
BULL. AUSTRAL. MATH, SOC. 49J52 , 26B25

VOL. 53 (1996) [21-32]

GENERALISED HESSIAN, MAX FUNCTION
AND WEAK CONVEXITY

X.Q. YANG

In this paper, a second-order characterisation of t;-convex C1'1 functions is derived
in a Hilbert space using a generalised second-order directional derivative. Using
this result it is then shown that every C1'1 function is locally weakly convex, that
is, every C1'1 real-valued function / can be represented as f(x) = h(x) — »;||x||J

on a neighbourhood of x where h is a convex function and TJ > 0. Moreover,
a characterisation of the generalised second-order directional derivative for max
functions is given.

1. INTRODUCTION

In this paper, characterisations of the generalised Hessian and the generalised
second-order directional derivative introduced in [11] for certain max functions are
obtained. It is shown how the twice weakly Gateaux differentiability of max functions
can be characterised. A necessary and sufficient condition for a real valued C1'1 func-
tion to be 77-convex is presented in a Hilbert space using the generalised second-order
directional derivative. It is then shown that every C1'1 function is locally weakly con-
vex in a Hilbert space. This extends the corresponding results given in Hiriart-Urruty
[3] and Vial [10].

Let X be a Banach space. The class of C1'1 functions is defined to be the
set of all real valued continuously Gateaux differentiable functions with locally Lip-
schitz gradients on X, denoted by C1>l{X). Consider the max function of the form
f(x) = [max.{g(x),0}]2 , where x € X and g : X —> R. If g is twice continuously dif-
ferentiable, then it is known that / is a C1'1 function and various generalised Hessians
for the function / were given, for example, in Hiriart-Urruty, Strodiot and Nguyen
[4] and Yang and Jeyakumar [11]. In this paper, we study the generalised Hessian
introduced in [11] for / when g is a C1'1 function. It is worth noting that squares
of max functions appear in augmented Lagrangian function methods and smoothing
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approximation methods (see [9, 13, 14]). Thus generalised differentiabilities of max
functions may be useful in studying optimisation methods.

In Hiriart-Urruty [3] and Vial [10], it was shown that in a finite dimensional space
every C1 ' 1 function is locally weakly convex. This result is useful in establishing rela-
tions between C1 '1 functions and so-called lower-C2 functions. We reprove this result
in a Hilbert space by first obtaining a necessary and sufficient condition for 77-convex
functions. This generalises a corresponding characterisation for convex C1'1 functions
in [11] to generalised convex functions and extends a result of finite dimensional spaces
in [10] to infinite dimensional spaces.

2. A GENERALISED SECOND-ORDER DIRECTIONAL DERIVATIVE

Let X* be the dual space of X and (•,•) be the canonical pair between X* and
X. Let g : X —• R be a locally Lipschitz function and x £ X. The Michel-Penot
generalised directional derivative of g at x in the direction u £ X is defined by

o, * ,. g(x + sz + su) - g(x + sz)
g (z; u) = sup hm sup — * -,

and g is said to be semi-regular at x if the one-sided direction derivative

exists and is equal to g<>{x;u) for every u € X. (See Michel and Penot [7].)

It is known that the max function of semi-regular functions is semi-regular and
that the semi-regularity condition can be used to establish strong calculus rules. We
now give the following notion of a second-order directional derivative of a C1'1 function
/ in terms of the gradient function V / . (See Yang and Jeyakumar [11] and Yang [12].)

DEFINITION 1: Let f : X — i l b e a C1'1 function and let x S X. Then the
generalised second-order directional derivative of / at x in the directions (u, v) 6 X xX,

denoted by /""(x; u,v), is defined by

. , . t<y>. . .. (V/(a! + sz + BU),V) - (V/(x + sz),v)
(1) / (x;u,v) = suphmsup = .

z€X »J0 s

The generalised Hessian of / at x £ X for each u £ X, denoted by d°°f(x)(u)t is

defined by

(2) 0~/(s)(u) = {** e X* : r(x;u,v) > < * » , to £ X}.

