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Abstract
We show that the derived category of a curve is embedded into the derived category of the moduli space of
vector bundles on the curve of coprime rank and degree. We also generalize the semiorthogonal decomposition
constructed by Narasimhan and Belmans-Mukhopadhyay. Finally, we produce a one-dimensional family of ACM
bundles over the moduli space.
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1. Introduction

The purpose of this paper is to give a complete affirmative answer to two problems on the moduli space
of vector bundles on a curve. One is the embedding problem between derived categories, and the other
is the construction of nontrivial arithmetically Cohen-Macaulay (ACM) bundles on the moduli space.

Let X be a smooth projective curve of genus 𝑔 ≥ 2. Fix two positive integers 𝑟, 𝑑, such that (𝑟, 𝑑) = 1
and 0 < 𝑑 < 𝑟 , and fix 𝐿 ∈ Pic𝑑 (𝑋). The moduli space M(𝑟, 𝐿) of rank r, determinant L stable
vector bundles on X is an (𝑟2 − 1) (𝑔 − 1)-dimensional smooth Fano variety of index two. Let E be the
normalized Poincaré bundle on 𝑋 × M(𝑟, 𝐿).

1.1. Embedding of derived category

We study the Fourier-Mukai transform ΦE : D𝑏 (𝑋) → D𝑏 (M(𝑟, 𝐿)) with the kernel E . Narasimhan
proved that ΦE is an embedding when 𝑟 = 2 in [Nar17, Nar18], by studying the Hecke correspondence.
Fonarev and Kuznetsov proved the same result for a general X using different techniques [FK18].
Belmans and Mukhopadhyay extended Narasimhan’s method and proved the embedding result for
𝑟 ≥ 2, 𝑑 = 1, and 𝑔 ≥ 𝑟 + 3 in [BM19]. In this paper, we lift all the assumptions on the rank, degree,
and genus by employing birational geometry of moduli spaces of parabolic bundles, and the theory of
derived categories of variation of GIT quotients, developed by Halpern-Leistner in [HL15] and Ballard
et al. in [BFK19].

Theorem 1.1. The functor ΦE : D𝑏 (𝑋) → D𝑏 (M(𝑟, 𝐿)) is fully faithful.

1.2. Semiorthogonal decomposition

To put our results in context, we explain a brief history of the question. After establishing his embedding
theorem, Narasimhan made the following conjecture, which was announced in [Lee18]. In the paper, as
numerical evidence, Lee proved that the motive of M(𝑟, 𝐿) admits a compatible motivic decomposition.
Further evidence was also provided by Gómez and Lee in [GL20]. Belmans-Galkin-Mukhopadhyay
also independently proposed the same conjecture in [BGM18], with another numerical evidence in
[BGM20].

Conjecture 1.2. The category D𝑏 (M(2, 𝐿)) has a semiorthogonal decomposition

D𝑏 (M(2, 𝐿)) = 〈{D𝑏 (𝑋𝑘 ),D𝑏 (𝑋𝑘 )}0≤𝑘≤𝑔−2,D𝑏 (𝑋𝑔−1)〉,

where 𝑋𝑘 = 𝑋 𝑘/𝑆𝑘 is the k-th symmetric product of X.

Toward the proof of Conjecture 1.2, Lee and Narasimhan showed that by analyzing the Hecke
correspondence, D𝑏 (𝑋2) is embedded [LN21] when X is nonhyperelliptic and 𝑔 ≥ 16. After this,
Tevelev-Torres and Xu-Yau showed that the above building blocks are embedded in D𝑏 (M(2, 𝐿)) with
entirely different approaches [TT21, XY21]. After an early draft of this paper was circulated, very
recently, the remaining generation part was proved by Tevelev [Tev23].

It is natural to guess the existence of a similar decomposition for D𝑏 (M(𝑟, 𝐿)) for general r and d.
Based on [GL20], where the motivic decomposition of M(𝑟, 𝐿) is studied, we expect the following
statement. A more explicit version of the conjecture for 𝑟 = 3, and its evidence can be found in [GL20,
Conjecture 1.9].

Conjecture 1.3. The category D𝑏 (M(𝑟, 𝐿)) has a semiorthogonal decomposition, where each inde-
composable component is the derived category of products of 𝑋𝑘 and Jac(𝑋).

As we can see from Brill-Noether theory, the geometry of curves is very complicated in general.
However, in the study of D𝑏 (M(𝑟, 𝐿)), we expect a uniform decomposition, which does not depend on
each curve.
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Except for 𝑔 = 𝑟 = 2, it seems that D𝑏 (M(𝑟, 𝐿)) contains at least two copies of D𝑏 (pt) and two
copies of D𝑏 (𝑋). In [BM19, Theorem B], the authors proved this is the case for 𝑑 = 1 and (roughly)
𝑔 ≥ 3𝑟 + 4. We extend this result for arbitrary coprime degree and give a constant genus bound.

Theorem 1.4. If 𝑔 ≥ 6, there is a semiorthogonal decomposition

D𝑏 (M(𝑟, 𝐿)) = 〈A, ⊥A〉,

where A = 〈O,ΦE (D𝑏 (𝑋)),Θ,ΦE (D𝑏 (𝑋)) ⊗ Θ〉, where Θ is the ample generator of Pic(M(𝑟, 𝐿)).

We expect that Theorem 1.4 is true without the genus restriction (except 𝑔 = 𝑟 = 2 case), but we have
only a partial result for 𝑔 ≤ 5 (Theorem 9.5 and Remark 9.6).

1.3. ACM bundles

We also discover a family of ACM bundles on M(𝑟, 𝐿). For an n-dimensional projective variety V with
an ample line bundle A, a vector bundle F is called ACM if H𝑖 (𝑉, 𝐹⊗ 𝐴 𝑗 ) = 0 for all 𝑗 ∈ Z and 0 < 𝑖 < 𝑛.
An ACM bundle F is Ulrich if H0 (𝑉, 𝐹 ⊗ 𝐴−1) = 0 and H0(𝑉, 𝐹) = rank 𝐹 · deg𝑉 . ACM bundles
naturally appear in matrix factorization [Eis80] and correspond to maximal Cohen-Macaulay modules
in commutative algebra [Yos90]. Ulrich bundles enable us to compute their associated Chow forms,
and Eisenbud and Schreyer conjectured that every projective variety admits an Ulrich sheaf [ES03].
However, since the above strong cohomology vanishing is difficult to expect and hard to verify, despite
many works (see [Bea18, Cetal21, Fae13] and references therein), very few general results are known
for higher dimensional varieties, even for the existence of ACM bundles except some trivial examples.

Theorem 1.5. The restricted Poincaré bundle E𝑥 is ACM with respect to Θ. Thus, there is a one-
dimensional family of ACM bundles on M(𝑟, 𝐿), parametrized by X.

1.4. Structure of the paper

Sections 2 and 3 review several basic results about the moduli space of parabolic bundles on a curve.
In Section 4, we investigate the positivity of the restricted Poincaré bundle. In Section 5, we explicitly
compute the wall-crossings in the case of two parabolic points. The result is essential in the following
sections. Section 6 is devoted to calculating cohomology groups of certain line bundles via derived
categories of the variation of GIT. Three main theorems are proved in the remaining sections.

Conventions

We work over C. In this paper, X denotes a smooth connected projective curve of genus 𝑔 ≥ 2. The
moduli space of rank r, determinant L (respectively, degree d) semistable vector bundles is denoted by
M(𝑟, 𝐿) (respectively, M(𝑟, 𝑑)). Unless stated explicitly, we assume (𝑟, 𝑑) = 1, so M(𝑟, 𝐿) is a smooth
projective variety. Let ℓ be the unique integer, such that ℓ𝑑 ≡ 1 mod 𝑟 and 0 < ℓ < 𝑟 . Let Θ be the
ample generator on Pic(M(𝑟, 𝐿)). Let E be the normalized Poincaré bundle on 𝑋 × M(𝑟, 𝐿), such that
for each 𝑥 ∈ 𝑋 , its restriction E𝑥 to 𝑥 × M(𝑟, 𝐿) � M(𝑟, 𝐿) has the determinant Θℓ . For a vector space
W, P(𝑊) is the projective space of one-dimensional quotients of W. Every algebraic stack is defined
over the fppf topology.

2. Moduli spaces of parabolic bundles and their birational geometry

This section explains the notion of parabolic vector bundles and their moduli space. This paper only
considers the parabolic structure, with at most one flag for each parabolic point. Fix a smooth connected
projective curve X and a finite ordered set x := (𝑥1, 𝑥2, · · · , 𝑥𝑘 ) of distinct closed points of X, so
(𝑋, x) ∈ M𝑔,𝑘 .
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4 K.-S. Lee and H.-B. Moon

Definition 2.1. A rank r parabolic bundle over (𝑋, x) is a collection of data (𝐸,𝑉•), where

1. E is a rank r vector bundle over X;
2. 𝑉• = (𝑉1, 𝑉2, · · · , 𝑉𝑘 ), where 𝑉𝑖 is a subspace of 𝐸 |𝑥𝑖 . The dimension of 𝑉𝑖 is called the multiplicity

of 𝑉𝑖 and denoted by 𝑚𝑖 .

The sequence m = (𝑚1, 𝑚2, · · · , 𝑚𝑘 ) is called the multiplicity of (𝐸,𝑉•).

Definition 2.2. Let M(𝑋,x) (𝑟, 𝐿,m) (respectively, M(𝑋,x) (𝑟, 𝑑,m)) be the moduli stack of parabolic
bundles (𝐸,𝑉•) over (𝑋, x) of rank r, determinant L (respectively, degree d), and multiplicity m. If there
is no confusion, we use M(𝑟, 𝐿,m) (respectively, M(𝑟, 𝑑,m)).

The moduli stack of all bundles is a nonseparated Artin stack (see [Mum66, Item 4 in Lecture 7] for
an example of a locally trivial family of bundles having a nontrivial limit), hence M(𝑋,x) (𝑟, 𝐿,m) is
also highly nonseparated. To obtain a projective coarse moduli space that enables us to do projective
birational geometry, we need to introduce a stability condition.

For a parabolic bundle (𝐸,𝑉•), a parabolic subbundle (𝐹,𝑊•) is a pair, such that 𝐹 ⊂ 𝐸 is a
subbundle and 𝑊𝑖 = 𝐹 |𝑥𝑖 ∩𝑉𝑖 . A parabolic quotient bundle is defined as a parabolic bundle (𝐸/𝐹,𝑌•),
such that 𝑌𝑖 = im (𝑉𝑖 → 𝐸/𝐹 |𝑥𝑖 ). A parabolic weight a = (𝑎1, 𝑎2, · · · , 𝑎𝑘 ) is a sequence of rational
numbers, such that 0 < 𝑎𝑖 < 1. Intuitively, we may regard a as extra weight for the parabolic flags.
For a parabolic bundle (𝐸,𝑉•), its parabolic degree is pardeg(𝐸,𝑉•) := deg 𝐸 +

∑
1≤𝑖≤𝑘 𝑚𝑖𝑎𝑖 . The

same parabolic weight can induce the parabolic degree for parabolic subbundles and parabolic quotient
bundles of (𝐸,𝑉•). The parabolic slope is 𝜇(𝐸,𝑉•) := pardeg(𝐸,𝑉•)/rank 𝐸 .

Definition 2.3. Fix a parabolic weight a. A parabolic bundle (𝐸,𝑉•) is a-(semi)stable if, for every
parabolic subbundle (𝐹,𝑊•), 𝜇(𝐹,𝑊•) (≤) < 𝜇(𝐸,𝑉•). A parabolic weight a is general if the a-
semistability coincides with the a-stability.

Definition 2.4. Let (𝑋, x) ∈ M𝑔,𝑘 with 𝑔 ≥ 2. Let M(𝑟, 𝐿,m, a) (respectively, M(𝑟, 𝑑,m, a)) be
the moduli stack of rank r, determinant L (respectively, degree d), a-semistable parabolic bundles
over (𝑋, x). Let M(𝑟, 𝐿,m, a) (respectively, M(𝑟, 𝑑,m, a)) be its good moduli space, which is a normal
projective variety of dimension (𝑟2−1) (𝑔−1) +

∑
𝑚𝑖 (𝑟−𝑚𝑖) (respectively, 𝑟2(𝑔−1) +1+

∑
𝑚𝑖 (𝑟−𝑚𝑖))

[MS80, Theorem 4.1]. When a is general, both M(𝑟, 𝐿,m, a) and M(𝑟, 𝑑,m, a) are nonsingular.

Remark 2.5. When 𝑔 ≤ 1, the moduli space behaves differently. For instance, if 𝑔 = 0, depending on a,
M(𝑟, 𝐿,m, a) may be empty. Consult [MY21].

Example 2.6. The inequality 𝜇(𝐹,𝑊•) ≤ 𝜇(𝐸,𝑉•) defining the a-semistability can be understood
as a perturbation of the inequality 𝜇(𝐹) ≤ 𝜇(𝐸) for the semistability of the underlying bundle. If
(𝑟, 𝑑 = deg 𝐿) = 1, the inequality is strict for all 𝐹 ⊂ 𝐸 , and if each coefficient of a is sufficiently
small and general, then a does not affect the stability. Therefore, a parabolic bundle (𝐸,𝑉•) is a-stable if
and only if the underlying bundle E is stable. Thus, the forgetful morphism M(𝑟, 𝐿,m, a) → M(𝑟, 𝐿)
induces a map between coarse moduli spaces

𝜋 : M(𝑟, 𝐿,m, a) → M(𝑟, 𝐿)

and 𝜋 is a ×Gr(𝑚𝑖 , 𝑟)-fibration. Indeed, for a fixed Poincaré bundle E over 𝑋 × M(𝑟, 𝐿),

M(𝑟, 𝐿,m, a) � ×M(𝑟 ,𝐿)Gr(𝑚𝑖 , E𝑥𝑖 ).

