ON INDECOMPOSABLE GRAPHS

FRANK HARARY AND MICHAEL D. PLUMMER

1. Introduction. A set of points M of a graph G is a point cover if each line of G is incident with at least one point of M. A minimum cover (abbreviated m.c.) for G is a point cover with a minimum number of points. The point covering number $\alpha(G)$ is the number of points in any minimum cover of G. Let $\left[V_{1}, V_{2}, \ldots, V_{r}\right], r>1$ be a partition of $V(G)$, the set of points of G. Let G_{i} be the subgraph of G spanned by V_{i}, for $i=1,2, \ldots, r$. Clearly

$$
\sum_{i=1}^{r} \alpha\left(G_{i}\right) \leqslant \alpha(G)
$$

since any minimum cover for G must cover each G_{i}. If, in particular,

$$
\sum_{i=1}^{r} \alpha\left(G_{i}\right)=\alpha(G)
$$

then we say that G is decomposable and that $\left[G_{1}, G_{2}, \ldots, G_{r}\right]$ is a decomposition of G.

The purpose of this paper is to study indecomposable graphs. Erdös and Gallai (4) introduced such graphs; their main result is stated in §3 of this paper. We shall prove that no indecomposable graph is separated by the points of any complete subgraph. Hence, in particular, every indecomposable graph is a block.

The complete graph K_{n} is easily seen to be indecomposable as is every cycle of odd length. There are, however, many other indecomposable graphs. In the final section, we shall construct several infinite families of such graphs. In the course of this development, we shall study the role of lines which are critical with respect to point covering (cf. (1, 2, 3, 6)) in the structure of indecomposable graphs.

All the indecomposable graphs with $p \leqslant 6$ points which are not complete are shown in Figure 1.

Figure 1.

[^0]2. Additional terminology. For the sake of completeness, we shall require additional concepts. A graph G consists of a finite non-empty set $V(G)$ of p points together with a collection $E(G)$ of lines each of which is an unordered pair of points. If x is the line containing points u and v, then we write $x=u v$ and say that u and v are adjacent, that x joins u and v, and that x is incident with the points u and v. Two lines x and y which have a common point are also said to be adjacent. The complete graph on n points, K_{n}, is that graph with n points in which every two points are adjacent. The trivial graph K_{1} has one point and no lines. The complement \bar{G} of a graph G is that graph with the same point set as G, in which u and v are adjacent if and only if they are not adjacent in G.

A path joining points u and v is an alternating sequence of distinct points and lines beginning with u and ending with v in which each line is incident with the point before it and the point after it. A cycle consists of a path containing more than one line together with an additional line joining the first and last points of the path. The length of a path or a cycle is the number of lines in it. A cycle is called even (odd) if it has even (odd) length. We denote the graph consisting of a cycle of length p by C_{p}. If v is a point and x is a line of G, we denote by $G-v$ and $G-x$ the subgraphs obtained by deleting the point v and the line x respectively. In general, if $W \subset V(G)$, then $G-W$ denotes the graph obtained from G by deleting each point of W. A graph is connected if each pair of points are joined by a path. A point v of a connected graph G is a cutpoint if $G-v$ is disconnected. In general, a set of points W of G is a separating set of G if $G-W$ is disconnected. A graph G is a block if it is connected and has no cutpoints.

Let $|A|$ be the number of elements in any set A; by an abuse of notation let $|G|=|V(G)|=p$. If M is a minimum cover for G, we write $\alpha(G)=|M|$. Call v a critical point if $\alpha(G)-v<\alpha(G)$. Similarly, x is a critical line of G if $\alpha(G-x)<\alpha(G)$. A set of lines X spans a graph G if each point of G is incident with a line of X. We denote by $\operatorname{Cr}(G)$ the subgraph of G spanned by the set of critical lines in G. If $\operatorname{Cr}(G)=G$, then G is line-critical.

A set of lines X is independent if no two of them are adjacent. The core of $G, C(G)$, is the union of all sets X of $\alpha(G)$ independent lines in G. If $V(G)$ can be partitioned into two sets V_{1}, V_{2} so that each line of G joins a point of V_{1} and a point of V_{2}, then we say that G is bipartite. Finally, the join $G+H$ of two disjoint graphs G and H consists of $G \cup H$ together with a line joining each point of G with each point of H.
3. On the structure of an indecomposable graph. The main result of Erdös and Gallai (4) on indecomposable graphs is the following.

Theorem 1. If a non-trivial graph G with p points is indecomposable, then $\alpha(G) \geqslant p / 2$, with equality only if $G=K_{2}$.