The following proposition summarises some basic properties of the generalised

second-order directional derivative and the generalised Hessian which are used in the

sequel (see [11]).
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PROPOSITION 1 . Let f : X—>R be C1'1 and x,u,v G X . Then the following
properties hold

(i) /°°(z;u,i;) is Unite and bi-subi'near as a function of u and v;

(ii) d°° f(x)(u) is a nonempty, convex and weak* -compact subset of X* ;
(iii) (-/)"(*;«,«) = r(x;-u,v) = f"(x;u,-v);
(iv) /«(a ; ; tt )ar)=r(x;a«1D), V a £ l v { 0 } .

The function / is said to be twice weakly Gateaux differentiable at x [1] if / is
continuously Gateaux differentiable near x and its gradient function V / is weakly
Gateaux differentiable at x, that is, there exists a linear function D2 f(x) : X —> X*
such that for each v £ X**, u E. X, the following holds:

lim ( / ( ) ( ) ) )

Examples of C1'1 functions appear, for example, in penalty function methods,
augmented Lagrangian methods, proximal point methods and smooth approximation
methods. We now give some examples of C1'1 functions.

EXAMPLE 1. Let X — K and let g : K —> R be a locally Lipschitz function. Then the
function / : R —* R, defined by

/(*) - / g(t)dt, x G R,
Jo

is a C1'1 function. If in addition g is increasing, then / is a convex C1'1 function.

EXAMPLE 2. Let X be a Hilbert space and let

Then h is C1'1 . Furthermore, it is twice weakly Gateaux differentiable. We have

(3) hc<>(x;u,v) = {u,v), Vu,veX.

EXAMPLE 3. Let C be a subset of X. Define the following functions, for each x G X,

= mi{\\x-y\\:yeC},
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Two special cases:

(i) C = {0}, we have <f>{x) = 1/2 ||x|| which was considered in Example 2;
(ii) C = E{, a closed interval in R (bounded or unbounded), then d2

B.(x)
can be used in formulating exterior point methods and augmented La-
grangian methods, see [9]. In particular, if C = (—oo,0], then <j>(x) =
l/2[max{a,0}]2.

If C is a closed convex subset of a Hilbert space, then Pc{') is single-valued,
Lipschitz with Lipschitz constant L(Pc{-)) = 1 and

(4) V#-) = ( J -Pc ) ( - ) .

see Holmes [5]. Hence <f>(x) is a C1'1 function. The generalised second-order directional
derivative of (f>(x) was calculated in [12] under certain regularity conditions. We now
obtain an estimate of the generalised second-order directional derivative for this function
without regularity conditions.

PROPOSITION 2 . Let X be a, Hilbert space. It C is a closed convex subset of
X, then

(5) ^"(as ju .uXO, VueX.

PROOF: Since Pc is Lipschitz with Lipschitz constant L(Pc(-)) = 1 (see Example
3), we have from (4)

{2(PC - I)(x + su + sz),u) - (2(PC - I)(x + sz),u)
= sup lim sup

2(Pc(x +su + sz) - Pc(x+ sz), -u) - 2s{u, u)
= sup hm sup —!

„ .. (Pc(x + su + sz) - Pc(x + sz), -u)
= 2 sup hm sup * J — 2{u, u)

zex »io s

^0, Vx,u£X.

Then (5) holds. D
3. MAX FUNCTION AND GENERALISED HESSIAN

In this section, we study generalised differentiability properties of the max functions

of the form

(6) mp{x) = [max{g{z),0}]*, x E X,
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where X is a Banach space, g : X —* R and p ^ 2. It is known that the max function
TOp(x) is (Gateaux) differentiable if g is (Gateaux) differentiable. Indeed, we have

(7) Vmp(J ! )=p[max{P(x),O}]J >-1V5(x), Vs € X.

When g has twice differentiability properties and p = 2, various generalised Hessians
of the function m-i have been obtained, for example, in [2, 4, 11 , 14]. We are now able
to obtain a characterisation of the generalised Hessian of mp in terms of the generalised
Hessians of g when g is C1 ' 1 function. Moreover, we obtain necessary and sufficient
conditions for mp to be twice weakly Gateaux differentiable.