Example 2.7. More generally, if a = (𝑎𝑖) is general and one 𝑎𝑖 is sufficiently small, then forgetting one
flag does not affect on the stability calculation. Thus, there is a forgetful morphism

𝜋 : M(𝑋,x) (𝑟, 𝐿,m, a) → M(𝑋,x′) (𝑟, 𝐿,m′, a′),

where x′ = x \ {𝑥𝑖}, m′ = m \ {𝑚𝑖}, and a′ = a \ {𝑎𝑖}. This is a Gr(𝑚𝑖 , 𝑟)-fibration.
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Example 2.8. Fix (𝑋, x) ∈ M𝑔,𝑛. Let x′ := x \ {𝑥𝑘 }. Let m′ = (𝑚𝑖)1≤𝑖≤𝑘−1 and a′ = (𝑎𝑖)1≤𝑖≤𝑘−1.
Suppose that 𝑚𝑘 = 0 or r. Then

M(𝑋,x) (𝑟, 𝐿,m, a) � M(𝑋,x′) (𝑟, 𝐿,m′, a′).

When one of a is sufficiently close to one, there is another contraction.

Proposition 2.9. We use the notation in Example 2.8. For a general parabolic weight a = (𝑎𝑖), assume
that 𝑎𝑘 is sufficiently close to one. Then there exists a morphism

𝜋1 : M(𝑋,x) (𝑟, 𝐿,m, a) → M(𝑋,x′) (𝑟, 𝐿(−(𝑟 − 𝑚𝑘 )𝑥𝑘 ),m′, a′).

Proof. It is sufficient to construct a morphism

M(𝑋,x) (𝑟, 𝐿,m, a) → M(𝑋,x′) (𝑟, 𝐿(−(𝑟 − 𝑚𝑘 )𝑥𝑘 ),m′, a′)

between algebraic stacks.
Let m̃ = (𝑚𝑖) be a multiplicity, such that𝑚𝑖 = 𝑚𝑖 for 1 ≤ 𝑖 ≤ 𝑘−1 and𝑚𝑘 = 𝑟 . By Example 2.8, there

is a functorial isomorphism M(𝑋,x) (𝑟, 𝐿(−(𝑟 − 𝑚𝑘 )𝑥𝑘 ), m̃, a) �M(𝑋,x′) (𝑟, 𝐿(−(𝑟 − 𝑚𝑘 )𝑥𝑘 ),m′, a′).
Thus, it is sufficient to show that there is a morphism

M(𝑟, 𝐿,m, a) → M(𝑟, 𝐿(−(𝑟 − 𝑚𝑘 )𝑥𝑘 ), m̃, a).

For a stable bundle (𝐸,𝑉•) ∈ M(𝑟, 𝐿,m, a), let 𝐸 ′ be the kernel of the restriction map 𝐸 →

𝐸 |𝑥𝑘 → 𝐸 |𝑥𝑘/𝑉𝑥𝑘 . Then for each 𝑖 ≠ 𝑘 , 𝐸 ′ |𝑥𝑖 can be identified with 𝐸 |𝑥𝑖 . Set 𝑉 ′
𝑖 = 𝑉𝑖 under this

identification. On the other hand, the restriction 𝑓 : 𝐸 ′ |𝑥𝑘 → 𝐸 |𝑥𝑘 is a linear map with image 𝑉𝑘 . We
set𝑉 ′

𝑘 := 𝑓 −1(𝑉𝑘 ) = 𝐸 ′ |𝑥𝑘 . Then we obtain a parabolic bundle (𝐸 ′, 𝑉 ′
•) ∈ M(𝑟, 𝐿(−(𝑟 −𝑚𝑘 )𝑥𝑘 ), m̃, a).

Thus, we have a morphism

M(𝑟, 𝐿,m, a) → M(𝑟, 𝐿(−(𝑟 − 𝑚𝑘 )𝑥𝑘 ), m̃) (2.1)
(𝐸,𝑉•) ↦→ (𝐸 ′, 𝑉 ′

•).

We claim that (𝐸 ′, 𝑉 ′
•) is a-semistable. Then the morphism in Equation (2.1) factors through

M(𝑟, 𝐿(−(𝑟 − 𝑚𝑘 )𝑥𝑘 ), m̃, a).
Suppose not. Then there is a parabolic subbundle (𝐹 ′,𝑊 ′

•) of (𝐸 ′, 𝑉 ′
•), such that 𝜇(𝐹 ′,𝑊 ′

•) >
𝜇(𝐸 ′, 𝑉 ′

•). Let rank 𝐹 ′ = 𝑠, deg 𝐹 ′ = 𝑒, and 𝑛𝑖 = dim𝑊 ′
𝑖 . Note that 𝑛𝑘 = 𝑠.

Set 𝑑 = deg 𝐿. Then

𝜇(𝐸,𝑉•) − 𝜇(𝐸 ′, 𝑉 ′
•) =

𝑑 +
∑
𝑚𝑖𝑎𝑖
𝑟

−
𝑑 − (𝑟 − 𝑚𝑘 ) +

∑
𝑖≠𝑘 𝑚𝑖𝑎𝑖 + 𝑟𝑎𝑘

𝑟
(2.2)

=
(𝑟 − 𝑚𝑘 ) (1 − 𝑎𝑘 )

𝑟
.

In general, 𝐹 ′ is not a subbundle of E. But there is a subbundle F of E, such that 𝐹/𝐹 ′ is a sheaf
supported on 𝑥𝑘 and dim(𝐹/𝐹 ′) |𝑥𝑘 = 𝑠 − 𝑐, where 𝑐 := dim 𝐹 |𝑥𝑘 ∩ 𝑉𝑥𝑘 . For the induced parabolic
subbundle (𝐹,𝑊•) of (𝐸,𝑉•),

𝜇(𝐹,𝑊•) − 𝜇(𝐹 ′,𝑊 ′
•) =

𝑒 + (𝑠 − 𝑐) +
∑
𝑖≠𝑘 𝑎𝑖𝑛𝑖 + 𝑎𝑘𝑐

𝑠
−
𝑒 +

∑
𝑖≠𝑘 𝑎𝑖𝑛𝑖 + 𝑎𝑘 𝑠

𝑠
(2.3)

=
(𝑠 − 𝑐) (1 − 𝑎𝑘 )

𝑠
.
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By combining (2.2) and (2.3), we have

𝜇(𝐸,𝑉•) − 𝜇(𝐹,𝑊•) = 𝜇(𝐸 ′, 𝑉 ′
•) − 𝜇(𝐹 ′,𝑊 ′

•) + (1 − 𝑎𝑘 )
( 𝑟 − 𝑚𝑘

𝑟
−
𝑠 − 𝑐

𝑠

)
.

Note that 𝜇(𝐸 ′, 𝑉 ′
•) − 𝜇(𝐹 ′,𝑊 ′

•) is independent from 𝑎𝑘 , as the coefficient of 𝑎𝑘 in each term is
one. Thus, if 𝑎𝑘 is sufficiently close to one, then the last term is negligible. By the assumption,
𝜇(𝐸 ′, 𝑉 ′

•) − 𝜇(𝐹 ′,𝑊 ′
•) < 0, and hence the left-hand side is also negative. It violates the stability of

(𝐸,𝑉•) and obtains a contradiction. �

Remark 2.10. The morphism in Proposition 2.9 can be understood as a generalized Hecke correspon-
dence. When 𝑑 = 𝑘 = 1 and 𝑚 = 𝑟 − 1, up to taking the dual bundle, we obtain the classical Hecke
correspondence in the sense of [NR75, Section 4]. A difference in the 𝑑 > 1 case is that M(𝑟, 𝐿, 𝑚, 𝑎)
does not admit morphisms to both M(𝑟, 𝐿) and M(𝑟, 𝐿(−𝑥)), so we need a birational modification on
M(𝑟, 𝐿, 𝑚, 𝑎). It can be explained in terms of parabolic wall-crossing, as in Section 3 below.

3. Wall-crossing

This section reviews how M(𝑟, 𝐿,m, a) changes as a varies.

3.1. General theory

Let k be the number of parabolic points. Recall that a parabolic weight is a length k sequence of rational
number a = (𝑎𝑖) with 0 < 𝑎𝑖 < 1. The closure of the set of parabolic weights is [0, 1]𝑘 ⊂ R𝑘 .

There is a wall-chamber decomposition of [0, 1]𝑘 . A parabolic bundle (𝐸,𝑉•) ∈ M(𝑟, 𝐿,m, a)
is strictly semistable if and only if there is a maximal destabilizing subbundle (𝐹,𝑊•), such that
𝜇(𝐹,𝑊•) = 𝜇(𝐸,𝑉•). More explicitly, this is true only if

𝑒 +
∑
𝑛𝑖𝑎𝑖

𝑠
=
𝑑 +

∑
𝑚𝑖𝑎𝑖
𝑟

(3.1)

for some 0 < 𝑠 < 𝑟 , 𝑒 ∈ Z, and n = (𝑛𝑖). Here, s is the rank, e is the degree, and n is the multiplicity
of (𝐹,𝑊•). So we require that 𝑛𝑖 ≤ min {𝑠, 𝑚𝑖}. Let Δ (𝑠, 𝑒, n) be the set of weights that satisfy (3.1).
Note that this is an intersection of a hyperplane and [0, 1]𝑘 . We call Δ (𝑠, 𝑒, n) a wall if it is nonempty.
We also obtain

Δ (𝑠, 𝑒, n) = Δ (𝑟 − 𝑠, 𝑑 − 𝑒,m − n). (3.2)

Note that Δ (𝑠, 𝑒, n) = Δ (𝑡𝑠, 𝑡𝑒, 𝑡n) if 𝑡𝑠 < 𝑟 for some 𝑡 > 1. We call such a wall a multiple wall,
and otherwise, it is a simple wall. A wall Δ (𝑠, 𝑒, n) is simple if and only if {𝑠, 𝑒, 𝑛𝑖} are coprime and
{𝑟 − 𝑠, 𝑑 − 𝑒, 𝑚𝑖 − 𝑛𝑖} are coprime.

The stability changes only if a parabolic weight a lies on one of the walls. So for each open chamber
𝐶 ⊂ [0, 1]𝑘 , for any a, a′ ∈ 𝐶, M(𝑟, 𝐿,m, a) � M(𝑟, 𝐿,m, a′). The stability coincides with the
semistability if a ∈ (0, 1)𝑘 \

⋃
Δ (𝑠, 𝑒, n).

Let

M(𝑟, 𝐿,m, a−) �� �������������

𝜋−
����

���
���

���
� M(𝑟, 𝐿,m, a+)

𝜋+
�����

���
���

���

M(𝑟, 𝐿,m, a)

(3.3)

be a wall-crossing. Suppose that a is a general point of Δ (𝑠, 𝑒, n), and a− and a+ are two very close
weights on the opposite chambers. The contraction maps 𝜋± are birational surjections. Let 𝑌± be the
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exceptional locus on M(𝑟, 𝐿,m, a±), and let 𝑌 := 𝜋±(𝑌
±). The subvarieties 𝑌± are called the wall-

crossing centers. For our purpose, we need a lower bound of the codimension of 𝑌±. Observe that
the parabolic bundles in 𝑌− are stable with respect to a− but unstable with respect to a+. Thus, 𝑌−

parametrizes unstable parabolic bundles with respect to some weight. The codimension of the unstable
locus is estimated in [Sun00]. For an outline of the proof, see also [MY20, Section 3.2].

Theorem 3.1 [Sun00, Proposition 5.1]. In M(𝑟, 𝐿,m), the codimension of the unstable locus with
respect to a weight a is at least (𝑟 − 1) (𝑔 − 1) + 1.

Corollary 3.2. The codimension of the wall-crossing center is at least (𝑟 − 1) (𝑔 − 1) + 1. In particular,
if 𝑔 ≥ 2, every wall-crossing is a flip.

We say a wall-crossing is simple if:

1. The wall Δ (𝑠, 𝑒, n) is a simple wall and;
2. a ∈ Δ (𝑠, 𝑒, n) is on a unique wall.

A simple wall-crossing has an explicit description. The wall-crossing centers 𝑌± are irreducible, and
their image 𝑌 � M(𝑠, 𝑒, n, a) ×Pic(𝑋 ) M(𝑟 − 𝑠, 𝑑 − 𝑒,m − n, a) is a smooth variety. For (𝐸,𝑉•) ∈ 𝑌−,
there is a unique maximal a-destabilizing subbundle (𝐸−, 𝑉−

• ) ∈ M(𝑠, 𝑒, n, a), which fits into an exact
sequence

0 → (𝐸−, 𝑉−
• ) → (𝐸,𝑉•) → (𝐸+, 𝑉+

• ) → 0

of parabolic bundles. The map 𝜋− is restricted to the map 𝑌− → 𝑌 , which sends (𝐸,𝑉•) to
the S-equivalence class of (𝐸,𝑉•), which is the class of (𝐸−, 𝑉−

• ) ⊕ (𝐸+, 𝑉+
• ). We denote this

class by ((𝐸−, 𝑉−
• ), (𝐸

+, 𝑉+
• )). Conversely, if 𝑥 := ((𝐸−, 𝑉−

• ), (𝐸
+, 𝑉+

• )) is a general point in
Y so that both (𝐸−, 𝑉−

• ) and (𝐸+, 𝑉+
• ) are stable, then the fiber 𝜋−1

− (𝑥) is a projective space
P(Ext1((𝐸+, 𝑉+

• ), (𝐸
−, 𝑉−

• ))
∗) (see [Yok95, Section 1] for the derived functors on the category

of parabolic sheaves). A functorial description is possible. Let (E−,V−
• ) (respectively, (E+,V+

• ))
be the Poincaré family over M(𝑠, 𝑒, n, a) (respectively, M(𝑟 − 𝑠, 𝑑 − 𝑒,m − n, a)). The stan-
dard GIT construction and the descent method imply the existence of Poincaré bundle ([New78,
Chapter 5], [HL10, Section 4.6]). Then 𝑌− � P(𝑅1𝜋−∗P𝑎𝑟H𝑜𝑚((E+,V+

• ), (E−,V−
• ))

∗) and 𝑌+ �
P(𝑅1𝜋+∗P𝑎𝑟H𝑜𝑚((E−,V−

• ), (E+,V+
• ))

∗). In particular, they are projective bundles over Y. Finally, it is
well-known that the blow-up of M(𝑟, 𝐿,m, a−) along𝑌− is isomorphic to the blow-up of M(𝑟, 𝐿,m, a+)
along 𝑌+.

