OVOIDS AND TRANSLATION PLANES

WILLIAM M. KANTOR

1. Introduction. An *ovoid* in an orthogonal vector space V of type $\Omega^+(2n, q)$ or $\Omega(2n - 1, q)$ is a set Ω of $q^{n-1} + 1$ pairwise non-perpendicular singular points. Ovoids probably do not exist when n > 4 (cf. [12], [6]) and seem to be rare when n = 4. On the other hand, when n = 3 they correspond to affine translation planes of order q^2 , via the Klein correspondence between PG(3, q) and the $\Omega^+(6, q)$ quadric.

In this paper we will describe examples having n = 3 or 4. Those with n = 4 arise from $PG(2, q^2)$, $AG(2, q^3)$, or the Ree groups. Since each example with n = 4 produces at least one with n = 3, we are led to new translation planes of order q^2 .

Some of the resulting translation planes are semifield planes; others seem to have somewhat small collineation groups. Some of the most interesting planes have the following properties:

If $q \equiv 2 \pmod{3}$ and q > 2, there is a translation plane of order q^2 admitting an abelian collineation group **P** of order q^2 which fixes an affine point, has orbit lengths 1 and q^2 on the line at infinity, and contains exactly q elations; moreover, **P** is elementary abelian if q is odd, but is the direct product of cyclic groups of order 4 if q is even (cf. (4.5)). Another note-worthy example we will discuss is a nondesarguesian plane of order 8^2 admitting $\mathbb{Z}_7 \times SL(2, 4)$ as an irreducible collineation group (cf. (8.2)).

The ovoids with n = 4 are related, by triality, to orthogonal spreads. A number of such orthogonal spreads were discussed in [4, 5], and were used to construct translation planes of order q^3 when q is even. The latter planes arise from 6-dimensional symplectic spreads. Other characteristic 2 symplectic spreads occur in [3, 4]. Here, we will construct 4-dimensional symplectic nondesarguesian spreads over all fields of odd non-prime order (cf. (5.2)).

2. Background. A spread of a 2*n*-dimensional GF(q)-space V is a family Σ of $q^n + 1$ subspaces of dimension *n*, any two of which span V. The corresponding translation plane $A(\Sigma)$ of order q^n has V as its set of points and the cosets of the members of Σ as its lines (cf. [9]).

A symplectic spread is a spread Σ such that, for some symplectic geometry on V, Σ consists of totally isotropic *n*-spaces.

Received June 23, 1981 and in revised form October 28, 1981.

An $\Omega^+(2n, q)$ space V is a 2n-dimensional GF(q)-space equipped with a quadratic form such that totally singular *n*-spaces exist. (Thus, if V is $GF(q)^{2n}$ then the quadratic form is equivalent to the form $\sum_{i=1}^{n} x_i x_{n+i}$.) There are then two classes of totally singular *n*-spaces, two subspaces belonging to the same class if and only if the dimension of their intersection has the same parity as *n*.

Ovoids were defined in Section 1. Note that an ovoid in an $\Omega(2n - 1, q)$ space is also an ovoid in an $\Omega^+(2n, q)$ space of which that space is a hyperplane. Also, an $\Omega^+(2n, q)$ space cannot contain more than $q^{n-1} + 1$ pairwise non-perpendicular singular points: ovoids are extremal with this property (see [12]).

If Ω is an ovoid of an $\Omega^+(2n, q)$ space, a count shows that every totally singular *n*-space contains a member of Ω . If *x* is any singular point not in Ω , then $x^{\perp} \cap \Omega$ projects onto an ovoid of x^{\perp}/x . Thus, $\Omega^+(8, q)$ ovoids produce $\Omega^+(6, q)$ ovoids. Similarly, $\Omega(7, q)$ ovoids produce $\Omega(5, q)$ ovoids in the same manner.

The Klein correspondence represents PG(3, q) in an $\Omega^+(6, q)$ space, sending lines to singular points and sending points and planes to totally singular 3-spaces. The points of a line L of PG(3, q) are sent to the 3-spaces of one class which contain the corresponding singular point x; the planes containing L are sent to the remaining totally singular 3-spaces containing x. A spread of a 4-dimensional GF(q)-space is sent to an ovoid of the $\Omega^+(6, q)$ space. Similarly, a 4-dimensional symplectic spread produces an $\Omega(5, q)$ ovoid. If Ω is an ovoid of an $\Omega(5, q)$ or $\Omega^+(6, q)$ space, let $\mathbf{A}(\Omega)$ denote the corresponding translation plane of order q^2 . The plane $\mathbf{A}(\Omega)$ is desarguesian if and only if dim $\langle \Omega \rangle = 4$; in this case, $\langle \Omega \rangle$ is an $\Omega^-(4, q)$ space, and Ω consists of all its singular points.