THEOREM 1 . Let g : X —* K be C1-1 and p ^ 2 . TJien mp(x) = [max{g(x),0}]p

is C1'1 and for each u G X, the generalised second-order directional derivative of mp

at x is given by

( pg{x)goo{x;u,v) + p{Vg{x),u){Vg{x),v), if g(x) > 0;

m?(x;u,v)= I 0, if g(x) < 0;

1 pmax{(Vfl(x),«)(V<7(z),i;),0}, if g{x) = 0.

PROOF: Since g is C1'1, it is clear from (7) that mp is C1'1. For simplicity, we
prove the results for the case p = 2. We shall consider the following three cases:

CASE I. Let g(x) > O.Then we have from (7) that the equality, V/(x) = 2g{x)Vg{x),
holds in a neighbourhood of x. Since g is C1'1, it is semi-regular and so, we get

= suplimsup - {2<7(x + su + sz)(Vg(x + su + sz),v)

- 2g(x + sz)(Vg(x + sz),v)}

= suplimsup - {2<7(x + sz)((V^(x + su + sz) — Vg(x + sz),v))

+ su + sz) - g(x + sz))(Vg(x + su + sz),v)}

= sup hm sup - {2(7(x)((V<7(x + su + sz) — V^(x + sz),v))
£X J0 S

+2{g[x + su + sz) - g{x + sz))(Vg{x),v)}

= sup Umsup -2<j(x)((V<7(x + su + sz) — Vg(x + sz),v))
zex «j.o s

+ hm -2{g(x + su) - g(x)){Vg{x),v)

= 2g(x)g"(x;u,v) + 2(Vg(x),u)(S7g(x),v),

thus the result holds.
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CASE II. Let g{x) < 0. Then we obtain 7112(3;) = 0 in a neighbourhood of x. Hence
the result is true.

CASE III. Let g(x) = 0. In fact, when p = 2, (7) becomes

Vm2(a;) = 2max.{g(x),0}Vg(x), Vz £ X.

For each z £ X, we get

max{ff(a; + sz),0}((Vg(x + su + sz),v) - (Vg(x + sz),v)) _

Thus we have

= sup lira sup — {2max{j(ji + su + sz),0}(S7g(x + su + sz),v)

-2max{fl(z + sz),0}(Vg(x + sz),v)}

= suplimsup - [2max{y(z + sz),0}((Vg(x + su + sz),v) — (Vg(x + sz),v))

+2(max{j(i + su + sz),0} — max{j(x + sz),0})(Vg(x + su + sz),v}]

2{max{g(x + su + sz),0} - max{g(x + 3z),0}){Vg(x),v)
= suplimsup .

Since ^ is C1 ' 1 , max{</,0} is semi-regular, thus we obtain

max{j(i
= 2bm

j s
= 2max.{(Vg(x),u){Vg(x),v),0}.

Then the proof is complete. u

REMARK 1. From the Hahn-Banach Theorem [5], we get the following inclusions of the
generalised Hessian,

(8) d~mp(x)(u)

x*ed>°g(x)(u)}, iig(x)>0;

{0}, Xg(x)<0;

{pP{p - l)g(x)"-2(Vg(x),u)Vg(x) : 0 6 [0,1]}, if g(x) = 0.
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REMARK 2. It follows from a second-order chain rule (see [12, Theorem 2]) that

(9) 0"mp(s)(u)

{Pg(x)p-1x+p(p-l)g(x)p-2(Vg(x),u)Vg(x):

x*ed~g(x)(u)}, iig(x)>0;

{0}, if ff(«) < 0;

I {PP(p-l)g(x)p-2(Vg(x),u)Vg(x) : /J € [0,1]}, if g(x) = 0.

and that (9) holds with equality if Vg(x) is onto. Comparing (8) with (9), we see that
the onto condition used in [11] is only sufficient.

Using Theorem 1, we obtain characterisations of twice weakly Gateaux differentia-
bility of the max function rnp when the function g is C 1 ' 1 .

PROPOSITION 3 . Let X be a reflexive Banach space and let g be C1 ' 1 and
x £ X be a point satisfying g(x) = 0. Then the function mp is twice weakly Gateaux
differentiable at x if and onlyifVg(x) = 0 and g is twice weakly Gateaux differentiable
at x.