In particular, since a graph G with a non-empty core, $C(G)$, must have $\alpha(G) \leqslant p / 2$, we have the following immediate corollaries.

Corollary 1a. If $C(G) \neq \emptyset$ and $G \neq K_{2}$, then G is decomposable.
Those graphs G for which $C(G)=\emptyset$ are characterized in (6) and properly contained in this class of graphs are all bipartite graphs. Hence we have the following corollary.

Corollary 1b. Every indecomposable graph contains an odd cycle.
We next prove our main theorem on indecomposable graphs: a sufficient condition for decomposability of a graph in terms of disconnecting complete subgraphs. Contrapositively, it specifies a structural property of indecomposable graphs.

Theorem 2. If G is a connected graph which is separated by the points of a complete subgraph K_{n}, then G is decomposable.
Proof. Let the components of $G-V\left(K_{n}\right)$ be denoted by $C_{1}, \ldots, C_{r}, r \geqslant 2$. Note that some C_{i} may be trivial. Let M be an m.c. for G. Clearly M must contain at least $n-1$ of the points in $V\left(K_{n}\right)$.

Case 1. Every minimum cover M of G contains exactly $n-1$ of the points of $V\left(K_{n}\right)$.

Let $M_{i}=M \cap V\left(C_{i}\right), i=1, \ldots, r$. Note that M_{i} covers C_{i} for each i. There are two possibilities. If for each i, M_{i} is an m.c. for C_{i}, then $\left[C_{i}, \ldots\right.$, C_{r}, K_{n}] is a decomposition for G. Suppose, however, that for some i, say $i=1, M_{1}$ is not an m.c. for C_{1}. Then there is an m.c. N_{1} for C_{1} such that $\left|N_{1}\right|<\left|M_{1}\right|$. Let w be the point of $V\left(K_{n}\right)-M$. Then

$$
M^{\prime}=\left(M-M_{1}\right) \cup N_{1} \cup\{w\}
$$

covers G. Also

$$
\begin{aligned}
\left|M^{\prime}\right| & =\left|\left(M-M_{1}\right) \cup N_{1} \cup\{w\}\right|=|M|-\left|M_{1}\right|+\left|N_{1}\right|+1 \\
& \leqslant|M|-\left|M_{1}\right|+\left|M_{1}\right|=|M|=\alpha(G),
\end{aligned}
$$

and hence M^{\prime} is an m.c. for G which contains $V\left(K_{n}\right)$. But this contradicts the assumption of Case 1.

Case 2. G has an m.c. M which contains $V\left(K_{n}\right)$. Thus also $M \cap V\left(C_{i}\right)=M_{i}$ is an m.c. for C_{i}, for $i=1, \ldots, r$. Let v be any point in $V\left(K_{n}\right)$. We now show that there is a component C_{j} of $G-V\left(K_{n}\right)$ such that v is adjacent to at least one point of C_{j} and, further, that no m.c. for C_{j} contains all the points of C_{j} which are adjacent to v. Such a component will be said to be preferred by v.

First note that v is adjacent to a point of at least one component of $G-V\left(K_{n}\right)$, since otherwise M would not be a minimum cover for G. Renumbering the components if necessary, let C_{1}, \ldots, C_{s} be the components which have at least one point adjacent to $v, 1 \leqslant s \leqslant r$. Now suppose that each
of C_{1}, \ldots, C_{s} has an m.c. N_{i} which includes all points of C_{i} adjacent to v in G. For every $i, s+1 \leqslant i \leqslant r$, let N_{i} be any m.c. for C_{i}. Then

$$
N=V\left(K_{n}\right) \cup N_{1} \cup \ldots \cup N_{r}
$$

is an m.c. for G which includes every point adjacent to v in G. But v is in N, and hence $N-\{v\}$ covers G, contradicting the minimality of N. Thus each $v \in V\left(K_{n}\right)$ has at least one preferred component so that at least one of C_{1}, \ldots, C_{s}, say C_{j}, has the property that none of its minimum covers contains all the points of C_{j} adjacent to v.