Under the Klein correspondence,

$$(2.1) \quad \langle 1, a, b, c, d, -ad - bc \rangle \leftrightarrow \langle (1, 0, c, -d), (0, 1, a, b) \rangle.$$

Let Ω be an $\Omega^+(6, q)$ ovoid, and set $G = P \Gamma O^+(6, q)_{\Omega}$. If y is a singular point not in Ω , then G_y may not act on $\mathbf{A}(y^{\perp} \cap \Omega)$. For, G_y may induce both collineations and correlations of PG(3, q). However, its subgroup of index at most 2 inducing collineations does, indeed, act on $\mathbf{A}(y^{\perp} \cap \Omega)$.

The triality principle in a sense generalizes the Klein correspondence. Let **P** denote the set of singular points of an $\Omega^+(8, q)$ space V, let \mathbf{M}_1 and \mathbf{M}_2 be the two classes of totally singular 4-spaces of V, and let **L** be the set of totally singular 2-spaces of V. A triality map is a mapping τ sending $\mathbf{L} \to \mathbf{L}$ and $\mathbf{P} \to \mathbf{M}_1 \to \mathbf{M}_2 \to \mathbf{P}$ which preserves incidence between members of **L** and members of $\mathbf{P} \cup \mathbf{M}_1 \cup \mathbf{M}_2$ ([13]). Here, τ induces an outer automorphism of the projective orthogonal group $P\Omega^+(8, q)$; this automorphism will also be called τ . If Ω is an ovoid of V then Ω^{τ} is an orthogonal spread: a family of $q^3 + 1$ totally singular 4-spaces partitioning the $(q^3 + 1)(q^4 - 1)/(q - 1)$ singular points of V. (Note that an orthogonal spread is not a spread as defined at the beginning of this section: any two members span V, but there are only $q^3 + 1$ members instead of $q^4 + 1$.) Conversely, if Σ is an orthogonal spread of V and $\Sigma \subset \mathbf{M}_1$, then $\Sigma^{\tau^{-1}}$ is an ovoid of V. Consequently, the orthogonal spreads described in [4, 5] can be used here. Moreover, if $x \in \mathbf{P} - \Omega$, the ovoid in x^{\perp}/x produced by $x^{\perp} \cap \Omega$ corresponds, under τ , to the spread

$$\{x^{\tau} \cap M | M \in \Omega^{\tau}, x^{\tau} \cap M \neq 0\}$$

of the 4-space x^{τ} . We will call the resulting translation plane $A(x^{\perp} \cap \Omega)$.

3. $\Omega^+(8, q)$ ovoids when $q \leq 3$. There are unique $\Omega^+(8, q)$ ovoids when $q \leq 3$ ([11], [4]). While they exhibit exceptional behavior, they also provide simple illustrative examples. Our discussion follows [7, § 2D].

Example 1. Let e_1, \ldots, e_9 be the standard basis for $V = GF(2)^9$. Define a quadratic form Q on V by requiring that $Q(e_i) = 0$ and $(e_i, e_j) = 1$ for $i \neq j$. The radical of V is $\langle r \rangle = \langle \Sigma e_i \rangle$. Set $\bar{e}_i = e_i + \langle r \rangle$. Then $\Omega = \{ \langle \bar{e}_i \rangle | 1 \leq i \leq 9 \}$ is an ovoid in the $\Omega^+(8, 2)$ space $V/\langle r \rangle$, whose stabilizer in $O^+(8, 2)$ is S_9 . Moreover, S_9 has exactly two orbits of singular points. If $x = \langle \bar{e}_1 + \bar{e}_2 + \bar{e}_3 + \bar{e}_4 \rangle$ then $A(x^{\perp} \cap \Omega)$ is the desarguesian plane of order 4, and S_5 is induced on the plane by $(S_9)_x$.

Example 2. Let e_1, \ldots, e_8 be the standard basis of $V = GF(3)^8$, and define Q by requiring that $Q(e_i) = 1$ and $(e_i, e_j) = 0$ for $i \neq j$. This turns V into an $\Omega^+(8, 3)$ space. Let Ω consist of the points $\langle e_i + e_7 + e_8 \rangle$ with $i \leq 6$, $\langle -e_i + e_7 + e_8 \rangle$ with $i \leq 6$, and $\langle \sum_{i=1}^{6} \epsilon_i e_i \rangle$ with $\epsilon_i \in GF(3)$ and $\prod_{i=1}^{6} \epsilon_i = 1$. Then Ω is an ovoid lying in $H = \langle e_7 - e_8 \rangle^{\perp}$, and the Weyl group W of type E_7 acts 2-transitively on Ω [7, § 2D]. Moreover, W has exactly 2 orbits of singular points x of H. If $v = e_1 + e_2 + e_3$ and $x = \langle v \rangle$, then $W_v = S_6 \times S_3$ induces $PSL(2, 9) \cdot \mathbb{Z}_2$ on $x^{\perp} \cap \Omega$. It is easy to check that dim $\langle x, x^{\perp} \cap \Omega \rangle / x = 4$, so that $A(x^{\perp} \cap \Omega)$ is desarguesian.