Over a multiple wall, the wall-crossing is more complicated. Consider the wall-crossing over a unique
wall Δ (𝑠, 𝑒, n), which is a multiple wall, such that there is 𝑡 ∈ Z, such that Δ (𝑠, 𝑒, n) = Δ (𝑡𝑠, 𝑡𝑒, 𝑡n) with
𝑡𝑠 < 𝑟 . Then the wall-crossing centers 𝑌± has the image 𝑌 �

⋃
M(𝑡𝑠, 𝑡𝑒, 𝑡n, a) ×Pic(𝑋 ) M(𝑟 − 𝑡𝑠, 𝑑 −

𝑡𝑒,m − 𝑡n, a), and it is a reducible variety with nontrivial intersections and singularities. However, a
general point of each irreducible component parametrizes a pair of stable parabolic bundles, thus over a
general point, the wall-crossing is the same one with the case of a simple wall-crossing in the previous
paragraph.

3.2. GIT construction of moduli space

The moduli spaces M(𝑟, 𝐿,m, a) can be constructed by GIT, and each wall-crossing is indeed obtained
by the variation of GIT. We review a GIT construction of M(𝑟, 𝐿, a) after Bhosle [Bho89]. We fix
a degree one line bundle O(1) on X. Fix an integer 𝑚 � 0, such that H1(𝐸 (𝑚)) = 0 and 𝐸 (𝑚) is
globally generated for every (𝐸,𝑉•) ∈ M(𝑟, 𝐿, a) (indeed, we may find such an m that works for all a).
Let 𝜒 := ℎ0 (𝐸 (𝑚)) = 𝑑 + 𝑟 (𝑚 + 1 − 𝑔), and let 𝑄 := Quot(O𝜒

𝑋 ) be the quot scheme parametrizing
quotients of O𝜒

𝑋 whose Hilbert polynomial is that of 𝐸 (𝑚). Let 𝑅 ⊂ 𝑄 be a locally closed subscheme
parametrizing the quotients O𝜒

𝑋

𝜑
→ 𝐹 → 0, such that H1 (𝐹) = 0, H0(O𝜒

𝑋 )
𝜑
� H0(𝐹), F is locally free,
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and det 𝐹 � 𝐿(𝑟𝑚). Let O𝜒
𝑅×𝑋 → F → 0 be the universal quotient over 𝑅 × 𝑋 . For 𝑥1, 𝑥2, · · · , 𝑥𝑘 ∈ 𝑋 ,

let

𝑅 := ×𝑅Gr(𝑚𝑖 ,F |𝑥𝑖 )

be the fiber product of Grassmannian bundles over R. There is a natural SL𝜒-action on 𝑅. Note that 𝑅
parametrizes pairs ([O𝜒

𝑋

𝜑
→ 𝐹 → 0], {𝑉𝑖 ⊂ 𝐹 |𝑥𝑖 }).

We can make an explicit SL𝜒-equivariant embedding of 𝑅 into a product of elementary varieties as
the following. Let 𝑍 := PHom(∧𝑟C𝜒,H0(𝐿(𝑟𝑚)))∗. Then for any [O𝜒

𝑋

𝜑
→ 𝐹 → 0] ∈ 𝑅,

∧𝑟C𝜒
∧𝑟 𝜑
� ∧𝑟H0 (𝐹) → H0(∧𝑟𝐹) � H0(𝐿(𝑟𝑚))

gives a point in Z. Furthermore, for each 𝑥𝑖 , by taking the inverse image 𝜓−1
𝑖 (𝑉𝑖) for

𝜓𝑖 : C𝜒 � H0 (𝐹) → 𝐹 |𝑥𝑖 ,

we obtain an element in Gr(𝜒 − 𝑟 + 𝑚𝑖 , 𝜒) for 𝑥𝑘 . Therefore, we have an SL𝜒-equivariant morphism

𝑅 → ×𝑍Gr(𝜒 − 𝑟 + 𝑚𝑖 , 𝜒) (3.4)

([O𝜒
𝑋

𝜑
→ 𝐹 → 0], {𝑉𝑖 ⊂ 𝐹 |𝑥𝑖 }) ↦→ (∧𝑟𝜑, {𝜓−1

𝑖 (𝑉𝑖)}).

In [Tha96, Section 7], it was shown that this morphism is indeed an embedding. In [Bho89], Bhosle
calculated an explicit linearization 𝐴(a), depending on a, which gives 𝑅𝑠𝑠 (𝐴(a))/SL𝜒 � M(𝑟, 𝐿, a).

In summary, the wall-crossing of a-stability is obtained by the variation of GIT.

3.3. Mori’s program

The wall-crossing picture can be incorporated with projective birational geometry of M(𝑟, 𝐿,m, a) in
the nicest way. Let a be a general parabolic weight. Then every rational contraction of M(𝑟, 𝐿,m, a)
can be obtained in terms of wall-crossings, forgetful maps, and generalized Hecke correspondences.
Proposition 3.3 can be recovered from [MY20, Section 5], but for the readers’ convenience, we give the
proof here.

Proposition 3.3. Let a ∈ (0, 1)𝑘 be a general parabolic weight. Then there is a linear isomorphism
between a cone over [0, 1]𝑘 and the effective cone Eff (M(𝑟, 𝐿,m, a)) of divisors.

Proof. By the GIT construction of M(𝑟, 𝐿,m, a) as an SL𝜒-quotient in Section 3.2, all of them can be
constructed as a GIT quotient of the same smooth variety 𝑅 with various linearizations. Furthermore,
the parabolic weights depend linearly on the choice of linearization. In particular, there is a linear
embedding (0, 1)𝑘 → N1,SL𝜒 (𝑅)R, where N1,SL𝜒 (𝑅) is the space of numerical classes of SL𝜒-linearized
line bundles on 𝑅. Since the character group of SL𝜒 is trivial and 𝑅 is normal, N1,SL𝜒 (𝑅)R → N1 (𝑅)R
is bijective [MFK94, Corollary 1.6]. Applying Kempf’s descent lemma [DN89, Theorem 2.3], we have
a surjective linear map N1(𝑅)R � N1,SL𝜒 (𝑅)R → N1 (𝑅//𝐿SL𝜒)R = N1 (M(𝑟, 𝐿,m, a))R. This map is
bijective because the unstable locus has codimension ≥ 2 (Theorem 3.1). In summary, there is a linear
embedding (0, 1)𝑘 → N1,SL𝜒 (𝑅)R → N1 (M(𝑟, 𝐿,m, a))R, which induces a linear embedding of a cone
over [0, 1]𝑘 to N1 (M(𝑟, 𝐿,m, a))R.

Now, we show that the cone over the closure [0, 1]𝑘 of (0, 1)𝑘 can be identified with
Eff (M(𝑟, 𝐿,m, a)). Recall that for any effective divisor D (or equivalently, a line bundle O(𝐷)) of
a normal Q-factorial projective variety V, we may associate a rational contraction 𝑉 � 𝑉 (𝐷), where
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𝑉 (𝐷) := Proj
⊕
𝑚≥0

H0 (𝑉,O(𝑚𝐷)).

Conversely, any rational contraction of V can be obtained in this way. If 𝐷 ∈ int Eff (𝑉), then𝑉 � 𝑉 (𝐷)

is a birational map, and if 𝐷 ∈ 𝜕Eff(𝑉), 𝑉 � 𝑉 (𝐷) is a contraction with positive dimensional general
fibers.

Note that on the boundary 𝜕 [0, 1]𝑘 , one of the coordinates must be either zero or one. In the first
case, we can obtain a rational contraction M(𝑟, 𝐿,m, a) → M(𝑟, 𝐿,m′, a′) in Example 2.7. In the latter
case, we have a generalized Hecke modification in Proposition 2.9. All of them are contractions with
positive dimensional fibers, so they must be associated with divisors on the boundary of the effective
cone. Since the effective cone is convex, this is sufficient to obtain the result. �

4. Nef vector bundles

Let E be the normalized Poincaré bundle over 𝑋 × M(𝑟, 𝐿). Recall that for any 𝑥 ∈ 𝑋 , E𝑥 is the vector
bundle on M(𝑟, 𝐿) obtained by restricting E to 𝑥 ×M(𝑟, 𝐿). We prove the nefness of E𝑥 and some other
positivity results. A key ingredient is the birational geometry of the moduli space of parabolic bundles
with one parabolic point.

Theorem 4.1. The restricted Poincaré bundle E𝑥 is a nef vector bundle.

Remark 4.2. The case of 𝑑 = 1 of Theorem 4.1 is shown in [Nar17, Proposition 3.3] and [BM19,
Lemma 13]. So we assume 𝑑 > 1. When 𝑑 = 1, the numerical computation in Lemma 4.4 is still
valid. But we have ℓ = 1, and thus, 𝑎 = 1. Therefore, the first wall-crossing is precisely the fibration
M(𝑟, 𝐿, 𝑟 − 1, 𝜖) → M(𝑟, 𝐿(−𝑥)) in Proposition 2.9, that is, a contraction in the Hecke correspondence.
In particular, there is no flip.

We obtain another nef bundle immediately.

Corollary 4.3. The vector bundle E∗
𝑥 ⊗ Θ is nef.

Proof. Fix a line bundle A of degree 1 on 𝑋. Consider the vector bundle E∗ ⊗ 𝑝∗𝐴⊗𝑞∗Θ on 𝑋×M(𝑟, 𝐿),
where 𝑝 : 𝑋×M(𝑟, 𝐿) → 𝑋 and 𝑞 : 𝑋×M(𝑟, 𝐿) → M(𝑟, 𝐿) are two projections. From the isomorphism
M(𝑟, 𝐿) � M(𝑟, 𝐿∗) � M(𝑟, 𝐴𝑟 ⊗ 𝐿∗), we see that E∗ ⊗ 𝑝∗𝐴 ⊗ 𝑞∗Θ is the normalized Poincaré bundle
on 𝑋 × M(𝑟, 𝐴𝑟 ⊗ 𝐿∗) � 𝑋 × M(𝑟, 𝐿). The restriction of E∗ ⊗ 𝑝∗𝐴 ⊗ 𝑞∗Θ to 𝑥 × M(𝑟, 𝐿) is isomorphic
to E∗

𝑥 ⊗ Θ. From Theorem 4.1, we see that E∗
𝑥 ⊗ Θ is nef. �

From now on, we prove the nefness of E𝑥 . By definition, we need to show that OP(E𝑥 ) (1) is nef.
Observe that P(E𝑥) � M(𝑟, 𝐿, 𝑟 − 1, 𝜖) for some very small 𝜖 > 0 (Example 2.6). Here, we use
M(𝑟, 𝐿, 𝑟 − 1, 𝑎) for the place M(𝑟, 𝐿, (𝑟 − 1), (𝑎)).

We explicitly analyze the first wall-crossing of the moduli space M(𝑟, 𝐿, 𝑟 − 1, 𝜖) by increasing
𝜖 → 1. Recall that ℓ is a positive integer, such that ℓ𝑑 ≡ 1 mod 𝑟 and 0 < ℓ < 𝑟 .

Lemma 4.4. Let a be the smallest parabolic weight on a wall. Then 𝑎 = 1/ℓ. Furthermore, a maximal
destabilizing subbundle has rank 𝑡ℓ and degree 𝑡𝑒 for some 𝑡 ∈ Z and an integer e satisfying ℓ𝑑−𝑟𝑒 = 1.

Proof. Let Δ (𝑠, 𝑒, 𝑛) be a wall. Note that n is either s or 𝑠−1. By Equation (3.2), exchanging s by 𝑟 − 𝑠 if
necessary, we may assume that 𝑛 = 𝑠. Then from (𝑒+ 𝑠𝑎)/𝑠 = (𝑑+ (𝑟−1)𝑎)/𝑟 , we have 𝑎 = (𝑠𝑑−𝑟𝑒)/𝑠.
Since (𝑟, 𝑑) = 1, we can find a unique positive 0 < 𝑠 < 𝑟 and 𝑒 ∈ Z, such that 𝑠𝑑 − 𝑟𝑒 = 1, which is ℓ.

We claim that 𝑎 = (ℓ𝑑 − 𝑟𝑒)/ℓ = 1/ℓ provides the first wall. Consider a wall 𝑎′ = (𝑠′𝑑 − 𝑟𝑒′)/𝑠′.
Setting 𝑡 := 𝑠′𝑑 − 𝑟𝑒′, 𝑠′𝑑 ≡ 𝑡 mod 𝑟 . On the other hand, 𝑡ℓ𝑑 ≡ 𝑡 mod 𝑟 . So if 𝑡ℓ < 𝑟 , from the
invertibility of d in Z/𝑟Z, 𝑠′ = 𝑡ℓ and 𝑒′ = 𝑡𝑒. Then 𝑎′ = 𝑡/𝑡ℓ = 1/ℓ = 𝑎. If 𝑡ℓ ≥ 𝑟 , there is a unique
positive integer u, such that 0 < 𝑠′ = 𝑡ℓ − 𝑢𝑟 < 𝑟 . Then 𝑎′ = 𝑡/𝑠′ = 𝑡/(𝑡ℓ − 𝑢𝑟) > 𝑡/𝑡ℓ = 1/ℓ.