Let $V\left(K_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$. Without loss of generality, suppose C_{1} is a preferred component of ν_{1}. Let

$$
V_{1}=\left\{v_{i} \in V\left(K_{n}\right): C_{1} \text { is a preferred component of } v_{\imath}\right\}
$$

If $V_{1}=V\left(K_{n}\right)$, define $V_{2}=\emptyset$; if $V_{1} \neq V\left(K_{n}\right)$, let $w_{1} \in V\left(K_{n}\right)-V_{1}$. Renumbering components again if necessary, suppose C_{2} is preferred by w . In this case let

$$
V_{2}=\left\{v_{i} \in V\left(K_{n}\right)-V_{1}: C_{2} \text { is a preferred component of } v_{i}\right\}
$$

If $V_{1} \cup V_{2}=V\left(K_{n}\right)$, then define $V_{3}=\emptyset$. If $V_{1} \cup V_{2} \neq V\left(K_{n}\right)$, let

$$
w_{2} \in V\left(K_{n}\right)-\left(V_{1} \cup V_{2}\right)
$$

Again renumbering if necessary, suppose C_{3} is preferred by w_{2}. Continue in this manner to define $V_{1}, V_{2}, V_{3}, \ldots, V_{r}$. Note that $V_{1} \neq \emptyset$ and that either $V_{r} \neq \emptyset$ or for some $t, 1 \leqslant t \leqslant r, V_{t}=V_{t+1}=\ldots=V_{r}=\emptyset$. Now

$$
V_{1} \cup V_{2} \cup \ldots \cup V_{r}=V\left(K_{n}\right)
$$

For each $i=1, \ldots, r$, define G_{i} to be the subgraph of G spanned by $V\left(C_{i}\right) \cup V_{\imath}$. Clearly, these subgraphs G_{i} are disjoint, and there are at least two of them since $r \geqslant 2$.

To complete the proof for Case 2 , we show that $\left[G_{1}, \ldots, G_{r}\right]$ is a decomposition of G. Recall that M is an m.c. for G with $V\left(K_{n}\right) \subset M$ and that hence $M_{i}=M \cap V\left(C_{i}\right)$ is an m.c. for C_{i}. It will suffice to show that $M^{\prime}{ }_{i}=M_{i} \cup V_{i}$ is an m.c. for G_{i}, for each $i=1, \ldots, r$.

For any i, if $V_{i}=\emptyset$ there is nothing to prove. Thus consider $\left|V_{i}\right| \geqslant 1$. Clearly, $M^{\prime}{ }_{i}$ covers G_{i}, so suppose it is not a minimum cover. Then there is an m.c. $N^{\prime}{ }_{i}$ for G_{i} with $\left|N^{\prime}{ }_{i}\right|<\left|M^{\prime}{ }_{i}\right|$. Now $V_{i} \not \subset N^{\prime} i$ or else M_{i} is not an m.c. for C_{i}. However, at most one point of V_{i} fails to be in $N^{\prime}{ }_{i}$, say u. Hence $V_{i}-N^{\prime}{ }_{i}=\{u\}$.

We next show that $N_{i}=N^{\prime}{ }_{i} \cap V\left(C_{i}\right)$ is an m.c. for C_{i}. Clearly N_{i} covers C_{i}. Now

$$
\begin{aligned}
\alpha\left(G_{i}\right) & =\left|N^{\prime}{ }_{i}\right|=\left|N^{\prime}{ }_{i}\right| \cap V\left(C_{i}\right)\left|+\left|N^{\prime}{ }_{i}\right| \cap V_{i}\right| \\
& =\left|N_{i}\right|+\left|V_{i}\right|-1<\left|M_{i}^{\prime}\right|=\left|M_{i} \cup V_{i}\right|=\left|M_{i}\right|+\left|V_{i}\right| \\
& =\alpha\left(C_{i}\right)+\left|V_{i}\right| \leqslant\left|N_{i}\right|+\left|V_{i}\right| .
\end{aligned}
$$

Hence

$$
\left|N_{i}\right|+\left|V_{i}\right|-1<\left|M_{i}\right|+\left|V_{i}\right| \leqslant\left|N_{i}\right|+\left|V_{i}\right|
$$

or

$$
\left|N_{i}\right|-1<\left|M_{i}\right| \leqslant\left|N_{i}\right| .
$$

Thus $\left|M_{i}\right|=\left|N_{i}\right|=\alpha\left(C_{i}\right)$ and N_{i} is an m.c. for C_{i}. Now since $u \notin N^{\prime}{ }_{i}$, all points of C_{i} adjacent to u are in $N^{\prime}{ }_{i}$ and hence in N_{i}. Thus N_{i} is an m.c. for C_{i} which contains all points of C_{i} adjacent to u, contradicting the fact that C_{i} is preferred by u.