Similarly, W is transitive on the singular points not in H. Each such point has the form $\langle n + e_7 - e_8 \rangle$ with $n \in H$ and Q(n) = 1. Thus, we must consider the ovoid $n^{\perp} \cap \Omega$ of $n^{\perp} \cap H$. If $n = e_6$ then $n^{\perp} \cap \Omega$ consists of the points $\langle e_i + e_7 + e_8 \rangle$ and $\langle -e_i + e_7 + e_8 \rangle$ with $i \leq 5$, and hence spans $n^{\perp} \cap H$. Thus, $\mathbf{A}(n^{\perp} \cap \Omega)$ is the nearfield plane of order 9, and its canonical involution on L_{∞} is evident (cf. [2, p. 232]). The group $\mathbb{Z}_2^4 \rtimes S_5$ acting on L_{∞} is equally visible.

These ovoids will reappear in later sections.

4. Unitary ovoids. An $\Omega^+(8, q)$ ovoid associated with the unitary group PGU(3, q) when $q \equiv 0$ or 2 (mod 3) was studied in [4, § 6]. In this section, we will describe an equivalent ovoid, obtained by changing coordinates in order to simplify calculations.

Let q be a power of a prime p. Set K = GF(q) and $L = GF(q^2)$. If $\alpha \in L \operatorname{set} \bar{\alpha} = \alpha^q$, $T(\alpha) = \alpha + \bar{\alpha}$ and $N(\alpha) = \alpha \bar{\alpha}$. If $p \neq 3$ let $\omega^3 = 1 \neq \omega$. If $M = (\mu_{ij})$ is a 3×3 matrix over L, set tr $(M) = \Sigma \mu_{ii}$, $\bar{M} = (\bar{\mu}_{ij})$ and $M^t = (\mu_{ij})$. Set

$$J = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Let V be the K-space of those matrices M such that tr (M) = 0 and $J^{-1}MJ = \overline{M}^{i}$. Then dim V = 8. Write

$$Q(M) = -\sum_{i < j} \mu_{ii} \mu_{jj} + \sum_{i < j} \mu_{ij} \mu_{ji}$$

Then Q is a quadratic form on V, with associated bilinear form

$$Q(M+N) - Q(M) - Q(N) = \operatorname{tr} (MN).$$

Explicitly, V consists of the matrices

(4.1)
$$M = \begin{pmatrix} \alpha & \beta & c \\ \gamma & a & \overline{\beta} \\ b & \overline{\gamma} & \overline{\alpha} \end{pmatrix}$$
 with $\alpha, \beta, \gamma \in L; a, b, c \in K;$ and $a + T(\alpha) = 0$,

and Q is defined by

(4.2)
$$Q(M) = \alpha^2 + \alpha \overline{\alpha} + \overline{\alpha}^2 + T(\beta \gamma) + bc.$$

Thus, if p = 3 then rad $V = \langle I \rangle$. Moreover, V is an $\Omega^+(8, q)$ space if and only if $q \equiv 2 \pmod{3} ([3, (6)])$. In this section, we will always assume that $q \equiv 0$ or 2 (mod 3).

Let *G* denote the unitary group GU(3, q) of all invertible 3×3 matrices *A* over *L* such that $J^{-1}AJ = (\bar{A}^t)^{-1}$. Then *G* acts on *V* by conjugation, inducing PGU(3, q) there. Moreover, *G* preserves Q [**4**, (6.2)]. Note that *G* preserves the form $(\rho, \sigma, \tau) \to T(\rho\bar{\tau}) + N(\sigma)$ on L^3 .

Transvections in G have the form I + Y with $Y^2 = 0$. Here,

$$I + J^{-1}YJ = (I + \bar{Y}^{t})^{-1} = \overline{I - Y^{t}}.$$

Let $\bar{\theta} = -\theta$. Then $X = \theta Y \in V$. Thus,

 $\Omega = \{ \langle X \rangle | 0 \neq X \in V, X^2 = 0 \}$

consists of $q^3 + 1$ singular points, permuted by G in its natural 2-transitive permutation representation. No two members of Ω are perpendicular: Ω is an ovoid if $p \neq 3$, and projects onto an ovoid of $V/\langle I \rangle$ if p = 3[4, (6.12)].

This ovoid can be described explicitly, as follows. If $v = (\rho, \sigma, \tau) \neq 0$ and $T(\rho \overline{\tau}) + N(\sigma) = 0$, then $\overline{v} v J$ lies in V and has square 0. This produces all $(q^3 + 1)(q - 1)$ nonzero matrices appearing in the definition of Ω .