This computation tells us that Δ (ℓ, 𝑒, ℓ) = Δ (𝑠′, 𝑒′, 𝑠′) only if 𝑡ℓ < 𝑟 and (𝑠′, 𝑒′) = (𝑡ℓ, 𝑡𝑒). So we
obtain the last assertion. �
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We have the following diagram:

P(E𝑥) = M(𝑟, 𝐿, 𝑟 − 1, 𝜖)
𝜋

�����
���

���
���

�
𝜋−

�����
����

����
����

�

M(𝑟, 𝐿) M(𝑟, 𝐿, 𝑟 − 1, 1/ℓ)

. (4.1)

The first map 𝜋 is a projective bundle and 𝜋− is a small contraction by Corollary 3.2. And 𝜌(P(E𝑥)) =
𝜌(M(𝑟, 𝐿)) +1 = 2. Since 𝜌(M(𝑟, 𝐿, 𝑟 −1, 1/ℓ)) < 𝜌(M(𝑟, 𝐿, 𝑟 −1, 𝜖)) = 2, 𝜌(M(𝑟, 𝐿, 𝑟 −1, 1/ℓ)) = 1.
Let A be an ample generator of Pic(M(𝑟, 𝐿, 𝑟 − 1, 1/ℓ)). Then 𝜋∗Θ and 𝜋∗−𝐴 generates N1 (P(E𝑥))R.
Definition 4.5. Fix a general point ((𝐸−, 𝑉−), (𝐸+, 𝑉+)) in the component M(ℓ, 𝑒, ℓ, 1/ℓ)×Pic(𝑋 )M(𝑟−ℓ,
𝑑 − 𝑒, 𝑟 − ℓ − 1, 1/ℓ) of the wall-crossing center in M(𝑟, 𝐿, 𝑟 − 1, 1/ℓ). Let C be a line class in the fiber
𝜋−1
− (((𝐸−, 𝑉−), (𝐸+, 𝑉+))) � P(Ext1 ((𝐸+, 𝑉+), (𝐸−, 𝑉−))∗) (Section 3.1).

Lemma 4.6. The intersection number OP(E𝑥 ) (1) · 𝐶 is zero.
Proof. The image 𝜋(P(Ext1((𝐸+, 𝑉+), (𝐸−, 𝑉−)))∗) = P(Ext1(𝐸+, 𝐸−)∗) =: P parametrizes isomor-
phism classes of extensions, and there is an exact sequence over 𝑋 × P

0 → 𝑝∗𝐸− ⊗ 𝑞∗OP (1) → 𝐸 ⊗ 𝑞∗OP (𝑚) → 𝑝∗𝐸+ → 0

([Ram73, Lemma 2.3], [HL10, Example 2.1.12]). Here, 𝑝 : 𝑋 × P → 𝑋 and 𝑞 : 𝑋 × P → P are two
projections. If we restrict the exact sequence to 𝑥 × 𝐶 � 𝑥 × P1 ⊂ 𝑋 × P, we have

0 → 𝐸−
𝑥 ⊗ OP1 (1) → 𝐸𝑥 ⊗ OP1 (𝑚) → 𝐸+

𝑥 → 0.

Since E𝑥 (and hence its restriction 𝐸𝑥) is normalized as 𝑐1 (E𝑥) = Θℓ , where 0 < ℓ < 𝑟 , and 𝐸−
𝑥 and

𝐸+
𝑥 are constant, ℓ = 𝑐1 (𝐸

−
𝑥 ⊗ OP1 (1)) = 𝑐1 (𝐸𝑥 ⊗ OP1 (𝑚)) = ℓ + 𝑟𝑚. Thus, we have 𝑚 = 0. Then

𝐸𝑥 |𝜋 (𝐶) fits in 0 → OP1 (1)ℓ → 𝐸𝑥 → O𝑟−ℓ
P1 → 0. A cohomology computation shows that this is a

split extension. Therefore, 𝜋−1(𝜋(𝐶)) = P(OP1 (1)ℓ ⊕ O𝑟−ℓ
P1 ). The parabolic flag in 𝐸𝑥 is determined

by that of 𝐸+
𝑥 , and it is fixed over C. This implies that 𝐶 � P(OP1 ) ↩→ P(OP1 (1)ℓ ⊕ O𝑟−ℓ

P1 ). Therefore,
OP(E𝑥 ) (1) |𝐶 = OP(O

P1 )
(1) = OP1 and OP(E𝑥 ) (1) · 𝐶 = 0. �

Proof of Theorem 4.1. From 𝜌(P(E𝑥)) = 2, 𝜋∗−𝐴 · 𝐶 = 0, and Lemma 4.6, we can conclude that
OP(E𝑥 ) (1) and 𝜋∗−𝐴 are proportional. OP(E𝑥 ) (1) is a positive multiple of 𝜋∗−𝐴 because it intersects with
the line class in a fiber of 𝜋 : P(E𝑥) → M(𝑟, 𝐿) positively. Therefore, OP(E𝑥 ) (1) is semiample, so
OP(E𝑥 ) (1) and E𝑥 are nef. �

The following is essentially the same computation with [Nar17, Proposition 3.1].
Lemma 4.7. Let E be the normalized Poincaré bundle on 𝑋 × M(𝑟, 𝐿). Then

Det(E∗) := det(𝑅𝑞∗(E∗))−1 � Θℓ (1−𝑔)−𝑒 .

Proof. For the notational simplicity, let M := M(𝑟, 𝐿) and M′ := M(𝑟, 𝐿∗). Then there is an isomorphism
𝜓 : M → M′. Since the isomorphism maps the unique ample generator ΘM′ to ΘM, by [Nar17,
Proposition 2.1],

ΘM = 𝜓∗(ΘM′ ) = (Det(E∗))𝑟 ⊗ (det(E∗ |{𝑥 }×M))−𝑑+𝑟 (1−𝑔) = Det(E∗)𝑟 ⊗ Θ−ℓ (−𝑑+𝑟 (1−𝑔))
M .

Thus, Det(E∗) = Θ
1+ℓ (−𝑑+𝑟 (1−𝑔) )

𝑟

M = Θ−𝑒+ℓ (1−𝑔)
M . �

Remark 4.8. Once we fix the parabolic points and the multiplicity, M(𝑟, 𝐿,m, a) are all birational,
and for any general a and a′, M(𝑟, 𝐿,m, a) and M(𝑟, 𝐿,m, a′) are connected by finitely many flips

https://doi.org/10.1017/fms.2023.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.75


Forum of Mathematics, Sigma 11

(Section 3). In particular, their Picard groups are identified. For a notational simplicity, we will suppress
all pullbacks (by flips and regular contractions) of line bundles in our notation. For instance, when there
is only one parabolic point x, there are two rational contractions 𝜋 : M(𝑟, 𝐿, 𝑟 − 1, 𝜖) → M(𝑟, 𝐿) and
𝜋1 : M(𝑟, 𝐿, 𝑟 − 1, 𝜖) � M(𝑟, 𝐿, 𝑟 − 1, 1 − 𝜖) → M(𝑟, 𝐿(−𝑥)). If there is no chance of confusion, we
use 𝐴 ⊗ 𝐵 for 𝜋∗𝐴 ⊗ 𝜋∗1𝐵. We denote OP(E𝑥 ) (𝑎) by O(𝑎). Later, when there are two parabolic points,
we will set O(𝑎, 𝑏) := 𝑝∗1OP(E𝑥 ) (𝑎) ⊗ 𝑝∗2OP(E∗

𝑦 ) (𝑏), where 𝑝1 : P(E𝑥) ×M(𝑟 ,𝐿) P(E∗
𝑦) → P(E𝑥) and

𝑝2 : P(E𝑥) ×M(𝑟 ,𝐿) P(E∗
𝑦) → P(E∗

𝑦).

Lemma 4.9. Let 𝑘 = (𝑟, 𝑑 − 1). On M(𝑟, 𝐿, 𝑟 − 1, 𝑎), Θ𝑘M(𝑟 ,𝐿 (−𝑥))
= OP(E𝑥 ) (𝑟) ⊗ Θ1−ℓ

M(𝑟 ,𝐿)
.

Proof. The proof is a careful refinement of [Nar17, Proposition 3.3]. We may assume that a is sufficiently
small, so M(𝑟, 𝐿, 𝑟 − 1, 𝑎) � P(E𝑥).

Let 𝑝 : 𝑋 × P(E𝑥) → 𝑋 and 𝑞 : 𝑋 × P(E𝑥) → P(E𝑥) be two projections and 𝜋 : 𝑋 × P(E𝑥) →

𝑋 × M(𝑟, 𝐿). Let 𝑖𝑥 : P(E𝑥) � 𝑥 × P(E𝑥) ↩→ 𝑋 × P(E𝑥). Recall that there are two exact sequences that
appear on the construction of the Hecke correspondence:

0 → 𝐻 (E) → 𝜋# (E) → 𝑝∗O𝑥 ⊗ 𝑞∗OP(E𝑥 ) (1) → 0

and

0 → 𝜋# (E∗) → 𝐾 (E) → 𝑖𝑥∗(OP(E𝑥 ) (−1) ⊗ 𝑇𝑥) → 0. (4.2)

Here, 𝜋#E is the pullback of E to 𝑋 × P(E𝑥) and 𝑇𝑥 is the tangent space of X at x.
By [Nar17, Proposition 2.1],

Θ𝑘M(𝑟 ,𝐿 (−𝑥)) = Θ𝑘M(𝑟 ,𝐿∗ (𝑥)) = Det(𝐾 (E))𝑟 ⊗ (det𝐾 (E) |𝑧×P(E𝑥 ) )
1−𝑑+𝑟 (1−𝑔)

for any 𝑧 ∈ 𝑋 . From (4.2), we have Det(𝜋# (E∗)) ⊗ OP(E𝑥 ) (1) = Det(𝐾 (E)). Since Det(𝜋# (E∗)) =
𝜋#Det(E) and 𝜋# (E∗) |𝑧×P(E𝑥 ) � 𝐾 (E) |𝑧×P(E𝑥 ) for any 𝑧 ≠ 𝑥,

Det(𝐾 (E))𝑟 ⊗ (det𝐾 (E) |𝑧×P(E𝑥 ) )
1−𝑑+𝑟 (1−𝑔))

= Det(𝐾 (E))𝑟 ⊗ (det 𝜋#(E∗) |𝑧×P(E𝑥 ) )
1−𝑑+𝑟 (1−𝑔) = Det(𝐾 (E))𝑟 ⊗ Θ−ℓ (1−𝑑+𝑟 (1−𝑔))

M(𝑟 ,𝐿)

= 𝜋# (Det(E∗))𝑟 ⊗ OP(E𝑥 ) (𝑟) ⊗ Θ−ℓ (1−𝑑+𝑟 (1−𝑔))
M(𝑟 ,𝐿)

(4.3)

= Θ𝑟ℓ (1−𝑔)−𝑟𝑒M(𝑟 ,𝐿)
⊗ OP(E𝑥 ) (𝑟) ⊗ Θ−ℓ (1−𝑑+𝑟 (1−𝑔))

M(𝑟 ,𝐿)
= OP(E𝑥 ) (𝑟) ⊗ Θ1−ℓ

M(𝑟 ,𝐿) .

The second and the fourth equalities follow from the normalization of E and Lemma 4.7, respectively. �

Corollary 4.10. Let 𝑘 = (𝑟, 𝑑 − (𝑟 − 1)). Then Θ𝑘M(𝑟 ,𝐿 (−(𝑟−1)𝑦)) = OP(E∗
𝑦 ) (𝑟) ⊗ Θ1+ℓ

M(𝑟 ,𝐿)
.

Proof. Within the identification M(𝑟, 𝐿) � M(𝑟, 𝐿∗), the normalized Poincaré bundle over M(𝑟, 𝐿∗) is
E∗ ⊗ ΘM(𝑟 ,𝐿) , and 𝑐1 (E∗ ⊗ ΘM(𝑟 ,𝐿) ) = 𝑐1 (Θ𝑟−ℓM(𝑟 ,𝐿)

). So M(𝑟, 𝐿, 1, 𝜖) � M(𝑟, 𝐿∗, 𝑟 − 1, 𝜖) � P(E∗
𝑦 ⊗

ΘM(𝑟 ,𝐿) ). When 𝑎 → 1, we obtain a contraction M(𝑟, 𝐿∗, 𝑟 − 1, 𝑎) → M(𝑟, 𝐿∗(−𝑦)) � M(𝑟, 𝐿(𝑦)) �
M(𝑟, 𝐿(−(𝑟 − 1)𝑦)). By Lemma 4.9,

Θ𝑘M(𝑟 ,𝐿 (−(𝑟−1)𝑦)) = Θ1−(𝑟−ℓ)
M(𝑟 ,𝐿∗)

⊗ OP(E∗
𝑦 ⊗Θ) (𝑟) = Θ1−(𝑟−ℓ)

M(𝑟 ,𝐿)
⊗ OP(E∗

𝑦 ) (𝑟) ⊗ Θ𝑟M(𝑟 ,𝐿) = OP(E∗
𝑦 ) (𝑟) ⊗ Θ1+ℓ

M(𝑟 ,𝐿) .

�

From (4.1), we obtain the nef cones of P(E𝑥) and P(E∗
𝑥). The bigness in the statement follows from

Lemma 4.9 and Corollary 4.10.
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Corollary 4.11.

