynomials in X. From this relation each P_{r} can be deduced as a linear function of the H_{s} with $s \leqslant r$, the coefficients being polynomial expressions in the p 's. Correlatively for H in terms of P. Also if the $r^{\text {th }}$ Wronskian relation (5) is written $w_{r}(h, p)=0$, it follows that

$$
\begin{equation*}
w_{r}(H, p)=w_{r}(h, P) \tag{20}
\end{equation*}
$$

For example $H_{2} p_{0}+H_{1} p_{1}+H_{0} p_{2}=h_{2} P_{0}+h_{1} P_{\mathrm{t}}+h_{0} P_{2}$.

[^0]
§ 2. The Converse Problem.

By solving the recurrence relations (7) and (8) for successive powers of X we obtain the following equations, in which an accent denotes the effect of the Ω operation:

$$
\begin{aligned}
-p_{1}^{\prime} & =I=h_{1}^{\prime} \\
-h_{1} p_{1}^{\prime}-p_{2}^{\prime} & =X=h_{2}^{\prime}+h_{1}^{\prime} p_{1} \\
-h_{2} p_{1}^{\prime}-h_{1} p_{2}^{\prime}-p_{3}^{\prime} & =X^{2}=h_{3}^{\prime}+h_{2}^{\prime} p_{1}+h_{1}^{\prime} p_{2}
\end{aligned}
$$

and in general (since $p_{0}{ }^{\prime}=h_{0}{ }^{\prime}=0$),

$$
\begin{equation*}
-w_{r}\left(h, p^{\prime}\right)=X^{r-1}=w_{r}\left(h^{\prime}, p\right) \tag{21}
\end{equation*}
$$

These follow at once from (18), on multiplying throughout by $\phi(\lambda) \psi(\lambda)$ (which is unity), then expanding each of the three expressions in descending powers of λ, and again equating coefficients. These alternative expressions for a power of X lead to the theorem:

The $(r-1)^{\text {th }}$ power of a matrix X is obtained by Ω differentiation from the $r^{\text {h }}$ Wronksian relation, either by treating the p 's as constants, or else by treating the h 's as constants and affixing a negatice sign to the result.

§3. Successive Ω differentiation.

Theorem I. Any two consecutive coefficients p_{r}, p_{r+1} of the characteristic function $\phi(\lambda)$ satisfy the matrix differential equation

$$
\begin{equation*}
\Omega^{2} p_{r+1}=(n-r) \Omega p_{r} \tag{22}
\end{equation*}
$$

Proof. The left member of this equation denotes the effect of Ω operating upon Ωp_{r+1}, and is therefore equal to

$$
-\Omega\left(X^{r}+p_{1} X^{r-1}+\ldots+p_{r-1} X+p_{r} I\right)
$$

Now, by I, p. 117 (2),

$$
\begin{equation*}
\Omega X^{\nu}=s_{0} X^{\nu-1}+s_{1} X^{\nu-2}+\ldots+s_{\nu-1} I \tag{23}
\end{equation*}
$$

where $s_{0}=n$. Also $\Omega p_{r_{-\nu}} X^{\nu}=p_{r-\nu} \Omega X^{\nu}+\left(\Omega p_{r_{-\nu}}\right) X^{\nu}$. Let this last be simplified, by use of (7) and (23), and arranged in descending powers of X. On summing the results for $\nu=0,1,2, \ldots, r$ we have

$$
\Omega^{2} p_{r+1}=q_{0} X^{r-1}+q_{1} X^{r-2}+\ldots+q_{r-2} X+q_{r-1} I
$$

where

$$
q_{m}=-\left(s_{m}+p_{1} s_{m-1}+\ldots+p_{m} s_{0}\right)+(r-m) p_{m}
$$

After using the Newtonian relation

$$
s_{m}+p_{1} s_{m-1}+\ldots+p_{m-1} s_{1}+m p_{m}=0
$$

q_{m} becomes $(r-n) p_{m}$. Hence

$$
\Omega^{2} p_{r+1}=-(n-r)\left(X^{r-1}+p_{1} X^{r-2}+\ldots+p_{r-1} I\right)=(n-r) \Omega p_{r}
$$

which proves the theorem.
Theorem II. Correlatively, consecutive coefficients $h_{r_{+1}}, h_{r}$ satisfy the equation

$$
\begin{equation*}
\Omega^{2} h_{r+1}=(n+r) \Omega h_{r} \tag{24}
\end{equation*}
$$