Set
$$X_{\infty} = (1 \ 0 \ 0)^t (1 \ 0 \ 0) J$$
 and

$$X[\rho, \sigma] = \begin{pmatrix} \overline{\rho} \\ \overline{\sigma} \\ 1 \end{pmatrix} (\rho \ \sigma \ 1) J$$

$$= \begin{pmatrix} \overline{\rho} & \overline{\rho}\sigma & N(\rho) \\ \overline{\sigma} & N(\sigma) & \rho\overline{\sigma} \\ 1 & \sigma & \rho \end{pmatrix}$$
 whenever $T(\rho) + N(\sigma) = 0$.

Then

(4.3)
$$\Omega = \{ \langle X_{\infty} \rangle, \, \langle X[\rho, \sigma] \rangle | T(\rho) + N(\sigma) = 0 \}.$$

The stabilizer of $\langle X_{\infty} \rangle$ in G has a Sylow *p*-subgroup U of order q^3 , consisting of the matrices

$$U[\lambda, \mu] = \begin{pmatrix} 1 & -\bar{\mu} & \lambda \\ 0 & 1 & \mu \\ 0 & 0 & 1 \end{pmatrix} \text{ with } T(\lambda) + N(\mu) = 0.$$

(Note that $U[\lambda, \mu]U[\sigma, \tau] = U[\lambda + \sigma - \overline{\mu}\tau, \mu + \tau]$.) Moreover U is transitive on $\Omega - \{\langle X_{\infty} \rangle\}$.

If $\phi \in L^*$ set $D(\phi) = \text{diag } (\phi, 1, \overline{\phi}^{-1})$. Then $D(\phi) \in G$, $D(\phi)$ fixes $\langle x_{\infty} \rangle$ and $\langle X[0, 0] \rangle$, and

(4.4)
$$D(\phi)^{-1}X[\phi, \sigma]D(\phi) = X[\rho N(\phi)^{-1}, \sigma \phi^{-1}]N(\phi).$$

We are now in a position to consider the translation planes determined by Ω .

Set

$$Y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then $Y \in V$, Q(Y) = 0 and $X_{\infty}Y = YX_{\infty} = 0$. By (4.3),

$$Y^{\perp} \cap \Omega = \{ \langle X_{\omega} \rangle, \, \langle X[\rho, \sigma] \rangle | T(\rho) + N(\sigma) = 0, \, T(\sigma) = 0 \}.$$

Also,

$$U_Y = \{ U[\lambda, \mu] | T(\lambda) + N(\mu) = 0, T(\mu) = 0 \}.$$

THEOREM 4.5. Let $q \equiv 0$ or 2 (mod 3) and q > 3. Set $\mathbf{A} = \mathbf{A}(Y^{\perp} \cap \Omega)$. Then the following hold.

(i) A is a nondesarguesian translation plane of order q^2 .

(ii) Aut A fixes a point x_{∞} at infinity.

(iii) U_Y induces an abelian collineation group P transitive on $L_{\infty} - \{x_{\infty}\}$.

(iv) If $p \neq 3$ then P contains exactly q elations. If p = 3 then P consists of elations.

(v) If $p \neq 2$ then P is elementary abelian. If p = 2 then P is the direct product of $\log_2 q$ cyclic groups of order 4.

(vi) There is a cyclic collineation group of order q - 1 normalizing P and faithful on L_{∞} .

(vii) The normalizer of P in (Aut A)₀ has a subgroup of order $q^2(q-1)^2 \log_p q$.

(viii) The kernel of \mathbf{A} is GF(q).

(ix) If p = 3 then A is defined by a symplectic spread.

Proof. Since U_Y has the structure indicated in (v), both (iii) and (v) are clear. Let $1 \neq A = U[\lambda, \mu] \in U_Y$. Then A induces an elation on A if and only if $p \neq 3$ and it induces the identity on $\langle X_{\infty}, Y \rangle^{\perp} / \langle X_{\infty}, Y \rangle$, or p = 3 and it induces the identity on $\langle X_{\infty}, Y \rangle^{\perp} / \langle X_{\infty}, Y \rangle$. By (4.2), $\langle X_{\infty}, Y \rangle^{\perp}$ consists of all matrices (4.1) with $T(\gamma) = 0$ and b = 0. Since $\gamma = -\gamma$ and $\mu = -\mu$,

$$A^{-1}MA - M = \begin{pmatrix} -\mu\gamma & \beta' & c' \\ 0 & 2\mu\gamma & \overline{\beta'} \\ 0 & 0 & -\mu\gamma \end{pmatrix}$$

with $c' \in K$ and $\beta' = -\alpha \overline{\mu} - \overline{\mu}^2 \gamma + \overline{\mu}a + \overline{\lambda}\gamma$. Thus, $A^{-1}MA - M \in \langle X_{\infty}, Y \rangle$ for all $M \in \langle X_{\infty}, Y \rangle^{\perp}$ if and only if U = 0. This proves (iv) when $p \neq 3$. If p = 3 then

$$eta' = -lphaar\mu + \gamma(-T(\lambda)) - ar\mu T(lpha) - \lambda\gamma \ = -ar\mu(-lpha+arlpha) - \gamma(\lambda-ar\lambda) \in K;$$

since $\mu\gamma \in K$, (iv) holds.