Hence $M^{\prime}{ }_{i}$ is an m.c. for G_{i}, for each $i=1, \ldots, r$. Thus

$$
\sum_{i=1}^{r} \alpha\left(G_{i}\right)=\sum_{i=1}^{r}\left|M_{i}^{\prime}\right|=\sum_{i=1}^{r}\left|M_{i}\right|+n=|M|=\alpha(G)
$$

and $\left[G_{1}, \ldots, G_{r}\right]$ is a decomposition of G. This completes Case 2 and the proof of the theorem.

Putting $n=1$ in the theorem yields the following result.
Corollary 2a. If G is indecomposable, then G is a block.
4. Several infinite families of undecomposable graphs. In (6), we constructed an infinite collection of line-critical graphs. In conjunction with the following theorem, this yields our first infinite collection of indecomposable graphs.

Theorem 3. If $\mathrm{Cr}(G)$ is a connected spanning subgraph of G, then G is indecomposable.

Proof. Suppose G has a decomposition $\left[G_{1}, \ldots, G_{r}\right], r \geqslant 2$. Then no line of G joining G_{i} and $G_{j}, i \neq j$, is critical in G. Hence it follows that if $\operatorname{Cr}(G)$ spans G, it is disconnected and if $\operatorname{Cr}(G)$ is connected it cannot span G.

The following corollary is immediate.
Corollary 3a. If G is line-critical, then G is indecomposable.
We hasten to point out that there are many graphs G in which $\operatorname{Cr}(G)$ is a connected spanning subgraph, but which fail to be line-critical. The smallest such graph and two others are shown in Figure 2. The non-critical lines of each are dashed.

Figure 2.

We obtain another class of indecomposable graphs by means of the next theorem.

Theorem 4. The join of two indecomposable graphs is also indecomposable.
Proof. Let G_{1} and G_{2} be indecomposable and suppose their join $G_{1}+G_{2}$ is decomposable. Then, without loss of generality, we may assume there is a decomposition of $G_{1}+G_{2}$ with precisely two members, [H_{1}, H_{2}]. Now

$$
\alpha\left(G_{1}+G_{2}\right)=\min \left\{\left|G_{1}\right|+\alpha\left(G_{2}\right), \alpha\left(G_{1}\right)+\left|G_{2}\right|\right\} .
$$

Suppose for the sake of this argument that $\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)$. Now let M_{2} be an m.c. for G_{2}. Then $V\left(G_{1}\right) \cup M_{2}$ is an m.c. for $G_{1}+G_{2}$.

We have several cases to consider.
(1) Suppose $H_{1} \cup H_{2} \subset G_{1}$. Then we have

$$
\begin{aligned}
& \alpha\left(G_{1}\right)<\left|G_{1}\right| \leqslant\left|G_{1}\right|+\alpha\left(G_{2}\right)=\alpha\left(G_{1}+G_{2}\right) \\
& \\
& =\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right)=\alpha\left(H_{1} \cup H_{2}\right) \leqslant \alpha\left(G_{1}\right)
\end{aligned}
$$

which is absurd.
(2) Suppose $H_{1} \cup H_{2} \subset G_{2}$. Then

$$
\left|G_{1}\right|+\alpha\left(G_{2}\right)=\alpha\left(G_{1}+G_{2}\right)=\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right)=\alpha\left(H_{1} \cup H_{2}\right) \leqslant \alpha\left(G_{2}\right) .
$$

Thus $\left|G_{1}\right|=0$, a contradiction.
(3) Now suppose $H_{1} \subset G_{1}$ and $H_{2} \subset G_{2}$. Then
$\left|G_{1}\right|+\alpha\left(G_{2}\right)=\alpha\left(G_{1}+G_{2}\right)=\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leqslant \alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)<\left|G_{1}\right|+\alpha\left(G_{2}\right)$, which is again absurd.

Hence we must conclude that at least one of the subgraphs H_{1} and H_{2} must have a non-empty intersection with both G_{1} and G_{2}.
(4) Suppose $H_{2} \cap G_{1} \neq \emptyset \neq H_{2} \cap G_{2}$. We emphasize that these intersections may consist of points only (no lines).