PROOF: From Theorem 1, 9oo7np(x)(w) is single-valued for all u € X if and only
if Vg[x) = 0 and 9°°^(z)(ii) is single-valued for all u 6 X. Then the conclusion
holds. D

We finish this section with a couple of numerical examples to show the structure
of the generalised Hessian of max functions.

EXAMPLE 4. Let mp(x) = [max{z,0}]p, I E K and p ^ 2. Then we have

)x>>-2u}, i f x > 0 ;

a<x>mp(x)(w) = i {0}, if x < 0;

I I ) * ' " 2 " : 0 e [0,1]}, i fx = 0.

EXAMPLE 5. Let m2(x) = [max{Jg t2sin(l/t)dt + l , 0} ] 2 , x € R. Then our gener-
alised Hessian d°°m2{x){u) at x = 0 is

0~m2(O)(K) = {0}.

4. W E A K CONVEXITY AND GENERALISED SECOND-ORDER DERIVATIVE

In this section, we obtain a characterisation of r/-convexity and show that every
C1 ' 1 function is locally weakly convex in a Hilbert space using the generalised second-
order directional derivative / ° ° ( z ;u ,v ) .

We first recall the definition of 77-convexity.
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DEFINITION 2 . Let C be a convex subset of X and let f : C —> R. The
function f is said to be Tj-convex on C if there exist a reai number r\ and a convex
function h : C —> R such that f(x) — h(x) +77 ||x||2 , Vx £ C.

Note that if r\ > 0, then / is said to be strongly convex on C; if r\ = 0, then /
is convex on C; if r\ < 0, then / is said to be weakly convex on C, see Vial [10] and
Jeyakumar [6].

DEFINITION 3 . (i) f : X —• R is said to be locally weakly convex on X if for
each x £ X, there exists r > 0 such that f is weakly convex on an open ball centred
at x with radius r, denoted by U°(x,r);

(ii) f is said to be globally weakly convex if f is weakly convex on X.

The following characterisation for a C1'1 function to be convex is given in [11].

LEMMA 1. Let X be a Ba.na.ch space and let f : X —> R. Then f is convex on
X if and only if

/*°(a; ;«,-«)^0, Vx,u £ X.

We first obtain a characterisation of 77-convexity in terms of the generalised second-
order directional derivative. It is worth noting that this result paves the way to estab-
lishing and generalising connections between a C1'1 function and weak convexity in a
Hilbert space.

THEOREM 2 . Let X be a Hilbert space and let f : X —> R be C1'1. Tien /
is rj-convex on X if and only if

(10) / ° < > ( X ; U , - U ) ^ - 2 7 ; | | M | | 2
) VSC.U £ X.

PROOF: Let / be a C1'1 function. If / is 7/-convex on X, then there exist a real
number 77 and a convex function h : X —> R such that f(x) — h(x) + 77 ||x|| , Vx £
X. Since / and T?|| | |2 are C1'1, the function h is also C1'1. Note from (3) that

|-|| J (x; u, —u) = —2 ||u||, Vu £ X. Hence from the triangle inequality, we obtain

/~(x ; u, -u) < fc~(a; t,, -it) + (r, | | | |2) °°(x; u, -u)

^/ioo(x;7i)-u)-2r7||u| |2, Vx,w£X.

From Lemma 1, / ^ (x ; u, —u) < 0, Vx,w £ X, so we have

r > ( x ; « > - u ) ^ - 2 i , | H | a
1 V x ) U £ X

Conversely, if (10) holds, then

fix) = (/(x) -r, | |xf) + r,\\x\\2, Vx)U £ x,
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and the function f(x) — T/||X|| is convex on X since

- v I I I

Thus / is //-convex on X . U

Clearly Theorem 2 is an extension of Lemma 1. Moreover, when 77 = 0, Theorem
2 reduces to Lemma 1. As an immediate application of Theorem 2, let g : K > R
be a locally Lipschitz function. Then the function / defined in Example 1 is 77-convex
if and only if g0(x; —1) ^ 2T7, VX £ R. The following corollary shows that Theorem 2
generalises a result in [10, Proposition 4.11] where twice differentiability is required.