1. The nef cone of P(E𝑥) = M(𝑟, 𝐿, 𝑟 − 1, 𝜖) is generated by 𝜋∗Θ and OP(E𝑥 ) (1).
If 𝑑 ≠ 1, OP(E𝑥 ) (1) is big.

2. The nef cone of P(E∗
𝑥) = M(𝑟, 𝐿, 1, 𝜖) is generated by 𝜋∗Θ and OP(E∗

𝑥 ) (1) ⊗ 𝜋∗Θ. If 𝑑 ≠ 𝑟 − 1,
OP(E∗

𝑥 ) (1) ⊗ 𝜋∗Θ is big.

5. Main example

From now on, we focus on the case that 𝑘 = 2 and m = (𝑟 − 1, 1). We set x = (𝑥1, 𝑥2) and a = (𝑎1, 𝑎2).
We use M(𝑟, 𝐿, a) for M(𝑟, 𝐿,m, a).

5.1. Effective cone

Let Δ (𝑠, 𝑒, n) be a wall on [0, 1]2, and let a be a general point on it. Let (𝐸,𝑉•) ∈ 𝑌 ⊂ M(𝑟, 𝐿, a) be a
general polystable parabolic bundle on the wall-crossing center. Then (𝐸,𝑉•) � (𝐹1,𝑊1•) ⊕ (𝐹2,𝑊2•)
and 𝜇(𝐸,𝑉•) = 𝜇(𝐹1,𝑊1•) = 𝜇(𝐹2,𝑊2•).

There are two possibilities. First of all, it is possible that one of 𝐹𝑖’s (say 𝐹1) has the largest possible
intersection with the flags of E. That means dim 𝐹1 |𝑥1 ∩ 𝑉1 = dim 𝐹1 |𝑥1 = 𝑠 and dim 𝐹1 |𝑥2 ∩ 𝑉2 =
dim𝑉2 = 1. We have an equality

𝑒 + 𝑠𝑎 : 1 + 𝑎2
𝑠

=
𝑑 + (𝑟 − 1)𝑎1 + 𝑎2

𝑟
,

or equivalently, 𝑠𝑎 : 1 + (𝑟 − 𝑠)𝑎2 = 𝑠𝑑 − 𝑟𝑒. The slope of the line on the (𝑎1, 𝑎2)-plane is negative,
so we will call the wall a negative wall. To intersect with the interior of [0, 1]2, it is necessary that
0 < 𝑠𝑑 − 𝑟𝑒 < 𝑟 . Since these walls are Δ (𝑠, 𝑒, (𝑠, 1)) = Δ (𝑟 − 𝑠, 𝑑 − 𝑒, (𝑟 − 𝑠 − 1, 0)), they are simple
walls (Section 3.1).

The other case is that dim 𝐹1 |𝑥1 ∩𝑉1 = dim 𝐹1 |𝑥1 = 𝑠 and dim 𝐹1 |𝑥2 ∩𝑉2 = 0. Then

𝑒 + 𝑠𝑎 : 1
𝑠

=
𝑑 + (𝑟 − 1)𝑎1 + 𝑎2

𝑟
,

so 𝑠𝑎 : 1 − 𝑠𝑎 : 2 = 𝑠𝑑 − 𝑟𝑒. The slope of the wall Δ (𝑠, 𝑒, (𝑠, 0)) is one, and we call it a positive wall.
The nonempty intersection with (0, 1)2 is equivalent to −𝑠 < 𝑠𝑑 − 𝑟𝑒 < 𝑠. Since (𝑟, 𝑑) = 1, 𝑠𝑑 − 𝑟𝑒 ≠ 0
and there is no wall passing through the origin. See Figure 1 for an example of the wall-chamber
decomposition.

The line bundle Θ is the pullback of Θ by M(𝑟, 𝐿, a) � M(𝑟, 𝐿).

Lemma 5.1. For a general weight a, the dualizing bundle of M(𝑟, 𝐿, a) is

𝜔 = O(−𝑟,−𝑟) ⊗ Θ−2.

Proof. We may assume that a is sufficiently small and M(𝑟, 𝐿, a) � P(E𝑥1 ) ×M(𝑟 ,𝐿) P(E∗
𝑥2 ). Apply the

relative Euler sequence to P(E𝑥1 ) → M(𝑟, 𝐿) and P(E𝑥1 ) ×M(𝑟 ,𝐿) P(E∗
𝑥2 ) → P(E𝑥1 ). �

Proposition 5.2. Let a be a general weight. Then Eff(M(𝑟, 𝐿, a)) is generated by four extremal rays

Θ,O(𝑟, 0) ⊗ Θ1−ℓ ,O(0, 𝑟) ⊗ Θ1+ℓ ,O(𝑟, 𝑟) ⊗ Θ.

Proof. By Proposition 3.3, it is sufficient to find four divisors associated to four extremal parabolic
weights. For any big Q-divisor 𝐷 ∈ int Eff (M(𝑟, 𝐿, a)), the associated birational model

M(𝑟, 𝐿, a) (𝐷) := Proj
⊕
𝑚≥0

H0(M(𝑟, 𝐿, a),O(�𝑚𝐷�))
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Figure 1. The wall-chamber decomposition for 𝑟 = 5 and 𝑑 = 2. The thick line segment forΔ (2, 1, (2, 0))
is a multiple wall. Two arrows denote diagonal and nearly diagonal wall-crossing directions.

is M(𝑟, 𝐿, a′). When a′ = (0, 0), the associated rational contraction is M(𝑟, 𝐿) and the associated
divisor is a scalar multiple of Θ. When a′ = (1/ℓ, 0), by Section 4, the associated divisor is a multiple
of O(1, 0). When a′ = (1, 0), the associated rational contraction is M(𝑟, 𝐿(−𝑥)) and the associated
divisor is a scalar multiple of O(𝑟, 0) ⊗Θ1−ℓ by Lemma 4.9. For a′ = (0, 1/(𝑟 − ℓ)), we have a multiple
of O(0, 1) ⊗ Θ. Finally, for a′ = (0, 1), a multiple of O(0, 𝑟) ⊗ Θ1+ℓ is associated.

By an elementary computation, for each point a′ = (𝑎′1, 𝑎
′
2) ∈ [0, 1]2, the associated divisor O(𝐷) =

O(𝑐1, 𝑐2) ⊗ Θ𝑑 can be written as a positive multiple of Θ ⊗ (O(𝑟, 0) ⊗ Θ−ℓ)𝑎
′
1 ⊗ (O(0, 𝑟) ⊗ Θℓ)𝑎

′
2 =

O(𝑟𝑎′1, 𝑟𝑎
′
2) ⊗ Θ1−ℓ𝑎′1+ℓ𝑎

′
2 . A routine calculation shows that

(𝑎′1, 𝑎
′
2) =

(
𝑐1

𝑟𝑑 + ℓ𝑐1 − ℓ𝑐2
,

𝑐2
𝑟𝑑 + ℓ𝑐1 − ℓ𝑐2

)
. (5.1)

Thus, the last extremal ray, which is associated to a′ = (1, 1), is O(𝑟, 𝑟) ⊗ Θ. �

5.2. Diagonal and nearly diagonal wall-crossings

We say a wall-crossing is a diagonal one if we cross a wall Δ (𝑠, 𝑒, n) while the weight a is increasing
along the line 𝑎1 = 𝑎2. A wall-crossing is a nearly diagonal if we cross a wall Δ (𝑠, 𝑒, n) while the
weight a is increasing along 𝑟𝑎1 = (𝑟 + 1)𝑎2. See Figure 1. We explicitly compute these wall-crossings.

Proposition 5.3. All walls that appear in diagonal or nearly diagonal wall-crossings are simple.

Proof. For a negative wall Δ (𝑠, 𝑒, (𝑠, 1)) = Δ (𝑟 − 𝑠, 𝑑 − 𝑒, (𝑟 − 𝑠 − 1, 0)), the greatest common divisor
for both {𝑠, 𝑒, 𝑠, 1} and {𝑟 − 𝑠, 𝑑 − 𝑒, 𝑟 − 𝑠 − 1, 0} is one. So every negative wall is simple. Then all
multiple walls are positive walls, and hence parallel to the diagonal line 𝑎1 = 𝑎2. Such a wall is given
by 𝑎1 − 𝑎2 = (𝑠𝑑 − 𝑟𝑒)/𝑠. Since (𝑟, 𝑑) = 1, the right-hand side is nonzero and it is disjoint from the
diagonal line 𝑎1 = 𝑎2. Moreover, | (𝑠𝑑 − 𝑟𝑒)/𝑠 | ≥ 1/𝑠 ≥ 1/(𝑟 − 1). It is a routine calculation to check
that these walls do not intersect with 𝑟𝑎1 = (𝑟 + 1)𝑎2 on [0, 1]2. �

https://doi.org/10.1017/fms.2023.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.75


14 K.-S. Lee and H.-B. Moon

Remark 5.4. Several walls can meet at a weight during diagonal or nearly diagonal wall-crossings.
In this case, we may perturb the weight slightly, then the wall-crossing can be decomposed into a
composition of several simple wall-crossings. Thus, we may assume that all wall-crossings are simple.

We can compute the dimension of all simple wall-crossing centers𝑌±. For the theoretical background
and details, see [MY21, Section 4]. Here, we leave the computation for a negative wall Δ (𝑠, 𝑒, (𝑠, 1)).
We keep the notation in the diagram (3.3). For a point ((𝐸−, 𝑉−

• ), (𝐸
+, 𝑉+

• )) ∈ 𝑌0, it is sufficient to
evaluate dim P(Ext1((𝐸±, 𝑉±

• ), (𝐸
∓, 𝑉∓

• ))
∗). By the Serre duality for parabolic bundles,

Ext1 ((𝐸+, 𝑉+
• ), (𝐸

−, 𝑉−
• )) � SParHom((𝐸− ⊗ 𝜔∗(−x), 𝑉−

• ), (𝐸
+, 𝑉+

• ))
∗

[Yok95, Proposition 3.7]. There is an exact sequence of vector spaces [MY21, Section 4.2]

0 → SParHom((𝐸− ⊗ 𝜔∗(−x), 𝑉−
• ), (𝐸

+, 𝑉+
• )) → Hom(𝐸− ⊗ 𝜔∗(−x), 𝐸+) (5.2)

→

2⊕
𝑖=1

Hom(𝐸− ⊗ 𝜔∗(−x) |𝑥𝑖 , 𝐸+|𝑥𝑖 )/N𝑥𝑖 ((𝐸
− ⊗ 𝜔∗(−x), 𝑉−

• ), (𝐸
+, 𝑉+

• )) → 0,

where 𝑁𝑥 ((𝐸
−, 𝑉−

• ), (𝐸
+, 𝑉+

• )) is the subspace of Hom(𝐸−|𝑥 , 𝐸
+|𝑥) which is strongly parabolic at x.

Since the parabolic weight for 𝑉−
𝑖 and 𝑉+

𝑖 are the same,

𝑁𝑥𝑖 ((𝐸
− ⊗ 𝜔∗(−x), 𝑉−

• ), (𝐸
+, 𝑉+

• ))

= { 𝑓 ∈ Hom(𝐸− ⊗ 𝜔∗(−x) |𝑥𝑖 , 𝐸+|𝑥𝑖 ) | 𝑓 (𝐸
− ⊗ 𝜔∗(−x) |𝑥𝑖 ) ⊂ 𝑉+

𝑖 , 𝑓 (𝑉
−
𝑖 ) = 0}.

From dim𝑉−
1 = 𝑠 = rank 𝐸− and dim𝑉+

2 = 0, dim 𝑁𝑥𝑖 ((𝐸
− ⊗ 𝜔∗(−x), 𝑉−

• ), (𝐸
+, 𝑉+

• )) = 0 for both
𝑖 = 1, 2. Now

dim Ext1((𝐸+, 𝑉+
• ), (𝐸

−, 𝑉−
• ))

= dim Hom(𝐸− ⊗ 𝜔∗(−x), 𝐸+) − 2𝑠(𝑟 − 𝑠) (5.3)
≥ 𝜒(𝐸−∗ ⊗ 𝐸+ ⊗ 𝜔(x)) − 2𝑠(𝑟 − 𝑠) = 𝑠𝑑 − 𝑟𝑒 + 𝑠(𝑟 − 𝑠) (𝑔 − 1).

By the same method, we obtain

dim Ext1((𝐸−, 𝑉−
• ), (𝐸

+, 𝑉+
• )) ≥ 𝑟𝑒 − 𝑠𝑑 + 𝑠(𝑟 − 𝑠) (𝑔 − 1) + 𝑟, (5.4)

so dim Ext1((𝐸−, 𝑉−
• ), (𝐸

+, 𝑉+
• )) + dim Ext1 ((𝐸+, 𝑉+

• ), (𝐸
−, 𝑉−

• )) ≥ 2𝑠(𝑟 − 𝑠) (𝑔 − 1) + 𝑟 . On the other
hand,

dim P(Ext1((𝐸−, 𝑉−
• ), (𝐸

+, 𝑉+
• ))

∗) + dim P(Ext1 ((𝐸+, 𝑉+
• ), (𝐸

−, 𝑉−
• ))

∗)

= dim M(𝑟, 𝐿, a) − dim M(𝑠, 𝑒, n, a) ×Pic𝑒 (𝑋 ) M(𝑟 − 𝑠, 𝑑 − 𝑒,m − n, a) − 1
= 2𝑠(𝑟 − 𝑠) (𝑔 − 1) + 𝑟 − 2.

Therefore, we obtain that (5.3) and (5.4) are indeed equalities. In summary:

Proposition 5.5. Let Δ (𝑠, 𝑒, (𝑠, 1)) be a negative wall. For the contraction map 𝜋± : M(𝑟, 𝐿, a±) →

M(𝑟, 𝐿, a) in (3.3), the dimension of the exceptional fiber of 𝜋+ (respectively, 𝜋−) is (𝑟𝑒 − 𝑠𝑑) +
𝑠(𝑟 − 𝑠) (𝑔 − 1) + 𝑟 − 1 (respectively, (𝑠𝑑 − 𝑟𝑒) + 𝑠(𝑟 − 𝑠) (𝑔 − 1) − 1).