Now let $F_{i}=H_{i} \cap G_{1}$ and $L_{i}=H_{i} \cap G_{2}$ for $i=1,2$. Thus F_{2} and L_{2} are not empty. First suppose that $L_{1}=\emptyset$, so that $F_{1}=H_{1} \subset G_{1}$. Now $V\left(F_{2}\right) \cup M_{2}$ covers H_{2}. Hence

$$
\begin{aligned}
& \alpha\left(G_{1}+G_{2}\right)=\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leqslant \alpha\left(H_{2}\right)+\left|V\left(F_{2}\right)\right|+\left|M_{2}\right| \\
& \leqslant\left|V\left(F_{1}\right)\right|-1+\left|V\left(F_{2}\right)\right|+\left|M_{2}\right| \leqslant\left|V\left(G_{1}\right)\right|-1+\left|M_{2}\right| \\
& \quad<\left|V\left(G_{1}\right)\right|+\left|M_{2}\right|=\alpha\left(G_{1}+G_{2}\right),
\end{aligned}
$$

which is once again absurd, so $L_{1} \neq \emptyset$. Now we show that $\left[L_{1}, L_{2}\right.$] is a decomposition of G_{2}. We know that $L_{1} \cup L_{2} \subset G_{2}$, so suppose that

$$
\alpha\left(L_{1}\right)+\alpha\left(L_{2}\right)<\alpha\left(G_{2}\right) .
$$

Let N_{i} be an m.c. for $L_{i}, i=1,2$. Then $V\left(G_{1}\right) \cup N_{1} \cup N_{2}$ covers $H_{1} \cup H_{2}$ and thus

$$
\begin{aligned}
\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) & =\alpha\left(H_{1} \cup H_{2}\right) \leqslant V\left(G_{1}\right)\left|+\left|N_{1}\right|+\left|N_{2}\right|\right. \\
& =\left|V\left(G_{1}\right)\right| \cdot+\alpha\left(L_{1}\right)+\alpha\left(L_{2}\right)<\left|V\left(G_{1}\right)\right|+\alpha\left(G_{2}\right)=\alpha\left(G_{1}+G_{2}\right)
\end{aligned}
$$

contradicting the assumption that $\left[H_{1}, H_{2}\right]$ is a decomposition of $G_{1}+G_{2}$. Thus $\left[L_{1}, L_{2}\right.$] is a decomposition of G_{2}, which contradicts the indecomposability of G_{2} and completes the proof of the theorem.

Now if $G_{1}=K_{m}$ and $G_{2}=K_{n}$, then $G_{1}+G_{2}=K_{m+n}$ and $\operatorname{Cr}\left(G_{1}+G_{2}\right)$ $=G_{1}+G_{2}$. If, however, at least one of G_{1} and G_{2} is not complete, then in general the critical lines of $G_{1}+G_{2}$ form a disconnected subgraph of $G_{1}+G_{2}$. More precisely, we have the next three theorems.

Theorem 5. If G_{1} and G_{2} are not both complete graphs, then

$$
\operatorname{Cr}\left(G_{1}+G_{2}\right) \subset \operatorname{Cr}\left(G_{1}\right) \cup \operatorname{Cr}\left(G_{2}\right) .
$$

Proof. First we show that $\operatorname{Cr}\left(G_{1}+G_{2}\right) \subset E\left(G_{1}\right) \cup E\left(G_{2}\right)$. As in the preceding theorem we may let $\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)$. Let $x=v_{1} v_{2}$ be a line with $v_{i} \in V\left(G_{i}\right), i=1,2$. Suppose x is critical in $G_{1}+G_{2}$. Then no m.c. for $\left(G_{1}+G_{2}\right)-x$ contains v_{1} or v_{2}. Thus there is a unique m.c. for $\left(G_{1}+G_{2}\right)-x$, namely $M_{x}=\left[V\left(G_{1}\right) \cup V\left(G_{2}\right)\right]-\left\{v_{1}, v_{2}\right\}$. Hence

$$
\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)=\left|M_{x}\right|+1=\left|G_{1}\right|+\left|G_{2}\right|-1 .
$$

Hence $\alpha\left(G_{2}\right)=\left|G_{2}\right|-1$ and it follows that G_{2} must be complete. But then $\alpha\left(G_{1}\right)+\left|G_{2}\right| \geqslant\left|G_{1}\right|+\alpha\left(G_{1}\right)=\left|G_{1}\right|+\left|G_{2}\right|-1$ and hence $\alpha\left(G_{1}\right) \geqslant\left|G_{1}\right|-1$. Thus G_{1} is also complete and we have a contradiction of the hypothesis. Thus $\operatorname{Cr}\left(G_{1}+G_{2}\right) \subset E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Now let y belong to $\operatorname{Cr}\left(G_{1}+G_{2}\right)$ and, without loss of generality, let y be an element of $E\left(G_{2}\right)$. We know that

$$
\alpha\left(G_{1}+G_{2}\right)=\min \left\{\left|G_{1}\right|+\alpha\left(G_{2}\right), \alpha\left(G_{1}\right)+\left|G_{2}\right|\right\}
$$

and, since $\left(G_{1}+G_{2}\right)-y=G_{1}+\left(G_{2}-y\right)$, that

$$
\alpha\left[\left(G_{1}+G_{2}\right)-y\right]=\min \left\{\left|G_{1}\right|+\alpha\left(G_{2}-y\right), \alpha\left(G_{1}\right)+\left|G_{2}-y\right|\right\} .
$$

