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1. Introduct ion 

In this paper a new method of construction of the perturbation motion 
theory of celestial bodies, based on the averaging principle in view of fre­
quency resonances, is stated. The first approximation of the asymptotic 
theory is the exact solution of the dynamics averaging equations, in which 
are included "secular" and "long-periodic" terms. The high-degree approxi­
mations are the exact solution of a known Krylov-Bogoliubov generalized 
equation. It is shown tha t these iterations are expressed in the analytical 
form by multiple Fourier series. 

2. N e w Variants of t h e Per turbat ion T h e o r y 

Let us consider a n-dimensional differential equation with small parameter 

M' dz 
— = Z(z,t,fi), z(0) = zo, (1) 

where the vector-function Z(z,t,fi) is determined, and has properties, gua­
ranteeing the existence and uniqueness of the solution of the Cauchy pro­
blem (1) in the (n + l)-dimensional domain <j(n+i) = {z € G x R 9 t} of 
the Euclidean space. 

Our purpose is to construct this solution. Together with equation (1) 
we consider an equivalent one, 

dz 
— = Z(z,t,ii) + Z{z,t,n)-Z{z,t,»), z(O) = 20 (2) 

in which Z(z, t, /J,) is an arbitrary function. We write a linear equality 

z(t,fi) = z(t,fi) + u(z,t,n) (3) 
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where z, u are some new unknown functions. 
Equality (3) represents the transformation from the phase space {z} to 

the new phase space {z} ({z} —)• {z}), and the inverse ({z —>• z}), if the 
Jacoby matrix ( | | ) is nonsingular. 

The following differential identity holds: 

dz _ dz 

~dl = ~di + 

Idu dz\ du 

\dzz'~di)JrW ( ) 

where ( | | , jfi) is a product of the matrix ( | | ) and the vector jfi. 
The solution of the Cauchy problem (1) can be found by solving the 

following two Cauchy problems: 

nd 

a t ' 

(du 

{dz' 
Z(z, 

dz 

~dl 

*,M)) 

= Z(z, 

= Z(z 

t,n), 

+ u,t ,M) 

z(0) = 

-Z(z, 

= ZQ € Gn 

t,V), «(0) = = z0--ZQ, 

(5) 

(6) 

where ZQ is some new initial point. Equation (5) defines the choice of the 
initial appoximation z(t,fi) for the exact solution z(t,fi) of problem (1) and 
equation (6) defines the total perturbation u(z,t,fj,). In classical perturba­
tion theory, the function u depends only on t and /x; therefore, instead of 
equation (6) we have: 

du — 
— = Z(z + u,t,n)- Z(z,t,n), u(0) = zQ-zo. (7) 

For the Cauchy problem (1) it is possible to construct a set of variants of 
the perturbation theory with Z and ZQ . We call Z(z, t, fi) and ZQ generators 
of the perturbation theory for problem (1), and equation (5) a generating 
equation for equation (1). 

In classical works on celestial mechanics linear generators are commonly 
used with respect to z, and ZQ = ZQ, tha t is, 

or 

or 

§ = A(t)z, z(o) = z0 

^ = Z{z + u,t,ii)-A(t)z, u(0) = 0 

Z(z,t,0), z{o) = z0 

Z(z + u,t,n)-Z(z,t,0), «(0) = 0 

Z(z,t,fj,), z(o) = z0 

Z(z + u,t,fi)- Z(z,t,n), u(0) = 0 

(8) 

(9) 

(10) 
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Equations (8) represent the linearisation method, equations (9) the me­
thod of small parameters, and equations (10) the averaging method, if the 
generator Z is constructed on the basis of some average operator. 