By (4.4), $\{D(\phi)|\phi \in L^*\}$ induces the cyclic group in (vi), while (vii), (viii) and (ix) are obvious. (Note that the involutory field automorphism of $GF(q^2)$ induces a polarity of PG(3, q), and hence does not act on **A**.)

Moreover, if $p \neq 3$ then (iv) yields (i) and hence (ii). Thus, we must prove (vi) and show that (i) holds when q > 3 = p. Before doing this, we will provide a slightly more compact description for the ovoid produced by $Y^{\perp} \cap \Omega$.

By (4.2), $Y^{\perp}/\langle Y \rangle$ consists of the matrices (4.1) with $T(\gamma) = 0$ and β read mod K. Thus, $Y^{\perp}/\langle Y \rangle$ can be identified with

$$V^* = \{ (\alpha, \beta + K, \gamma, b, c) | \alpha, \beta, \gamma \in L, b, c \in K \text{ and } T(\gamma) = 0 \},\$$

with Q inducing

$$Q^*(\alpha, \beta + K, \gamma, b, c) = \alpha^2 + \alpha \bar{\alpha} + \bar{\alpha}^2 + T(\beta \gamma) + bc.$$

In this notation, $Y^{\perp} \cap \Omega$ produces the set Ω^* consisting of the points (0, 0, 0, 0, 1) and

 $\langle \rho, \rho\sigma + K, \bar{\sigma}, 1, \rho\bar{\rho} \rangle$ with $T(\sigma) = 0 = T(\rho) + N(\sigma)$.

Now let p = 3. We must show that $W = \langle \Omega^*, (1, 0, 0, 0, 0) \rangle$ coincides with V^* . Clearly, W contains (1, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 0), and

 $(\rho, \rho\sigma + K, \bar{\sigma}, 0, 0)$ whenever $T(\sigma) = 0 = T(\rho) + N(\sigma)$. Set $\sigma = 0$ and $\rho \neq 0$, and deduce that $(\alpha, 0, 0, 0, 0) \in W$ for all α . Hence, so is $(0, \rho\sigma + K, \bar{\sigma}, 0, 0)$. Fix $\rho, \sigma \neq 0$ with $T(\sigma) = 0 = T(\rho) + N(\sigma)$, and let $k \in K - GF(3)$. Then

$$\begin{aligned} (0, \, k^3\rho\sigma + K, \, k\bar{\sigma}, \, 0, \, 0) \, - \, k^3(0, \, \rho\sigma + K, \, \bar{\sigma}, \, 0, \, 0) \\ &= \, (0, \, 0, \, (k \, - \, k^3)\sigma, \, 0, \, 0) \, \in \, W. \end{aligned}$$

Consequently $W = V^*$. This completes the proof of (4.5).

Remark. The planes in (4.5) are not the only planes behaving as in (4.5i-vi). Others exist for at least some odd prime powers q. The planes in (4.5) with $q \equiv 5 \pmod{6}$ can be shown to coincide with those found by Walker [15]; those with $q \equiv 2 \text{ or } 3 \pmod{6}$ appear to be new.

We now turn to other planes produced by Ω .

THEOREM 4.6. Let $q \equiv 2 \pmod{3}$ and q > 2. Set $Y' = \text{diag}(\omega, 1, \bar{\omega})$ and $\mathbf{A}' = \mathbf{A}(Y'^{\perp} \cap \Omega)$. Then \mathbf{A}' is a nondesarguesian plane. It has a collineation of order $q^2 - 1$ fixing two points at infinity and transitively permuting the remaining points at infinity.

Proof. By (4.2), Y' is singular and Y'^{\perp} consists of those matrices (4.1) for which

$$a + T(\alpha) = 0 = a + T(w\alpha).$$

Since dim_K L = 2 and $T(\omega) = T(\omega\omega)$, we can write $\alpha = k\omega$ with $k \in K$. By (4.3),

 $Y'^{\perp} \cap \Omega = \{ \langle X_{\infty} \rangle, \langle X[k\bar{\omega}, \sigma] \rangle | k = N(\sigma) \}.$

By (4.4), $\{D(\phi)|\phi \in L^*\}$ has the desired transitivity properties. That dim $\langle Y', Y' \cap \Omega \rangle > 5$ is proved as in the preceding theorem.