There are two cases to consider.

$$
\begin{aligned}
& \text { Case 1. } \alpha\left(G_{1}+G_{2}\right)=\left|G_{2}\right|+\alpha\left(G_{1}\right)<\alpha\left(G_{2}\right)+\left|G_{1}\right| \text {. Then if } \\
& \alpha\left[\left(G_{1}+G_{2}\right)-y\right]=\left|G_{1}\right|+\alpha\left(G_{2}-y\right),
\end{aligned}
$$

we have

$$
\alpha\left(G_{1}+G_{2}\right)=\left|G_{2}\right|+\alpha\left(G_{1}\right) \leqslant\left|G_{1}\right|+\alpha\left(G_{2}\right)-1 \leqslant\left|G_{1}\right|+\alpha\left(G_{2}-y\right)
$$

and $y \notin \operatorname{Cr}\left(G_{1}+G_{2}\right)$, contrary to assumption. On the other hand, if

$$
\alpha\left[\left(G_{1}+G_{2}\right)-y\right]=\alpha\left(G_{1}\right)+\left|G_{2}-y\right|=\alpha\left(G_{1}\right)+\left|G_{2}\right|=\alpha\left(G_{1}+G_{2}\right),
$$

then again we have the contradiction that $y \notin \operatorname{Cr}\left(G_{1}+G_{2}\right)$. Thus Case 1 must be an impossibility.

Case 2. $\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)$. Now if

$$
\alpha\left[\left(G_{1}+G_{2}\right)-y\right]=\alpha\left(G_{1}\right)+\left|G_{2}-y\right|,
$$

we have

$$
\begin{aligned}
\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right) \leqslant \alpha\left(G_{1}\right) & +\left|G_{2}\right| \\
& =\alpha\left(G_{1}\right)+\left|G_{2}-y\right|=\alpha\left[\left(G_{1}+G_{2}\right)-y\right]
\end{aligned}
$$

so that once again $y \notin \operatorname{Cr}\left(G_{1}+G_{2}\right)$. Thus we must have

$$
\alpha\left[\left(G_{1}+G_{2}\right)-y\right]=\left|G_{1}\right|+\alpha\left(G_{2}-y\right)
$$

so that

$$
\begin{aligned}
\alpha\left(G_{2}-y\right)=\alpha\left[\left(G_{1}+G_{2}\right)-y\right]-\left|G_{1}\right| & =\alpha\left(G_{1}+G_{2}\right)-\left|G_{1}\right|-1 \\
& =\left|G_{1}\right|+\alpha\left(G_{2}\right)-\left|G_{1}\right|-1=\alpha\left(G_{2}\right)-1
\end{aligned}
$$

and $y \notin \operatorname{Cr}\left(G_{2}\right)$. This completes the proof of the theorem.
Theorem 6. A critical line of G_{2} is critical in $G_{1}+G_{2}$ if and only if

$$
\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right) .
$$

Proof. We first show that if some critical line x of G_{2} is critical in $G_{1}+G_{2}$, then $\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)$. Assume that

$$
\alpha\left(G_{1}+G_{2}\right)=\left|G_{2}\right|+\alpha\left(G_{1}\right)<\left|G_{1}\right|+\alpha\left(G_{2}\right) .
$$

Again there are two possibilities.
If $\alpha\left[\left(G_{1}+G_{2}\right)-x\right]=\left|G_{2}-x\right|+\alpha\left(G_{1}\right)$, then

$$
\alpha\left[\left(G_{1}+G_{2}\right)-x\right]=\left|G_{2}\right|+\alpha\left(G_{1}\right)=\alpha\left(G_{1}+G_{2}\right)
$$

and $x \notin \operatorname{Cr}\left(G_{1}+G_{2}\right)$. On the other hand, if

$$
\begin{aligned}
\alpha\left[\left(G_{1}+G_{2}\right)-x\right]=\left|G_{1}\right|+\alpha\left(G_{2}-x\right)= & \left|G_{1}\right|+\alpha\left(G_{2}\right)-1 \\
& \geqslant \alpha\left(G_{1}\right)+\left|G_{2}\right|=\alpha\left(G_{1}+G_{2}\right),
\end{aligned}
$$

then again $x \notin \operatorname{Cr}\left(G_{1}+G_{2}\right)$.
To prove the converse, let $\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)$ and let $x \in \operatorname{Cr}\left(G_{2}\right)$. Then
$\alpha\left[\left(G_{1}+G_{2}\right)-x\right] \leqslant\left|G_{1}\right|+\alpha\left(G_{2}-x\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)-1=\alpha\left(G_{1}+G_{2}\right)-1$ and hence $x \in \operatorname{Cr}\left(G_{1}+G_{2}\right)$, completing the proof.