The perturbation theory based on equations (5) and (6), differs from 
the classical perturbation theory in an essential point: the determination of 
perturbation u(z,t,fi) from equation (6) does not require the preliminary 
solving of a generating equation (5). This fact permits one to determine 
the perturbations u(z, t, fi) and the initial approximation of z(t,/j,) inde­
pendently from each other. In the classical perturbation theory this is im­
possible. In Grebenikov (1986) and in Grebenikov and Mitropolskij (1992), 
we called equation (6) the generalized Krylov-Bogoliubov equation. Equa­
tion (6) is a Cauchy problem for the quasilinear n-dimensional system of 
partial differential equations of order 1 with respect to the n-dimensional 
perturbation vector u(z,t,fi). Its solution can be found by the method of 
characteristics, or by the method of Cauchy (Stepanov, 1968). 

3. Differential Equat ions , G iven on a Torus . 

A quite complete asymptotic theory of equation (6) for celestial mecha­
nics problems was developed in monographs by Grebenikov (1986), and by 
Grebenikov and Mitropolskij (1992). We investigated the problems of dyna­
mics, which are described by multifrequent systems of differential equations, 
given on a torus and, in particular, by Hamiltonian systems with "action -
angle" type variables and with a Hamiltonian, periodic in angular variables. 

Let a problem of celestial mechanics be described by a multifrequent 
system of order (m + n), 

f sjf = pX(x,y), x(0) = xo, 
(11) 

> . i l v l _L nV t r» oil i f f l l l - i i -

dt 
^ = u(x) + nY{x,y), y(0) = jtoi 

where x,X are m-dimensional vectors, y, Y,u are n-dimensional vectors, 
and ui(x) is a vector of frequences. We assume, tha t X(x,y),Y(x, y) are 
27r-periodic functions with respect to y. Then, they are represented by n-
multiple Fourier series: 

X(x,y) = £ Xk^e^y), 
\\k\\ei 

Y(x,y) = D Yk(x)e^y), 
Pile/ 

(12) 

where i = ^ = 1 , (*, y) = E"=i*. ifc , ||*|| = E " = i l*.l. I = {0 ,1 ,2 , • • •}, and 
*, = o , ± i , - - - . 

The equations of motion have such a form in planetary problems, as if 
the phase variables were Keplerian, Delauney's, Poincare's etc. variables. 
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We choose the generating system (5) in the form 

fc>2 

% = u(x) + iiY(x,y)+f:fl
kBk(x,y), 

fc>2 

(13) 

where X,Y, Ak, Bk, are some arbitrary functions. Equations (13) are 'ave­
raged equations of Nth approximation' (N = 2 , 3 , • • •), and equations 

dy 
^ = M*(* ,y ) , 

dt 
= u(x) + fiY(x,y) 

are 'average equations of first approximation'. 
Let us consider the substitution (3) as formal series 

x = x+ £ VkUk(x,y), 

y - y + £ /**«>*(*. y)» 
fc>i 

(14) 

with unknown functions Uk{x,y),Vk(x,y). To determine the functions of 
transformation uk and Vk, we have an infinite system of linear partial dif­
ferential equations of first order 

' ( ^ , a > ( * ) ) = X(x,y)-X(x,y), 

M*j) = {%,ui))+Y(x,y)-Y(x,y), dy 

2g*-,u(x)) = Fk(x,y,u1,v1,---,Vk-i,Uk-i,A2,B2,---,Ak), 

%£,u(x)) = ^k(x,y,u1,v1,---,Vk-i,Uk,A2,B2,---,Ak,Bk), 

K — £} O) * * * 
(15) 

The system (15) has a remarkable property: it is possible to integrate it in 
analytical form (see Grebenikov and Ryabov, 1983; Grebenikov, 1986) for 
any vector-index k, if we choose for X and Y some averages of functions X 
and Y. Let 

X(x,y) = £ Xk(x)e^y), 
Pile/ ' (W) 

Y(x,y) = £ Yk(x)e^y), {W) 

WW 
where I' £ I is the subset of / = {0 ,1 ,2 , • • •}. In particular, I' can consist 
of one number - "zero", tha t means 

27T 27T 

X(x,y) = X0(x) = — ^ J••• JX(x,y)dyi---dyn (17) 
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It is possible to find (see Stepanov, 1968) the exact solution of the first 
equations (15): 

MHIe AT' v v " H*||eAf 

v.(x a) = T J*( f^e ' (*-g)+ (*!&• T X^)ei}":Sl\ (18) 
ll*H6A/' V ll*H6A/' / 

+ ( ( f t - , v i ( * ) ) , y ) + ^ ( 2 ) . 