6. Cohomology via wall-crossing of derived category

To prove the main theorems, a critical technical step is to identify the cohomology groups of the bundles
on different birational models. Halpern-Leistner and Ballard et al. provided a systematic way to study
the derived category of a variation of GIT [HL15, BFK19]. In this section, we review their works, in
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particular, the quantization theorem. Technically, the results treat the derived category of a quotient
stack. However, the following (well-known) lemma and its corollary show that it can be applied to the
cohomology computation on the coarse moduli space. Let Dper (M) be the category of perfect complexes
over M.

Lemma 6.1. Let M be a smooth Artin stack and 𝜋 : M → M be its good moduli space. Then
𝐿𝜋∗ : Dper (M) → D𝑏 (M) is fully faithful.

Proof. We have an isomorphism OM → 𝑅𝜋∗OM from the definition of a good moduli space. For any
𝐹•, 𝐺• ∈ Dper (M), and 𝑖 ∈ Z, we have isomorphisms

Hom(𝐿𝜋∗𝐹•, 𝐿𝜋∗𝐺• [𝑖]) � Hom(𝐹•, 𝑅𝜋∗𝐿𝜋
∗𝐺• [𝑖]) � Hom(𝐹•, 𝐺• [𝑖])

by the adjunction formula and the projection formula ([HR17, Corollary 4.12], [Ols16, Proposition
9.3.6]). Therefore, we see that 𝐿𝜋∗ is fully faithful. �

Corollary 6.2. We retain the same setup.

1. If L is a vector bundle over M, then H𝑖 (M, 𝐿) � H𝑖 (M, 𝜋∗𝐿).
2. If M is smooth, 𝐿𝜋∗ : D𝑏 (M) → D𝑏 (M) is fully faithful. In particular, for any 𝐹• ∈ D𝑏 (M),

Hom𝑖 (OM, 𝐹
•) � Hom𝑖 (OM, 𝐿𝜋∗𝐹•).

6.1. Variation of GIT and derived category

Let V be a smooth quasi projective variety equipped with a reductive group G-action and A be a
linearization. The GIT quotient 𝑉//𝐴𝐺 is the good moduli space of the quotient stack [𝑉 𝑠𝑠 (𝐴)/𝐺].
Halpern-Leistner showed that, for a collection of integers 𝑤 = (𝑤𝑖) for each Kempf-Ness stratum of the
unstable locus, D𝑏 ([𝑉/𝐺]) has a semiorthogonal decomposition

D𝑏 ([𝑉/𝐺]) = 〈D𝑏
[𝑉 𝑢𝑠 (𝐴)/𝐺 ] ( [𝑉/𝐺])<𝑤 ,G𝑤 ,D𝑏

[𝑉 𝑢𝑠 (𝐴)/𝐺 ] ( [𝑉/𝐺])≥𝑤 )〉,

and moreover, the restriction functor 𝑖∗ : G𝑤 → D𝑏 ([𝑉 𝑠𝑠 (𝐴)/𝐺]) is an equivalence of categories
[HL15, Theorem 2.10].

From now on, we assume that there is only one unstable stratum S that is a smooth subvariety. It is
determined by a one-parameter subgroup 𝜆(𝑡) which minimizes the normalized weight wt𝜆𝐴/|𝜆 | over
the 𝜆-fixed locus 𝑍 ⊂ 𝑆. Since a choice of w is arbitrary, we may set 𝑤 = 0. Under this condition, G𝑤

is characterized as the subcategory of complexes 𝐹•, such that the 𝜆-weights of the hypercohomology
H∗(𝐹• |𝑍 ) is supported on [𝑤, 𝑤 + 𝜂) [HL15, Lemma 2.9]. Here, 𝜂 is the 𝜆-weight of the top wedge
product of 𝑁∗

𝑆/𝑉
|𝑍 .

The following theorem is a key ingredient for our cohomology computation.

Theorem 6.3 Quantization theorem [HL15, Theorem 3.29]. For 𝐹• ∈ D𝑏 ([𝑉/𝐺]), suppose that the
𝜆-weights of H∗(𝐹• |𝑍 ) are supported on (−∞, 𝜂). Then

H𝑖 ([𝑉/𝐺], 𝐹•) � H𝑖 ([𝑉 𝑠𝑠 (𝐴)/𝐺], 𝐹• |[𝑉 𝑠𝑠 (𝐴)/𝐺 ] ).

We apply the above result to the variation of GIT setup. Let 𝐴0 be a linearization, such that𝑉 𝑠𝑠 (𝐴0) ≠
𝑉 𝑠 (𝐴0). For a sufficiently small 𝜖 and a linearized ample line bundle A, let 𝐴± := 𝐴0 ± 𝜖 𝐴. We assume
that 𝑉 𝑠𝑠 (𝐴±) = 𝑉 𝑠 (𝐴±). Assume further that 𝑉 𝑠 (𝐴±) = 𝑉 𝑠𝑠 (𝐴0) \ 𝑆± and 𝑆± are smooth irreducible
varieties. If 𝜆± are the one-parameter subgroups describing the Kempf-Ness strata 𝑆±, then 𝜆− = 𝜆−1

+ .
Let 𝑍 ⊂ 𝑆+ ∩ 𝑆− be the 𝜆±-fixed locus and 𝜂± be the 𝜆±-weight of the top wedge product of 𝑁∗

𝑆±/𝑉
|𝑍 .
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Theorem 6.4 [TT21, Theorem 3.15]. If 𝜆−-weights of H∗(𝐹• |𝑍 ) are supported on (−𝜂+, 𝜂−),

H𝑖 ([𝑉 𝑠 (𝐴−)/𝐺], 𝐹• |[𝑉 𝑠 (𝐴−)/𝐺 ] ) � H𝑖 ([𝑉 𝑠𝑠 (𝐴0)/𝐺], 𝐹•) � H𝑖 ([𝑉 𝑠 (𝐴+)/𝐺], 𝐹• |[𝑉 𝑠 (𝐴+)/𝐺 ] ).

The first isomorphism follows from Theorem 6.3, and the second one is from the theorem and
𝜆− = 𝜆−1

+ . In particular, for any line bundle E on [𝑉 𝑠𝑠 (𝐴0)/𝐺], if the magnitude of the 𝜆−-weight is
“not too big,” then the cohomology of E on both sides of the wall can be identified.

6.2. Weight computation

All M(𝑟, 𝐿, a) are constructed by GIT, and they are connected by the variation of GIT (Section 3.2).
For any simple wall-crossing, the technical assumptions we made in Section 6.1 hold. In this section,
we compute the 𝜆−-weight wt𝜆−𝐹 for every line bundle F and each simple wall that occurs during the
diagonal and nearly diagonal wall-crossings.

Take a wall Δ (𝑠, 𝑒, n), and pick a general weight a = (𝑎1, 𝑎2) ∈ Δ (𝑠, 𝑒, n). Let A be an ample divisor
associated to a. Then 𝑅𝑠𝑠 (𝐴)//SL𝜒 � M(𝑟, 𝐿, a). For two nearby weights a± := (𝑎1 ± 𝜖, 𝑎2 ± 𝜖), let 𝐴±

be a line bundle, such that M(𝑟, 𝐿, a±) � 𝑅𝑠 (𝐴±)//SL𝜒.

Proposition 6.5. Let Δ (𝑠, 𝑒, n) be a simple wall, a ∈ Δ (𝑠, 𝑒, n), and A be an associated line bundle. Let
𝜆− be the one-parameter subgroup associated to the stratum 𝑆− := 𝑅𝑠𝑠 (𝐿0) \ 𝑅

𝑠 (𝐿−). Over the 𝜆−-fixed
locus 𝑍 ⊂ 𝑆−,

wt𝜆−Θ = −𝜒(𝑠𝑑 − 𝑟𝑒).

Proof. A general point in Z parametrizes a pair

([O𝜒− ⊕ O𝜒+ 𝜑
→ 𝐸−(𝑚) ⊕ 𝐸+(𝑚) → 0], 𝑉•),

where 𝐸− (respectively, 𝐸+) is a rank s (respectively, 𝑟 − 𝑠), degree e (respectively, 𝑑 − 𝑒) vector bundle,
𝜒± = dim H0 (𝐸±(𝑚)), and 𝜑 = 𝜑− ⊕ 𝜑+, where 𝜑± : O𝜒± → 𝐸±(𝑚) and H0 (O𝜒±) → H0 (𝐸±(𝑚)) is
a scalar multiple map. Because 𝜆−(𝑡) is a subgroup of SL𝜒, 𝜆−(𝑡)-weight on 𝐸+(𝑚) is 𝑢𝜒− and that on
𝐸−(𝑚) is −𝑢𝜒+ for some scalar u. Normalizing 𝜆−, we may assume that 𝑢 = 1. By Riemann-Roch, it is
straightforward to check that 𝜒− = 𝑒 + 𝑠𝑚 + 𝑠(1 − 𝑔) and 𝜒+ = (𝑑 − 𝑒) + (𝑟 − 𝑠)𝑚 + (𝑟 − 𝑠) (1 − 𝑔). For
any vector bundle E over X, Θ|[𝐸 ] = Θ|[𝐸 (𝑚) ] is defined as

Det(𝐸 (𝑚))𝑟 ⊗ det 𝐸 (𝑚) |𝜒𝑥 = (∧𝜒H0(𝐸 (𝑚))∗)𝑟 ⊗ det 𝐸 (𝑚) |𝜒𝑥 ,

for some 𝑥 ∈ 𝑋 [Nar17, Proposition 2.1]. Its 𝜆−-weight is

−𝑟 (−𝜒+𝜒− + 𝜒−𝜒+) + 𝜒(−𝑠𝜒+ + (𝑟 − 𝑠)𝜒−) = −𝜒(𝑠𝑑 − 𝑟𝑒). �

Lemma 6.6. We identify the effective cone of M(𝑟, 𝐿,m, a) with the cone over [0, 1]2, the closure of
the space of parabolic weights (Proposition 3.3). Let �̃� be a line bundle on the same wall Δ (𝑠, 𝑒, n),
including A. Then wt𝜆− �̃� = 0.

Proof. Recall that M(𝑟, 𝐿, a) = 𝑅𝑠𝑠 (𝐴)//SL𝜒. Since A descends to M(𝑟, 𝐿, a), by Kempf’s descent
lemma [DN89, Theorem 2.3], for any closed SL𝜒-orbit, the stabilizer group acts on the fiber of A
trivially. In particular, at a point in Z, the stabilizer group 𝜆− acts trivially on the fiber, hence the 𝜆−-
weight is zero.

The same argument works for any small perturbation of A along Δ (𝑠, 𝑒, n), as the stability and the
stabilizer group 𝜆− does not change. By the linearity of weight, the same is true for an arbitrary linear
combination of A and its perturbation, which covers all Δ (𝑠, 𝑒, n). �
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On the other hand, for a point 𝑧 := ([O𝜒− ⊕ O𝜒+ → 𝐸−(𝑚) ⊕ 𝐸+(𝑚) → 0], 𝑉•) ∈ 𝑍 , 𝑁𝑆−/𝑅 |𝑧 is
identified with Ext1((𝐸+, 𝑉+

• ), (𝐸
−, 𝑉−

• )) and the action of 𝜆− on 𝑁𝑆±/𝑅𝑠𝑠 (𝐴) |𝑧 has weight −𝜒 [Tha96,
Section 7]. Thus, for a negative wall-crossing along Δ (𝑠, 𝑒, (𝑠, 1)), we obtain

𝜂− = 𝜒 dim Ext1((𝐸+, 𝑉+
• ), (𝐸

−, 𝑉−
• )) = 𝜒(𝑠𝑑 − 𝑟𝑒 + 𝑠(𝑟 − 𝑠) (𝑔 − 1)), (6.1)

𝜂+ = 𝜒 dim Ext1((𝐸−, 𝑉−
• ), (𝐸

+, 𝑉+
• )) = 𝜒(𝑟𝑒 − 𝑠𝑑 + 𝑠(𝑟 − 𝑠) (𝑔 − 1) + 𝑟), (6.2)

by Proposition 5.5.

7. Embedding of derived category

In this section, we prove Theorem 1.1.

7.1. Bondal-Orlov criterion

Let E be the normalized Poincaré bundle over 𝑋×M(𝑟, 𝐿). Let 𝑝 : 𝑋×M(𝑟, 𝐿) → 𝑋 , 𝑞 : 𝑋×M(𝑟, 𝐿) →
M(𝑟, 𝐿) be two projections. Consider the Fourier-Mukai transform

ΦE : D𝑏 (𝑋) →D𝑏 (M(𝑟, 𝐿))

𝐹• ↦→𝑅𝑞∗(E ⊗𝐿 𝐿𝑝∗𝐹•).

The Bondal-Orlov criterion [BO95, Theorem 1.1] provides the necessary and sufficient condition for
the fully faithfulness of a Fourier-Mukai transform between two smooth algebraic varieties. The next
theorem is a version applied to ΦE .