Remarks. Since $\alpha \in K\omega$, $Y'^{\perp}/\langle Y' \rangle$ can be identified with $K \oplus L \oplus L$ $\oplus K$, with Q inducing $Q^*(b, \beta, \gamma, c) = T(\beta\gamma) + bc$. The corresponding ovoid is

$$(4.7) \quad \{ \langle 0, 0, 0, 1 \rangle, \langle 1, N(\sigma) \sigma \omega, \overline{\sigma}, N(\sigma)^2 \rangle | \sigma \in L \}.$$

If $q \equiv 2 \pmod{3}$, the group G has exactly 3 orbits of singular points of V with orbit representatives $\langle X_{\infty} \rangle$, $\langle Y \rangle$ and $\langle Y' \rangle$. Similarly, if p = 3 there are just 2 orbits of singular points, along with 1 orbit of nonsingular points $\langle N \rangle$ for which $N^{\perp}/\langle I \rangle$ is an $\Omega^{+}(6, q)$ space. One such N is $N = \text{diag}(\lambda, 0, \overline{\lambda})$, where $\lambda \in L^*$ and $T(\lambda) = 0$.

THEOREM 4.8. If $q \equiv 0 \pmod{3}$ then $A(N^{\perp} \cap \Omega)$ is a nondesarguesian plane, and admits a collineation of order $q^2 - 1$ behaving as in (4.6).

The proof is similar to the preceding ones. In fact, the matrix (4.1) is in N^{\perp} if and only if $T(\alpha\lambda) = 0 = T(\lambda)$; that is, if and only if $\alpha \in K$. Thus, the required ovoid can be described precisely as in (4.7), with ω replaced by 1.

For $q \equiv 0$ or 2 (mod 3), a spread of $L \oplus L$ corresponding to the ovoid (4.7) can be described as follows. Fix π , $\theta \in L$ with $\pi \notin K$ and $\overline{\theta} = -\theta$. Then the spread consists of $0 \times L$ together with the K-subspaces

$$\langle (1, \theta), (\pi, N(\sigma)\sigma\omega\theta) \rangle$$
 for $\sigma \in L$.

5. Some 5- and 6-dimensional ovoids. Let K = GF(q), where q is odd and not a prime. Fix a nonsquare *n* of *K*, and automorphisms σ and τ of *K* at least one of which is nontrivial.

Equip $V = K^6$ with the quadratic form Q(x, y, z, u, v, w) = xw + yv + zu. Let Ω consist of the points

(5.1)
$$\begin{array}{l} \langle 0,\,0,\,0,\,0,\,0,\,1\rangle \\ \langle 1,\,y,\,z,\,z^{\,r},\,-\,ny^{\sigma},\,-\,z^{\,r+1}\,+\,ny^{\sigma+1}\rangle, \quad y,\,z\in K \end{array}$$

Then Ω consists of $q^2 + 1$ pairwise non-perpendicular singular points.

If $\tau = 1$ or $\sigma = 1$ then $\langle \Omega \rangle$ is a nonsingular hyperplane of V. In all other cases, $\langle \Omega \rangle = V$. This proves the following result.

PROPOSITION 5.2. (i) $A(\Omega)$ is nondesarguesian. (ii) If $\tau = 1 \neq \sigma$ or $\sigma = 1 \neq \tau$ then $A(\Omega)$ arises from a symplectic spread.

The plane $A(\Omega)$ is a semifield plane: the orthogonal transformations

$$(x, y, z, v, w) \rightarrow (x, y + ax, z + bx, u + b^{\tau}x, v - na^{\sigma}x,$$
$$w + na^{\sigma}y - av - b^{\tau}z - bu - b^{\tau+1}x + na^{\sigma+1}x)$$

all preserve Ω , send $p = \langle 0, 0, 0, 0, 0, 1 \rangle$ to itself, and induce the identity on p^{\perp}/p .

In fact, $A(\Omega)$ is a known plane. By (2.1), $\langle 1, a, b, c, d, -ad - bc \rangle$ corresponds to the 2-space

$$\{(X, XM) | X \in K^2\}$$
 of $K^2 \oplus K^2$, where $M = \begin{pmatrix} c & -d \\ a & b \end{pmatrix}$.

Replacing M by its transpose and using (5.1), we obtain a plane coordinatized by one of the semifields discovered by Knuth [8] (cf. [2, 5.3.6]).

Remark. By [1], if an ovoid Ω of V consists of the points $\langle 0, 0, 0, 0, 0, 1 \rangle$ and $\langle 1, y, z, z, f(y), -z^2 - yf(y) \rangle$ for $y, z \in K$, then Ω is equivalent to (5.1) for some n and σ . Presumably, the ovoids in (5.1) can all be characterized in an analogous manner. **6. Ree-Tits ovoids.** Let K = GF(q) and $V = K^7$, where $q = 3^{2e-1}$. If $a \in K$ set $a^{\sigma} = a^{3e}$, so that $a^{\sigma^2} = a^3$. Equip V with the quadratic form $Q(x_i) = x_4^2 + x_1x_7 + x_2x_6 + x_3x_5$. The Ree-Tits ovoid Ω consists of the $q^3 + 1$ singular points

$$\langle 0, 0, 0, 0, 0, 0, 0, 1 \rangle$$

 $\langle 1, x, y, z, u, v, w \rangle$ with $x, y, z \in K$,

where

$$u = x^{2}y - xz + y^{\sigma} - x^{\sigma+3}$$

$$v = x^{\sigma}y^{\sigma} - z^{\sigma} + xy^{2} + yz - x^{2\sigma+3}$$

$$w = xz^{\sigma} - x^{\sigma+1}y^{\sigma} - x^{\sigma+3}y + x^{2}y^{2} - y^{\sigma+1} - z^{2} + x^{2\sigma+4}$$