COROLLARY 1. Let X be a Hilbert space and let f : X —» E be twice weakly

Gateaux differentiable. Then f is rj-convex on X if and only if

(D2f(x)(u),u)>2V\\u\\2, Vx,ueX.

PROOF: This follows from the fact that / is twice weakly Gateaux differentiable,
thus

r(x;u,-u) = -(D2f(x)(u),u),Vx,ueX. •
Now we establish that in a Hilbert space every C1'1 function is locally weakly

convex using our generalised second-order directional derivative.

THEOREM 3 . Let X be a Hilbert space. If f : X —• R is a C1'1 function, then

f is locally weakly convex on X.

PROOF: Let / : X — • R b e a C 1 ' 1 function. Then for any fixed x £ X, it follows
from the locally Lipschitz condition of V / that there exist L(Vf,x) > 0 and r > 0
such that

||V/(y) - V/(z)|| ^ L(Vf,x) \\y - x\\, Wy,x € U°(x,r).

Let r, ̂  (L(Vf,x))/2. Then for any u € X, x £ U°(x,r), we have

roo , N I- (V/(X + 3U + SZ), -V.) - (V/(g + sz), ~u)
/ (x; u, -u) = sup lim sup i • !

So,

(f

= r(z;u,-u)-2r,\\u\\2

^0, Vx £ U°{x,r), u£X.
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FromLemmal, /+77||-||2 is convex on U°(x,r). Then f(x) = (f(x)+T)\\x\\2)-r)\\x\\2,

in which / + r\ ||-|| is convex on U°(x,r). Hence / is locally weakly convex on X. Q

It is well known that the function —CIQ(X) is globally weakly convex, where C is
a closed convex subset of a Hilbert space. We present a proof of this result using our
generalised second-order directional derivative. Recall that — <Pc{x) is a C1'1 function,
see Example 3.

PROPOSITION 4 . Let X be a Hilbert space. If C is a. closed convex subset of
X, then — d^-.(x) is globally weakly convex.

PROOF: Observe that

Thus we need to prove that x —> 2 ||z|| — d%,(x) is convex on X. From Proposition
2, we have

(-d2
c)^(x;u,-u) = (d'c)00(x;u,u) < 0, Vx,u 6 X.

Then from (3)

From Lemma 1, the function x > 2 ||z|| — d\.(x) is convex on X. Therefore — d^(x)
is globally weakly convex. U

COROLLARY 2 . Let X be a Hilbert space and let g : X —> R be a convex
function. Then 1712(1) = —[max{</(x),0}]2 is globally weakly convex.

PROOF: Let C = {x G X : g(x) < 0}. Thus C is a closed convex subset and
dj-,(x) = [max{y(x),0}]2. The conclusion follows from Proposition 4. D

5. DISCUSSION

Let X be a Hilbert space and let / : X —> R. Then the following classes of
functions are introduced and studied in [3, 6, 8, 10]:

(i) the function / is said to be locally difference convex on X if for every x £ X,
there exist a convex neighbourhood N(x) of x, and convex functions pw,qN : X —> R
such that f(x) = p/v(x) ~ 9N(X), VZ G N(X). This class of functions is denoted by
LDC(X). The function / is said to be difference convex on X if there exist two convex
functions p,q : X • R such that f(x) = p(x) — q(x), Va; £ X;
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(ii) the function / is said to be lower- C2 on X if for every x £ X, there exist
a convex neighbourhood N(x) of i , a convex function ppj and a quadratic convex
function qpf such that f(x) = PN(X) — qpf(x), Vs £ N(x). This class of functions is
denoted by LC2{X).

It follows from the previous definitions that every locally weakly convex function
is locally difference convex. In general, a quadratic convex function in a Hilbert space
has the form

(A(u),u) + (b,u) + c,

where b G X, c € K and A : X —> X satisfies (A(x),x) ^ 0, (A(x),y) = (A(y),x). In
particular ||x|| = (x,x) is a quadratic convex function. Hence it follows from Theorem
3 that every C1'1 function is lower- C2. It is dear that every lower-C2 function is
locally difference convex. Therefore we have established that

CMpQ C LC2(X) c LDC{X),

where X is a Hilbert space. This result was initially given in Hiriart-Urruty [3] and
Vial [10] in a finite dimensional space.
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