Proof. The proof is analogous to that of Theorem I, but utilizes the relation

$$
s_{m}+h_{1} s_{m-1}+\ldots+h_{m-1} s_{1}=m h_{m}
$$

As a consequence of these two theorems we may express each matrix P_{ν} and H_{ν} as a matrix derivative of p_{μ} and h_{μ}, respectively, provided that the suffix μ exceeds ν. For example,

$$
\Omega^{3} p_{r+1}=(n-r) \Omega^{2} p_{r}=(n-r)(n-r-1) \Omega p_{r-1}
$$

This leads straightforwardly to the relations

$$
\begin{align*}
\Omega^{n-r} p_{n} & =\Omega^{n-r-1} p_{n-1}=2!\Omega^{n-r-2} p_{n-2}=\ldots \\
& =(n-r-1)!\Omega p_{+}=-(n-r-1)!P_{r} \tag{25}
\end{align*}
$$

where $r=0,1, \ldots, n-1$. In particul. r , when $r=0$, the result may be written

$$
\begin{equation*}
\Omega^{m} p_{m}=-(n-1)!/(n-m)!, \quad 0<m \leqslant n \tag{26}
\end{equation*}
$$

so that the effect of m operations with Ω upon the coefficient p_{m} in the characteristic function, yields a negative integer.

Similarly from Theorem II,

$$
\begin{equation*}
H_{r}=\Omega h_{r+1}=\frac{(n+r)!}{(n+r+1)!} \Omega^{2} h_{r+2}=\frac{(n+r)!}{(n+r+2)!} \Omega^{3} h_{r+3}=\ldots \tag{27}
\end{equation*}
$$

Theorem III. Any power series

$$
\begin{equation*}
f(X)=\alpha_{0} I+a_{1} X+a_{2} X^{2}+\ldots \tag{28}
\end{equation*}
$$

with scalar coefficients a_{i} can be derived from the scalar matrix $|X| I$ by means of a matrix operator $g(\Omega)$ which is a scalar polynomial, of order n, or less, in Ω.

Proof. On substituting for powers of X from (21) we have

$$
f(X)=\beta_{0} p_{1}^{\prime}+\beta_{1} p_{2}^{\prime}+\ldots+\beta_{n-1} p_{n}^{\prime}
$$

where

$$
\beta_{m}=-a_{m}-a_{m+1} h_{1}-a_{m+2} h_{2}-\ldots, \quad(m=0,1,2, \ldots)
$$

Also by (25),

$$
\begin{aligned}
& p_{1}^{\prime}=\Omega p_{1}=\frac{1}{(n-1)} \Omega^{2} p_{2}=\ldots=\frac{1}{(n-1)!} \Omega^{n} p_{n} \\
& p_{2}^{\prime}=\Omega p_{2}=\frac{1}{(n-2)!} \Omega^{n-1} p_{n}
\end{aligned}
$$

and so on. Hence we have

$$
\begin{aligned}
f(X) & =\left(\frac{\beta_{0} \Omega^{n}}{(n-1)!}+\frac{\beta_{1} \Omega^{n-1}}{(n-2)!}+\ldots+\frac{\beta_{n-2} \Omega^{2}}{1!}+\beta_{n-1} \Omega\right) p_{n} \\
& =(-)^{n} g(\Omega) p_{n}, \text { say. }
\end{aligned}
$$

The theorem follows since $p_{n}=(-)^{n}|X|$.
Corollary. Any polynomial $f(X)$ of order r less than n can be derived from an earlier coefficient p_{m} by an analogous operator $g_{m}(\Omega)$, whenever $m>r$.

A similar theorem holds for the derivation of a polynomial $f(X)$ from a coefficient h_{m} of higher order. For example

$$
\begin{aligned}
X^{2} & =-\left(1+\frac{h_{1}}{n-2} \Omega+\frac{h_{2}}{(n-1)(n-2)} \Omega^{2}\right) \Omega p_{3} \\
& =\left(1+\frac{p_{1}}{n+2} \Omega+\frac{p_{2}}{(n+1)(n+2)} \Omega^{2}\right) \Omega h_{3}
\end{aligned}
$$

'Theorem IV. The operator $\Omega e^{\lambda} \Omega$ has the same effect upon $p_{n}=\phi(0)$, that Ω has upon the characteristic function $\phi(\lambda)$.