We may now combine Theorems 5 and 6 to decide when

$$
\operatorname{Cr}\left(G_{1}+G_{2}\right)=\operatorname{Cr}\left(G_{1}\right) \cup \operatorname{Cr}\left(G_{2}\right)
$$

Theorem 7. The condition $\operatorname{Cr}\left(G_{1}+G_{2}\right)=\operatorname{Cr}\left(G_{1}\right) \cup \operatorname{Cr}\left(G_{2}\right)$ holds if and only if:
(1) $\operatorname{Cr}\left(G_{1}\right)=\operatorname{Cr}\left(G_{2}\right)=\emptyset$, or
(2) $\operatorname{Cr}\left(G_{1}\right)=\emptyset \neq \operatorname{Cr}\left(G_{2}\right)$ and $\alpha\left(G_{1}+G_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right)$, or
(3) $\operatorname{Cr}\left(G_{1}\right), \operatorname{Cr}\left(G_{2}\right) \neq \emptyset$ and $\left|G_{1}\right|-\alpha\left(G_{1}\right)=\left|G_{2}\right|-\alpha\left(G_{2}\right)$.

This theorem illustrates the fact that there are indecomposable graphs obtainable from the method of Theorem 4 which do not satisfy the hypotheses of Theorem 3.

We now present a sufficient condition for the indecomposability of the join of a decomposable graph with an indecomposable one.

Theorem 8. Let G_{1} be decomposable and let G_{2} be indecomposable. Then, if $\left|V\left(G_{1}\right)\right|-\alpha\left(G_{1}\right) \leqslant\left|V\left(G_{2}\right)\right|-\alpha\left(G_{2}\right), G_{1}+G_{2}$ is indecomposable.

Proof. The hypothesis implies that $\alpha\left(G_{1}+G_{2}\right)=\left|V\left(G_{1}\right)\right|+\alpha\left(G_{2}\right)$. Assume that $G_{1}+G_{2}$ is decomposable. Then if one proceeds as in the proof of Theorem 4, a contradiction of the fact that G_{2} is indecomposable is obtained.

It is not known if the converse of Theorem 8 holds in general. We do, however, present two special cases in which this converse does hold.

Theorem 9. If G is decomposable, then $G+K_{n}$ is decomposable.
Proof. First we note that

$$
\alpha\left(G+K_{n}\right)=\min \{|V(G)|+n-1, \alpha(G)+n\}=\alpha(G)+n
$$

Now let $\left[D_{1}, D_{2}\right]$ be a decomposition of G. We shall show that $\left[D_{1}+K_{n}, D_{2}\right]$ is a decomposition of $G+K_{n}$. We begin by noting that

$$
\alpha\left(D_{1}+K_{n}\right)=\min \left\{\left|V\left(D_{1}\right)\right|+n-1, \alpha\left(D_{1}\right)+n\right\}=\alpha\left(D_{1}\right)+n .
$$

Next, let M be an m.c. for G and hence $M \cup V\left(K_{n}\right)$ is an m.c. for $G+K_{n}$. Let $M_{i}=M \cap V\left(D_{i}\right)$ for $i=1,2$. Then M_{i} is an m.c. for D_{i}. In particular, $M_{1} \cup V\left(K_{n}\right)$ is an m.c. for $D_{1}+K_{n}$. Thus

$$
\begin{aligned}
\alpha\left(D_{1}+K_{n}\right)+\alpha\left(D_{2}\right) & =\left|M_{1} \cup V\left(K_{n}\right)\right|+\left|M_{2}\right|=\left|M_{1}\right|+\left|M_{2}\right|+\left|V\left(K_{n}\right)\right| \\
& =|M|+\left|V\left(K_{n}\right)\right|=\alpha(G)+n=\alpha\left(G+K_{n}\right)
\end{aligned}
$$

and the theorem is proved.
Theorem 10. Let G be an indecomposable graph. Then $G+\bar{K}_{n}$ is indecomposable if and only if $n \leqslant|V(G)|-\alpha(G)$.