Theorem 7.1 (Bondal-Orlov criterion). For each 𝑥 ∈ 𝑋 , let E𝑥 be the restriction of the normalized
Poincaré bundle on M(𝑟, 𝐿). The functor ΦE : D𝑏 (𝑋) → D𝑏 (M(𝑟, 𝐿)) is fully faithful if and only if the
following conditions hold:

1. H0 (M(𝑟, 𝐿), E𝑥 ⊗ E∗
𝑥) � C.

2. H𝑖 (M(𝑟, 𝐿), E𝑥 ⊗ E∗
𝑥) = 0 for 𝑖 ≥ 2.

3. H𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ E∗
𝑥2) = 0 for all 𝑥1 ≠ 𝑥2 and all 𝑖 ∈ Z.

Proof of Theorem 1.1. Items (1) and (2) of Theorem 7.1 are proved by [BM19, Section 3], by extending
the work of Narasimhan and Ramanan in [NR75]. We show Item (3). Since

H𝑖 (M(𝑟, 𝐿, e),O(1, 1)) � H𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ E∗
𝑥2 )

for a small e = (𝜖, 𝜖), it is sufficient to show that H𝑖 (M(𝑟, 𝐿, e),O(1, 1)) = 0.
By Proposition 5.2 and the fact that there is no divisorial contraction on the wall-crossing (Propo-

sition 5.5), there is a parabolic weight a, such that O(𝑟 + 1, 𝑟 + 1) ⊗ Θ2 is nef and big on M(𝑟, 𝐿, a).
Note that O(𝑟 + 1, 𝑟 + 1) ⊗ Θ2 lies on a subspace generated by two extremal rays Θ and O(𝑟, 𝑟) ⊗ Θ of
Eff (M(𝑟, 𝐿, e)). To reach this line bundle, we may run a diagonal wall-crossing. By Proposition 5.3, we
encounter only negative walls, which are all simple, to reach M(𝑟, 𝐿, a) from M(𝑟, 𝐿, e).

For each negative wall Δ (𝑠, 𝑒, (𝑠, 1)), a parabolic weight a′ = (𝑎′1, 𝑎
′
2) lies on it if and only if it

satisfies 𝑠𝑎 : 1′ + (𝑟 − 𝑠)𝑎′2 = 𝑠𝑑 − 𝑟𝑒. Furthermore, if a′ is on the diagonal, 𝑎′1 = 𝑎′2 = (𝑠𝑑 − 𝑟𝑒)/𝑟 .
Thus, by (5.1) in Section 5.1, the associated line bundle is a scalar multiple of

O(𝑠𝑑 − 𝑟𝑒, 𝑠𝑑 − 𝑟𝑒) ⊗ Θ.

The 𝜆−-weight for this line bundle has to be zero by Lemma 6.6. By Proposition 6.5,

wt𝜆−O(1, 1) = 𝜒.
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On the other hand, since 𝑔 ≥ 2 and 0 < 𝑠𝑑 − 𝑟𝑒 < 𝑟 , Equations (6.1) and (6.2) tell us 𝜂± > 𝜒.
Therefore, for any simple wall intersecting the diagonal, the 𝜆−-weight of O(1, 1) lies on (−𝜂−, 𝜂+).
Theorem 6.4 implies that

H𝑖 (M(𝑟, 𝐿, a′),O(1, 1)) � H𝑖 (M(𝑟, 𝐿, e),O(1, 1))

for any 𝑖 ∈ Z and any general diagonal weight a′, including a. For 𝑖 > 0,

H𝑖 (M(𝑟, 𝐿, a),O(1, 1)) = H𝑖 (M(𝑟, 𝐿, a), 𝜔 ⊗ O(𝑟 + 1, 𝑟 + 1) ⊗ Θ2) = 0

by Kawamata-Viehweg vanishing. And H0 (M(𝑟, 𝐿, a),O(1, 1)) = 0 since O(1, 1) ∉ Eff (M(𝑟, 𝐿, a)).
�

8. Vanishing of cohomology

We prove the following vanishing result, which is used in both the computation of a semiorthogonal
decomposition of D𝑏 (M(𝑟, 𝐿)) and the construction of ACM bundles.

Theorem 8.1. For any 𝑥 ∈ 𝑋 and 𝑗 ≥ −1, H𝑖 (M(𝑟, 𝐿), E𝑥 ⊗ Θ 𝑗 ) = 0 for all 𝑖 > 0.

Proof. We divide the proof into several steps.
Step 1. Observe that

H𝑖 (M(𝑟, 𝐿), E𝑥 ⊗ Θ 𝑗 ) � H𝑖 (M(𝑟, 𝐿, e),O(1, 0) ⊗ Θ 𝑗 ) � H𝑖 (M(𝑟, 𝐿, e),O(𝑟 + 1, 𝑟) ⊗ Θ 𝑗+2 ⊗ 𝜔).

Since

O(𝑟 + 1, 𝑟) ⊗ Θ 𝑗+2 = (O(𝑟, 𝑟) ⊗ Θ) ⊗ Θ
ℓ−1
𝑟 +( 𝑗+1) ⊗ (O(𝑟, 0) ⊗ Θ1−ℓ)

1
𝑟 ,

for 𝑗 ≥ −1, O(𝑟 + 1, 𝑟) ⊗ Θ 𝑗+2 is on the effective cone of M(𝑟, 𝐿, e), where e = ((𝑟 + 1)𝜖, 𝑟𝜖) for a
small 0 < 𝜖 � 1. Moreover, unless ℓ = 1 and 𝑗 = −1, it lies on the interior of the effective cone (we
will treat ℓ = 1, 𝑗 = −1 case in Step 4). Thus, if we take a as (possibly a slight perturbation of) the one
associated to O(𝑟 + 1, 𝑟) ⊗ Θ 𝑗+2, that is, ( 𝑟+1

𝑟 ( 𝑗+2)+ℓ ,
𝑟

𝑟 ( 𝑗+2)+ℓ ) by (5.1), O(𝑟 + 1, 𝑟) ⊗ Θ 𝑗+2 is nef and big
on M(𝑟, 𝐿, a). By Kawamata-Viehweg vanishing, H𝑖 (M(𝑟, 𝐿, a),O(𝑟 + 1, 𝑟) ⊗Θ 𝑗+2 ⊗ 𝜔) = 0 for 𝑖 > 0.
Thus, it is enough to show that H𝑖 (M(𝑟, 𝐿, a),O(1, 0) ⊗Θ 𝑗 ) � H𝑖 (M(𝑟, 𝐿, e),O(1, 0) ⊗Θ 𝑗 ) for 𝑗 ≥ −1.

Step 2. We can move from e to a by a nearly diagonal wall-crossing (Section 5.2). All walls that
we encounter are simple wall Δ (𝑠, 𝑒, (𝑠, 1)) (Proposition 5.3). The wall Δ (𝑠, 𝑒, (𝑠, 1)) is given by
𝑠𝑎 : 1 + (𝑟 − 𝑠)𝑎2 = 𝑠𝑑 − 𝑟𝑒. So if the wall actually occurs while we move from e to a,

𝑠𝑑 − 𝑟𝑒 < 𝑠
𝑟 + 1

𝑟 ( 𝑗 + 2) + ℓ
+ (𝑟 − 𝑠)

𝑟

𝑟 ( 𝑗 + 2) + ℓ
=

𝑟2 + 𝑠

𝑟 ( 𝑗 + 2) + ℓ
. (8.1)

Step 3. For each wall Δ (𝑠, 𝑒, (𝑠, 1)), let 𝜆− be the associated one-parameter subgroup. Combining
Proposition 6.5 and Lemma 6.6, we have

wt𝜆−
(
O(1, 0) ⊗ Θ 𝑗 ) = 𝜒

(
𝑠

𝑟
−

(
ℓ

𝑟
+ 𝑗

)
(𝑠𝑑 − 𝑟𝑒)

)
.

Since 0 < 𝑠𝑑 − 𝑟𝑒 < 𝑟 , for any wall, it is straightforward to check that wt𝜆−
(
O(1, 0) ⊗ Θ 𝑗

)
≤

wt𝜆−
(
O(1, 0) ⊗ Θ−1) < 𝜒(𝑠/𝑟 + (𝑠𝑑 − 𝑟𝑒)) < 𝜂− for any 𝑗 ≥ −1 by comparing with (6.1).

Now, we need to show that

−𝜂+ < wt𝜆−
(
O(1, 0) ⊗ Θ 𝑗 ) (8.2)
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for every wall Δ (𝑠, 𝑒, (𝑠, 1)) with the condition (8.1). Equation (8.2) is equivalent to

(
ℓ

𝑟
+ 𝑗 + 1) (𝑠𝑑 − 𝑟𝑒) < 𝑠(𝑟 − 𝑠) (𝑔 − 1) +

𝑠

𝑟
+ 𝑟.

Then

(
ℓ

𝑟
+ 𝑗 + 1) (𝑠𝑑 − 𝑟𝑒) < (

ℓ

𝑟
+ 𝑗 + 1)

𝑟2 + 𝑠

𝑟 ( 𝑗 + 2) + ℓ
=

1
𝑟
(𝑟 ( 𝑗 + 1) + ℓ)

𝑟2 + 𝑠

𝑟 ( 𝑗 + 2) + ℓ

<
𝑟2 + 𝑠

𝑟
= 𝑟 +

𝑠

𝑟
< 𝑠(𝑟 − 𝑠) (𝑔 − 1) +

𝑠

𝑟
+ 𝑟.

Thus, we have the inequality (8.2). Therefore, by Theorem 6.4,

H𝑖 (M(𝑟, 𝐿, a),O(1, 0) ⊗ Θ 𝑗 ) � H𝑖 (M(𝑟, 𝐿, e),O(1, 0) ⊗ Θ 𝑗 ).

Step 4. The only remaining case is that ℓ = 1 (hence, 𝑑 = 1) and 𝑗 = −1. We need to prove
H𝑖 (M(𝑟, 𝐿), E𝑥 ⊗ Θ−1) = 0 for 𝑖 > 0. Since 𝑑 = 1, there is a contraction map 𝜋1 : P(E𝑥) = M(𝑟, 𝐿,
𝑟 − 1, 𝜖) → M(𝑟, 𝐿(−𝑥)) (Remark 4.2). Then by [BM19, Lemma 13],

H𝑖 (M(𝑟, 𝐿), E𝑥 ⊗ Θ−1) � H𝑖 (P(E𝑥),O(1) ⊗ Θ−1) = H𝑖 (P(E𝑥), 𝜔P(E𝑥 ) ⊗ O(𝑟 + 1))
= H𝑖 (P(E𝑥), 𝜔P(E𝑥 ) ⊗ 𝜋∗1Θ

𝑟+1
M(𝑟 ,𝐿 (−𝑥)) ).

By Kollár’s vanishing [Kol86, Theorem 2.1], 𝑅𝑖𝜋1∗𝜔P(E𝑥 ) is torsion free for all i and

H𝑘 (M(𝑟, 𝐿(−𝑥)), 𝑅𝑖𝜋1∗𝜔P(E𝑥 ) ⊗ Θ𝑟+1
M(𝑟 ,𝐿 (−𝑥)) ) = 0

for all 𝑘 > 0. Since the Leray spectral sequence degenerates, H0 (M(𝑟, 𝐿(−𝑥)), 𝑅𝑖𝜋1∗𝜔P(E𝑥 ) ⊗

Θ𝑟+1
M(𝑟 ,𝐿 (−𝑥))

) � H𝑖 (P(E𝑥), 𝜔P(E𝑥 ) ⊗ 𝜋∗1Θ
𝑟+1
M(𝑟 ,𝐿 (−𝑥))

). On the other hand, over the stable locus
M(𝑟, 𝐿(−𝑥))𝑠 , 𝜋1 is a P𝑟−1-fibration. Checking a general fiber, we can show that 𝑅𝑖𝜋1∗𝜔P(E𝑥 ) = 0
for 𝑖 ≠ 𝑟 − 1. Thus, we obtain the desired vanishing for 1 ≤ 𝑖 ≤ 𝑟 − 2.

For 𝑖 = 𝑟 − 1, since 𝑅𝑟−1𝜋1∗𝜔P(E𝑥 ) is a torsion free sheaf, we have an injective morphism
𝑅𝑟−1𝜋1∗𝜔P(E𝑥 ) ↩→ (𝑅𝑟−1𝜋1∗𝜔P(E𝑥 ) )

∨∨. These two are isomorphic to 𝜔M(𝑟 ,𝐿 (−𝑥)) over an open sub-
set of codimension ≥ 2 [Har77, Exercise III.8.4], and the latter is reflexive. Since M(𝑟, 𝐿(−𝑥)) is locally
factorial [DN89, Theorem A], (𝑅𝑟−1𝜋1∗𝜔P(E𝑥 ) )

∨∨ � 𝜔M(𝑟 ,𝐿 (−𝑥)) � Θ−2𝑟
M(𝑟 ,𝐿 (−𝑥))

[DN89, Theorem F].
We have

H0(M(𝑟, 𝐿(−𝑥)), 𝑅𝑟−1𝜋1∗𝜔P(E𝑥 ) ⊗ Θ𝑟+1
M(𝑟 ,𝐿 (−𝑥)) ) ↩→ H0 (M(𝑟, 𝐿(−𝑥)), 𝜔M(𝑟 ,𝐿 (−𝑥)) ⊗ Θ𝑟+1

M(𝑟 ,𝐿 (−𝑥)) )

= H0(M(𝑟, 𝐿(−𝑥)),Θ−𝑟+1
M(𝑟 ,𝐿 (−𝑥)) ) = 0. �

Remark 8.2. When 𝑔 = 𝑟 = 2, M(𝑟, 𝐿) is an intersection of two quadrics in P5 and E𝑥 is a spinor bundle
[CKL19, FK18]. From this description, it was shown that E𝑥 is ACM for all 𝑥 ∈ 𝑋 .

9. Semiorthogonal decomposition

Since M(𝑟, 𝐿) is an index two Fano variety of Picard number one [Ram73], O,Θ form an exceptional
collection. In this section, we prove Theorem 1.4 by showing that the exceptional collection and the
image of D𝑏 (𝑋) form a part of a semiorthogonal decomposition of D𝑏 (M(𝑟, 𝐿)). It was proved for
𝑟 = 2 in [Nar17, Nar18], and for 𝑑 = 1 and 𝑔 ≥ 3𝑟 + 4 in [BM19]. Since a stronger version of Theorem
1.4 is proved for 𝑟 = 2 [TT21, Theorem 1.1], we assume that 𝑟 ≥ 3.
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Proof of Theorem 1.4. By Theorem 1.1, we have four full subcategories

O,ΦE (D𝑏 (𝑋)),Θ,ΦE (D𝑏 (𝑋)) ⊗ Θ.