Proof. We have $\Omega e^{\lambda} \Omega p_{n}=\left(\Omega+\lambda \Omega^{2}+\frac{\lambda^{2} \Omega^{3}}{3!}+\ldots\right) p_{n}$

$$
\begin{aligned}
& =\Omega\left(\lambda^{n}+p_{1} \lambda^{n-1}+\ldots+p_{n}\right), \text { by }(25), \\
& =\Omega \phi(\lambda)
\end{aligned}
$$

which proves the theorem.
We are not however entitled to deduce the equality of $e^{\lambda} \Omega p_{n}$ and $\phi(\lambda)$, by operating with Ω^{-1}, since it by no means follows that when $\Omega Y=0, Y$ itself is zero.

§4. Connection with invariant theory.

As has been pointed out in III (see Introduction), the Ω process is equivalent to polarization by use of a sum of symbolic operators

$$
\left(u \left\lvert\, \frac{\partial}{\partial a}\right.\right)\left(x \left\lvert\, \frac{\partial}{\partial a}\right.\right) \equiv\left(\sum_{i=1}^{n} u_{i} \frac{\partial}{\partial a_{i}}\right)\left(\sum_{i=1}^{n} x_{j} \frac{\partial}{\partial a_{j}}\right),
$$

where the matrix $\left[x_{i j}\right]$ is expressed in symbolic notation by various equivalents

$$
\begin{equation*}
\left[x_{i j}\right]=\left[a_{i} a_{j}\right]=\left[\beta_{i} b_{j}\right]=\left[\gamma_{i} c_{j}\right]=\text { etc. } \tag{29}
\end{equation*}
$$

In fact Ω is given by

$$
\begin{equation*}
u \Omega \xi=\Sigma\left(u \left\lvert\, \frac{\partial}{\partial a}\right.\right)\left(\xi \left\lvert\, \frac{\partial}{\partial a}\right.\right), \tag{30}
\end{equation*}
$$

where the summation runs through the equivalent symbols, one term for each pair a, a. The $i j^{\text {th }}$ element of Ω is given by the coefficient of $u_{i} \xi_{j}$ in this expression (30); and $u \Omega x$ denotes the bilinear differential form $\Sigma u_{i} \frac{\partial}{\partial x_{j i}} \xi_{j}$ in the usual matrix product notation. The quantities p_{r} are now invariants of the bilinear form $\Sigma u_{i} x_{i j} \xi_{j}$; namely

$$
\begin{equation*}
p_{1}=-(a \mid a), \quad p_{2}=\frac{1}{2!}(a b \mid a \beta), \quad p_{3}=-\frac{1}{3!}(a b c \mid a \beta \gamma), \ldots \tag{31}
\end{equation*}
$$

Since the effect of the right hand operation in (30) is to replace each pair a, a in the operand by u, x, formulae (7) are now almost intuitive. For example

$$
u \Omega \xi p_{2}=\frac{1}{2!}((u b \mid \xi \beta)+(a u \mid \alpha \xi))=a_{a} u_{\xi}-a_{\xi} u_{a}
$$

since the symbols a, α are equivalent to b, β.
Translated back into the original notation this becomes

$$
u\left(\Omega p_{2}\right) \xi=-u\left(X+p_{1} I\right) \xi
$$

identically for all u and ξ. Whence

$$
X+p_{1} I+\Omega p_{2}=0
$$

and similarly for all relations (7).

Repeated Ω operation now appears as repeated polarization. For example

$$
u \Omega^{2} \xi=\Sigma\left(u \left\lvert\, \frac{\partial}{\partial a}\right.\right)\left(\left.\frac{\partial}{\partial a} \right\rvert\, \frac{\partial}{\partial b}\right)\left(\left.\frac{\partial}{\partial \beta} \right\rvert\, \xi\right)
$$

summed for all pairs of distinct equivalent symbols a, a and b, β. When this acts, for example, upon p_{3} it strikes out two symbols a, b and two symbols a, β in every possible way, replacing them by the single u and ξ. This leads to the result

$$
\Omega^{2} p_{3}=(n-2) \Omega p_{2}=-(n-2)\left(X+p_{1} I\right),
$$

and similarly for other cases.

[^0]: ${ }^{1}$ Cf. L. E. Dickson, Modern Algebraic Theories (Chicago, 1926), 48, after replacing P_{r} by C_{n-1-r}.