([14]). The Ree group R(q) acts 2-transitively on Ω , and has exactly 3 orbits of singular points of V; orbit representatives are $\langle 0, 0, 0, 0, 0, 0, 1 \rangle$, $\langle 0, 0, 0, 0, 0, 1, 0 \rangle$ and $\langle 0, 0, 0, 0, 1, 0, 0 \rangle$. The second and third of these produce the following 5-dimensional ovoids:

$$\begin{array}{ll} (6.1) & \langle 0,\,0,\,0,\,0,\,1\,\rangle \\ & \langle 1,\,y,\,z,\,y^{\sigma},\,-\,y^{\sigma+1}-z^2\,\rangle & {\rm with} \,\,y,z\in K; \end{array}$$

and

(6.2)
$$\begin{array}{c} \langle 0,\,0,\,0,\,0,\,1\,
angle \\ \langle 1,\,x,\,z,\,-z^{\sigma}\,-\,x^{2\sigma+3},\,xz^{\sigma}\,-\,z^{2}\,+\,x^{2\sigma+4}
angle \end{array}$$
 with $x,\,z\in K.$

Ovoid (6.1) appears in Section 5 (with n = -1 and $\tau = 1$).

Ovoid (6.2) gives rise to 4-dimensional symplectic spread. If q = 3, the resulting plane is desarguesian; if q > 3 it is not. A Frobenius group of order q(q - 1) acts on the ovoid, with orbits of length 1, q and q(q - 1). This group is generated by the following orthogonal transformations (where $b \in K$ and $k \in K^*$):

$$(t, x, z, v, w) \rightarrow (t, x, y + bt, v - b^{\sigma}t, w + b^{\sigma}x + bz + b^{2}t)$$

and

$$(t, x, z, v, w) \rightarrow (t, kx, k^{\sigma+2}, k^{2\sigma+3}v, k^{2\sigma+4}w).$$

Its Sylow 3-subgroup contains no elations.

A further class of planes arises from Ω using nonsingular points of V. There is just one R(q)-orbit of nonsingular points n of V such that $n^{\perp} \cap V$ is an $\Omega^{+}(6, q)$ space. One such point is $n = \langle 0, 0, 0, 1, 0, 0, 0 \rangle$ (which is perpendicular to the totally singular 3-space $\langle (0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1, 0, 0) \rangle$). This produces an ovoid $n^{\perp} \cap \Omega$. Projecting into six dimensions, we obtain the ovoid

(6.3)
$$\begin{array}{l} \langle 0, 0, 0, 0, 0, 1 \rangle \\ \langle 1, x, y, x^2 y + y^{\sigma} - x^{\sigma+3}, x^{\sigma} y^{\sigma} + x y^2 - x^{2\sigma+3}, \\ & - x^{\sigma+1} y^{\sigma} + x^{\sigma+3} y + x^2 y^2 - y^{\sigma+1} + x^{2\sigma+4} \rangle \quad \text{with } x, y \in K \end{array}$$

Even when q = 3, this ovoid spans the 6-space (compare Section 3), so that we obtain a nondesarguesian plane for each q. The Ree group only provides a collineation group of order q - 1, consisting of the orthogonal transformations

$$(t, x, y, u, v, w) \longrightarrow (t, kx, k^{\sigma+1}y, k^{\sigma+3}u, k^{2\sigma+3}v, k^{2\sigma+4}w).$$

7. Desarguesian ovoids. Let q be a power of 2. Set K = GF(q), $F = GF(q^3)$, and $V = K \oplus F \oplus F \oplus K$. Equip V with the quadratic form $Q(a, \beta, \alpha, d) = ad + T(\beta\gamma)$, where $T : F \to K$ is the trace map. The following set of points is an ovoid Ω (compare [4, (8.1)]):

where $N(t) = t^{1+q+q^2}$. There is a group $G = PSL(2, q^3)$ of orthogonal transformations acting 3-transitively on Ω . This group has exactly one further orbit of singular points, of which $x = \langle 0, 0, 1, 0 \rangle$ is a representative. Note that $\Omega' = x^{\perp} \cap \Omega$ consists of the points

$$\langle 0, 0, 0, 1 \rangle$$

 $\langle 1, t, t^{q+q^2}, N(t) \rangle$ where $T(t) = 0$.