Proof. Suppose first that $n \leqslant|V(G)|-\alpha(G)$. If $n=1$, since $\bar{K}_{1}=K_{1}$, it follows that $G+\bar{K}_{1}$ is indecomposable by Theorem 4. If $n>1$, then \bar{K}_{n} is decomposable since it is disconnected. Hence, since $n=\left|V\left(\bar{K}_{n}\right)\right|-\alpha\left(\bar{K}_{n}\right)$, $G+\bar{K}_{n}$ is indecomposable by Theorem 8.

To prove the converse, assume that $n>|V(G)|-\alpha(G)$. Hence

$$
\alpha\left(G+\bar{K}_{n}\right)=\min \{|V(G)|+0, \alpha(G)+n\}=|V(G)|<\alpha(G)+n
$$

and $G+\bar{K}_{n}$ has $V(G)$ as its only minimum cover. Now suppose that $v \in V\left(\bar{K}_{n}\right)$. We observe that $\left[v, G+\left(\overline{K_{n}-v}\right)\right]$ is a decomposition for $G+\bar{K}_{n}$. To see this, we need only point out that

$$
\alpha\left(G+\left(\overline{K_{n}-v}\right)\right)=\min \{|V(G)|+0, \alpha(G)+n-1\}=|V(G)|
$$

and since $\alpha(v)=0$, we are finished.
Next suppose G_{1} and G_{2} are both decomposable. What can be said about $G_{1}+G_{2}$?

Theorem 11. Let G_{1} and G_{2} be decomposable and $\left|G_{1}\right|-\alpha\left(G_{1}\right) \leqslant\left|G_{2}\right|-\alpha\left(G_{2}\right)$. Then a sufficient condition that $G_{1}+G_{2}$ be decomposable is that there exist decompositions $\left[A_{1}, B_{1}\right]$ for G_{1} and $\left[A_{2}, B_{2}\right]$ for G_{2} such that

$$
\left|A_{1}\right|-\alpha\left(A_{1}\right) \leqslant\left|A_{2}\right|-\alpha\left(A_{2}\right)
$$

and

$$
\left|B_{1}\right|-\alpha\left(B_{1}\right) \leqslant\left|B_{2}\right|-\alpha\left(B_{2}\right)
$$

Proof. We need only observe that

$$
\begin{aligned}
\alpha\left(A_{1}+A_{2}\right)+\alpha\left(B_{1}+B_{2}\right)= & \min \left\{\left|A_{1}\right|+\alpha\left(A_{2}\right),\left|A_{2}\right|+\alpha\left(A_{1}\right)\right\} \\
& +\min \left\{\left|B_{1}\right|+\alpha\left(B_{2}\right),\left|B_{2}\right|+\alpha\left(B_{1}\right)\right\} \\
= & \left|A_{1}\right|+\alpha\left(A_{2}\right)+\left|B_{1}\right|+\alpha\left(B_{2}\right)=\left|G_{1}\right|+\alpha\left(G_{2}\right) \\
= & \min \left\{\left|G_{1}\right|+\alpha\left(G_{2}\right),\left|G_{2}\right|+\alpha\left(G_{1}\right)\right\} \\
= & \alpha\left(G_{1}+G_{2}\right)
\end{aligned}
$$

and the theorem is proved.
We conjecture that the condition of Theorem 11 is also necessary, but the proof appears to be difficult. We conclude by mentioning that it is not true that the join of two decomposable graphs is decomposable. The graphs G_{1} and G_{2} of Figure 3 are both decomposable but it can be verified that their join is indecomposable.

Figure 3.

References

1. L. W. Beineke, F. Harary, and M. D. Plummer. On the critical lines of a graph, Pacific J. Math., 21 (1967), to appear.
2. A. L. Dulmage and N. S. Mendelsohn, Coverings of bipartite graphs, Can. J. Math., 10 (1958), 517-534.
3. - A structure theory of bipartite graphs of finite exterior dimension, Trans. Roy. Soc. Canada. Sect. III, 53 (1959), 1-13.
4. P. Erdös and T. Gallai, On the minimal number of vertices representing the edges of a graph, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6 (1961), 89-96.
5. On the core of a graph, Proc. London Math. Soc. 17 (1967), 305-314.
6. M. D. Plummer, On a family of line-critical graphs, Monatsh. Math., 71 (1967), 40-48.

The University of Michigan

[^0]: Received February 1, 1966, and in revised form, April 5, 1966. Work supported in part by the U.S. Air Force Office of Scientific Research under grant AF-AFOSR-754-65.