Here, </?i, ipi are arbitrary differentiable functions of the arguments x~i, • • •, 

From analytical expressions (18) one can see, tha t if ipi ^ 0, then func­
tion Vi will be growing similar to the linear function t, because y ~ t. 
Hence, to have an "oscillatory", but not "rapidly growing" character for 
the perturbations « i , ui, u2, v2, • • •, it is necessary that all functions obey 

¥>*(*) = 0, W » ) s 0 , A = 1,2,.-- (19) 

These equalities, in their turn, show that the "best" perturbation theory is 
obtained when equations (5) are solved with other initial conditions than 
equation (1). The new initial conditions (xo, j/o) a r e connected with (xo, j/o) 
with the help of functional equations 

xo = x0 + fiui(x0,y0), 

2/o = &o + VVi(x0,y~o)-

This is a second essential difference between the modern perturbations 
theory and the classical, in which it is difficult to choose the initial point 
z0. 

If we construct the perturbation theory of the second order, we shall 
have 

fe'w(^)) = F2(x,y,U!,vuA2), 

fa \ ( 2 1 ) 

{-^-^U}(x)j = ^2{x,y,uuvuu2,A2,B2). 

These equations include arbitrary functions A2, B2 which will be choosen 
such that 

2ff 2w 2ff 2ir 

J•••[F2dy1---dyn = 0, J •••fv2dy1---dyn = 0. (22) 

0 0 0 0 

These conditions guarantee the "oscillatory" character of u2 and v2, if the 
functions <p2 and tp2 ( by analogy with (fi and V'l) are also chosen identically 
equal to zero. This procedure can be continued for k = 3,4, • • • . 
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The stated analytical algorithm means, tha t we consequently construct the 
substitution of variables 

(x, y) -> (xu yi) ->• (x2, y2) ->• > (x„ y8), 

where 
s 

Xa - X+ E VkUk(x,y), 
'j1 (23) 

ys = y+ £ / ^ M ^ . y ) . 
fc=i 

Naturally, for the final construction of the solution of initial equations (11) 
one should solve "the average equations" (13) with new initial conditions 
i . ( 0 ) ,y . (0 ) . 

The analytical expressions for Uk(x, y), Vk(x, y) may be constructed with 
the help of a computer. 

4 . Conclus ions 

1. The subset / ' should be chosen from condition 

\(k,uo)\<e = 0{ij), 

where u>o is the initial value of the frequent-vector UJ(XQ). I' is the "resonance 
subset". 
2. In classical perturbation theory "the small divisors" (k,uo) are constant. 
In the new theory the divisors (k,u(x)) are variable, and do not stay small 
for a long time. 
3. In the new theory the accuracy of the perturbation u(z, t, /J.) does not 
depend on the accuracy of the first approximation. 

References 

Grebenikov, E.A.: 1986, Metod Usrednieniya v Prikladnych Zadachakh, Nauka, Moskva 
(in Russian). 

Grebenikov, E.A. and Mitropolskij Ju.A.: 1992, Metod Usrednieniya w Issledovaniyakh 
Resonansnykh Sistem, Nauka, Moskva (in Russian). 

Grebenikov, E.A. and Ryabov, Ju.A.: 1983, Constructive Methods in the Analysis of 
Nonlinear Systems, MIR, Moscow. 

Stepanov, V.V.: 1968, Kurs Differenciyalnkh Uravnienij, Nauka, Moskva (in Russian). 

https://doi.org/10.1017/S0252921100046868 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046868