We will show that they are semiorthogonal in that order. We need to prove the orthogonality condition.
Since {C(𝑥) | 𝑥 ∈ 𝑋} form a spanning class of D𝑏 (𝑋), {E𝑥 | 𝑥 ∈ 𝑋} (respectively, {E𝑥 ⊗ Θ | 𝑥 ∈ 𝑋})
form a spanning class of ΦE (D𝑏 (𝑋)) (respectively, ΦE (D𝑏 (𝑋)) ⊗Θ). Therefore, it is sufficient to prove
the cohomology vanishing in Theorem 9.1 below. �

Theorem 9.1. Assume the 𝑔(𝑋) ≥ 6. For any 𝑖 ∈ Z and not necessarily distinct two points 𝑥1, 𝑥2 ∈ 𝑋 ,
the following cohomologies are trivial.

1. H𝑖 (M(𝑟, 𝐿), E∗
𝑥1 );

2. H𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ Θ−1);
3. H𝑖 (M(𝑟, 𝐿), E∗

𝑥1 ⊗ Θ−1);
4. H𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ E∗

𝑥2 ⊗ Θ−1).

We use Sommese’s vanishing theorem for k-ample vector bundles. On a smooth variety V, a line
bundle A on V is k-ample if it is semiample and the dimension of the fiber of the morphism |𝑚𝐴| : 𝑉 →

P𝑁 is less than or equal to k for 𝑚 � 0. A vector bundle F is k-ample if OP(𝐹 ) (1) is k-ample.

Theorem 9.2 [Som78, Proposition 1.13], Sommese vanishing theorem. Let F be a rank 𝑟 𝑘-ample
vector bundle on V. Then we have H𝑖 (𝑉, 𝜔𝑉 ⊗ 𝐹) = 0 for 𝑖 ≥ 𝑟 + 𝑘 .

We check the k-ampleness of bundles using the wall-crossing of moduli of parabolic bundles. Recall
that P(E𝑥) � M(𝑟, 𝐿, 𝑟 − 1, 𝜖). As we increase the parabolic weight 𝜖 , the first wall arises when the
parabolic weight is 1/ℓ and the wall is of the form Δ (ℓ, 𝑒, ℓ) (Lemma 4.4).

Lemma 9.3. Suppose that ℓ ≥ 2 and the first wall-crossing is a simple one. Over M(𝑟, 𝐿), E𝑥 is
(𝑔 − 1)ℓ(𝑟 − ℓ)-ample.

Proof. The associated nef line bundle to the first small contraction 𝜋− : M(𝑟, 𝐿, 𝑟 − 1, 𝜖) → M(𝑟, 𝐿,
𝑟−1, 1/ℓ) is OP(E𝑥 ) (1), since OP(E𝑥 ) (1) is the unique (up to power) line bundle that is nef (Theorem 4.1)
and trivially intersects with the fiber of 𝜋− (Lemma 4.6). Thus, it is sufficient to compute the dimension
of the exceptional fiber of 𝜋−.

For a point 𝑝 := ((𝐸−, 𝑉−) ⊕ (𝐸+, 𝑉+)) ∈ M(𝑟, 𝐿, 𝑟 − 1, 1/ℓ), 𝜋−1
− (𝑝) = P(Ext1((𝐸+, 𝑉+),

(𝐸−, 𝑉−))∗). We can compute its dimension, by modifying the exact sequence (5.2). After a standard
computation, we obtain dim P(Ext1 ((𝐸+, 𝑉+), (𝐸−, 𝑉−))∗) = (𝑔 − 1)ℓ(𝑟 − ℓ). �

Lemma 9.4. For any two points 𝑥1, 𝑥2 ∈ 𝑋 , E𝑥1 ⊗ E∗
𝑥2 ⊗ Θ is (𝑔 − 1)ℓ(𝑟 − ℓ)-ample.

Proof. First, suppose that 2 ≤ ℓ ≤ 𝑟 − 2. Note that E∗
𝑥2 ⊗ Θ is a normalized Poincaré bundle over

M(𝑟, 𝐿∗(𝑟)), where deg 𝐿∗(𝑟) = 𝑟 − 𝑑. For the wall-crossing of P(E𝑥1 ) � M(𝑟, 𝐿, 𝑟 − 1, 𝜖), the first
wall is Δ (ℓ, 𝑒, ℓ), and it is a multiple wall if and only if 2ℓ < 𝑟 (Lemma 4.4). On the other hand,
P(E∗

𝑥2 ⊗ Θ) � M(𝑟, 𝐿∗(𝑟), 𝑟 − 1, 𝜖) and its first wall is Δ (𝑟 − ℓ, 𝑒′, 𝑟 − ℓ) and it is a multiple wall if and
only if 2(𝑟 − ℓ) < 𝑟 . But since 2ℓ + 2(𝑟 − ℓ) = 2𝑟 and ℓ � 𝑟 , one of these two walls is simple. Then we
may apply Lemma 9.3 to compute the k-ampleness of one of them. By [LN20, Corollary 3.5], we can
conclude that E𝑥1 ⊗ E∗

𝑥2 ⊗ Θ is (at least) (𝑔 − 1)ℓ(𝑟 − ℓ)-ample.
Now suppose ℓ = 1 (ℓ = 𝑟 − 1 case is the same). By [Nar17, Proposition 3.3], E𝑥1 is semiample.

On the other hand, for P(E∗
𝑥2 ⊗ Θ) � M(𝑟, 𝐿∗(𝑟), 𝑟 − 1, 𝜖), the first wall is Δ (𝑟 − 1, 𝑒, 𝑟 − 1). Since

2(𝑟 − 1) > 𝑟 (because 𝑟 > 2), this is a simple wall, so E∗
𝑥2 ⊗Θ is (𝑔 − 1)ℓ(𝑟 − ℓ) = (𝑔 − 1) (𝑟 − 1)-ample

by Lemma 9.3. By [LN20, Theorem 3.4], E𝑥1 ⊗ E∗
𝑥2 ⊗ Θ is (𝑔 − 1)ℓ(𝑟 − ℓ)-ample, too. �

Proof of Theorem 9.1. We first show Item (2). For 𝑖 ≠ 0, it follows from Theorem 8.1. From

H0(M(𝑟, 𝐿), E𝑥1 ⊗ Θ−1) � H0 (M(𝑟, 𝐿, e),O(1, 0) ⊗ Θ−1)
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and the fact that O(1, 0) ⊗Θ−1 = Θ
ℓ−1
𝑟 −1 ⊗

(
O(𝑟, 0) ⊗ Θ1−ℓ ) 1

𝑟 is not on Eff(M(𝑟, 𝐿, e)) (because ℓ < 𝑟),
it is trivial. Thus, we obtain Item (2). Since E∗

𝑥1 = E∗
𝑥1 ⊗Θ⊗Θ−1 and E∗

𝑥1 ⊗Θ is the normalized Poincaré
bundle on M(𝑟, 𝐿∗(𝑟)) � M(𝑟, 𝐿), Item (1) follows from Item (2). Applying Serre duality,

H𝑖 (M(𝑟, 𝐿), E∗
𝑥1 ⊗ Θ−1) � Hdim M(𝑟 ,𝐿)−𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ Θ ⊗ 𝜔)∗

� Hdim M(𝑟 ,𝐿)−𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ Θ−1)∗ = 0,

and we obtain Item (3).
We move to Item (4). By Theorem 9.2 and Lemma 9.4,

H𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ E∗
𝑥2 ⊗ Θ−1) � H𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ E∗

𝑥2 ⊗ Θ ⊗ 𝜔) = 0

if 𝑖 ≥ 𝑟2 + (𝑔 − 1)ℓ(𝑟 − ℓ). Serre duality tells us that

H𝑖 (M(𝑟, 𝐿), E𝑥1 ⊗ E∗
𝑥2 ⊗ Θ−1) � Hdim M(𝑟 ,𝐿)−𝑖 (M(𝑟, 𝐿), E∗

𝑥1 ⊗ E𝑥2 ⊗ Θ−1)∗ = 0

provided 𝑖 ≤ (𝑟2−1−ℓ(𝑟−ℓ)) (𝑔−1)−𝑟2. Thus, if 𝑟2+(𝑔−1)ℓ(𝑟−ℓ) ≤ (𝑟2−1−ℓ(𝑟−ℓ)) (𝑔−1)−𝑟2+1,
we obtain the desired vanishing. This is equivalent to

2𝑟2 − 1
𝑟2 − 1 − 2ℓ(𝑟 − ℓ)

≤ 𝑔 − 1. (9.1)

Since 0 < ℓ < 𝑟 , if 𝑟 ≥ 5, we have

2𝑟2 − 1
𝑟2 − 1 − 2ℓ(𝑟 − ℓ)

<
2𝑟2 − 1

𝑟2 − 1 − 𝑟2/2
=

4𝑟2 − 1
𝑟2 − 2

≤
4 · 52 − 1

52 − 2
=

99
23

.

When 𝑟 = 3 and 4, a direct computation gives 17/4 and 31/9, respectively. So if 𝑔 ≥ 6, the inequality
(9.1) holds for all 𝑟 ≥ 3. �

In the proof above, the genus bound is necessary only for Item (4), which is used to prove the
orthogonality of ΦE (D𝑏 (𝑋)) ⊗ Θ. Thus, we obtain the following weaker version for all 𝑔 ≥ 2.

Theorem 9.5. There is a semiorthogonal decomposition D𝑏 (M(𝑟, 𝐿)) = 〈A′, ⊥A′〉, where A′ =
〈O,ΦE (D𝑏 (𝑋)),Θ〉.

Remark 9.6. Whenever r and ℓ satisfy (9.1), we have the semiorthogonal decomposition of Theorem 1.4.
Therefore, the genus bound can be improved, if we restrict deg 𝐿. For instance, if 𝑑 = 1 (so ℓ = 1) and
𝑟 ≥ 6, the vanishing result holds for 𝑔 ≥ 4. Our method does not seem to work for 𝑔 = 2, 3.

Remark 9.7. For 𝑑 = 1, the semiorthogonal decomposition in Theorem 1.4 was obtained in [BM19,
Theorem B]. Their genus bound is weaker than ours – for instance, for 𝑟 ≥ 4, they proved it for 𝑔 ≥ 3𝑟+4.

10. ACM bundles on M(𝑟, 𝐿)

Besides the structure of D𝑏 (M(𝑟, 𝐿)), another immediate application of the technique we developed in
this paper is a construction of a one-dimensional family of ACM bundles.

Definition 10.1. Let V be an n-dimensional projective variety with an ample line bundle A. A vector
bundle F on V is an ACM bundle with respect to A if H𝑖 (𝑉, 𝐹 ⊗ 𝐴 𝑗 ) = 0 for every 1 ≤ 𝑖 ≤ 𝑛 − 1 and
𝑗 ∈ Z. An ACM bundle F is Ulrich if H0 (𝑉, 𝐹⊗ 𝐴−1) = 0 and ℎ0 (𝑉, 𝐹) = rank 𝐹 ·deg𝑉 = rank 𝐹 · (𝐴)𝑛.

For a smooth Fano variety of Picard rank one, it is straightforward to verify that every line bundle is
ACM. It is also clear that if F is ACM with respect to A, then 𝐹 ⊗ 𝐴𝑘 is ACM with respect to A for all
𝑘 ∈ Z. But finding a nontrivial example of an ACM bundle is not an easy task for higher dimensional
varieties. In this section, we show that E𝑥 is ACM.
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Remark 10.2. Many authors assume A to be very ample when they consider ACM bundles. Because
the Picard number of M(𝑟, 𝐿) is one, Theorem 1.5 implies that E𝑥 is ACM for every very ample line
bundle. On M(𝑟, 𝐿), Θ𝑘 is known to be very ample when 𝑘 ≥ 𝑟2 + 𝑟 [EP04, Theorem A], but an optimal
k for the very ampleness is unknown.

Proof of Theorem 1.5. By Serre duality,

H𝑖 (M(𝑟, 𝐿), E𝑥 ⊗ Θ 𝑗 ) � Hdim M(𝑟 ,𝐿)−𝑖 (M(𝑟, 𝐿), E∗
𝑥 ⊗ Θ ⊗ Θ− 𝑗−3)∗.

The vanishing for E𝑥 ⊗ Θ 𝑗 for 𝑗 ≤ −2 follows from the vanishing for E∗
𝑥 ⊗ Θ ⊗ Θ 𝑗 for 𝑗 ≥ −1. Since

E∗
𝑥 ⊗ Θ is the normalized Poincaré bundle over M(𝑟, 𝐿∗(𝑟)) � M(𝑟, 𝐿), it is sufficient to prove the

vanishing for 𝑗 ≥ −1, which is Theorem 8.1. For two different points 𝑥1, 𝑥2 ∈ 𝑋 , E𝑥1 ≠ E𝑥2 [LN05,
Theorem]. Thus, we obtain a one-dimensional family of ACM bundles. �

Remark 10.3. The bundle E𝑥 is not Ulrich in general. If 𝑔 = 𝑟 = 2, ℎ0(M(𝑟, 𝐿), E𝑥) = 4 < 8 =
2 deg(M(𝑟, 𝐿)). It is an interesting problem to construct Ulrich bundles on M(𝑟, 𝐿) (see [CKL19] for
an alternative construction of Ulrich bundles for 𝑔 = 𝑟 = 2 case).
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