The stabilizer of x in G has order $q^2(q-1)$. Its subgroup of order q^2 consists of all transformations

$$\begin{aligned} (a, \beta, \gamma, d) &\to (a, as + \beta, as^{q+q^2} + \beta^q s^{q^2} + \beta^{q^2} s^q + \gamma, \\ aN(s) &+ T(\beta s^{q+q^2}) + T(\gamma s) + d) \end{aligned}$$

with T(s) = 0.

THEOREM 7.1. If q > 2 then $A(\Omega')$ is a nondesarguesian semifield plane of order q^2 .

Proof. The plane is nondesarguesian since dim $\langle \Omega' \rangle = 7$. In order to prove that it is a semifield plane, it suffices to show that P induces the identity on $\langle x, y \rangle^{\perp} / \langle x, y \rangle$, where $y = \langle 0, 0, 0, 1 \rangle$. Here, $\langle x, y \rangle^{\perp}$ consists of all vectors $(0, \beta, \gamma, d)$ such that $T(\beta) = 0$. It then suffices to note that $\beta^{q^2}s^q + \beta^q s^{q^2} \in K$ whenever $T(\beta) = 0 = T(s)$. (Namely,

$$(\beta s^q + \beta^q s)^q = \beta^q s^{q^2} + \beta^{q^2} s^q = \beta^q (s + s^q) + (\beta + \beta^q) s^q$$
$$= \beta s^q + \beta^q s.)$$

Remark 1. The plane $A(\Omega')$ of order q^2 has been constructed using $GF(q^3)$. This unusual means of describing a plane of order q^2 is remarkable, in view of the following relationship between Ω and $AG(2, q^3)$.

If τ is a suitable triality map, then Ω^{τ} is the orthogonal spread which is called *desarguesian* in [4, 5]; one of its intersections with a nondegenerate

hyperplane arises from the usual $AG(2, q^3)$ spread. For this reason, Ω deserves to be called the *desarguesian ovoid* in V.

Remark 2. A presemifield for this plane can be described as follows. Let W = Ker T. Then $F = K \oplus W$; let π denote the corresponding projection onto W. Fix a basis σ , τ of W. Then

$$(a\sigma + b\tau) \cdot r = (ar + br^{q+q^2})\pi$$

defines the desired presemifield on W (where $a, b \in K, r \in W$).

8. Dye's ovoid. Exactly one further $\Omega^+(8, q)$ ovoid is presently known. It is an $\Omega^+(8, 8)$ ovoid Ω , discovered by Dye [3, § 4].

Let $\{\langle e_i \rangle | 1 \leq i \leq 9\}$ be an $\Omega^+(8, 2)$ ovoid; then $\sum_{i=1}^{9} e_i = 0$ (cf. Section 3). Embed the $\Omega^+(8, 2)$ space into an $\Omega^+(8, 8)$ space. If $\phi \in GF(8)$ and $\phi^3 + \phi^2 + 1 = 0$, then Ω consists of the points

$$\langle e_i \rangle$$
, $1 \leq i \leq 9$,
 $\langle \phi e_i + \phi^2 e_j + \phi^4 e_k \rangle$ with i, j, k distinct.

Clearly, $P \Gamma O^+(8, 8)_{\Omega} \ge S_9 \times \mathbb{Z}_3$ (with \mathbb{Z}_3 fixing each e_i); in fact, these groups coincide (cf. [4, § 9]). Set $G = A_9 \times \mathbb{Z}_3$. If y is a singular point not in Ω , then G_y acts on $\mathbb{A}(y^{\perp} \cap \Omega)$. We will mention properties of $\mathbb{A}(y^{\perp} \cap \Omega)$ for four choices of y.

Example 8.1. $y = \langle e_6 + e_7 + e_8 + e_9 \rangle$. Here, $\langle y^{\perp} \cap \Omega \rangle = \langle e_1, e_2, e_3, e_4, e_5 \rangle$, $A(y^{\perp} \cap \Omega)$ is desarguesian, and G_y induces S_5 on $A(y^{\perp} \cap \Omega)$.

Example 8.2. $y = \langle e_6 + e_7 + \phi e_8 + \phi^{-1} e_9 \rangle$. If $\Omega' = y^{\perp} \cap \Omega$, then $A(\Omega')$ has the following properties.

(i) $A(\Omega')$ is a nondesarguesian plane of order 8^2 .

(ii) There is a collineation group SL(2, 4) fixing 7 subplanes of order 4 containing 0 which are permuted transitively by the homologies of $A(\Omega')$ with center 0.

(iii) $\mathbb{Z}_7 \times SL(2, 4)$ acts irreducibly on the 4-dimensional GF(8)-space underlying $A(\Omega')$; the representation is exactly the same as for $AG(2, 4^3)$.

(iv) All involutions in SL(2, 4) are elations.

(v) SL(2, 4) has orbit lengths 5, 20, 20, 20 on L_{∞} .

(vi) There is a collineation group S_5 whose transpositions are Baer involutions and whose orbit lengths on L_{∞} are 5, 20, 40.

(vii) Elements of order 3 of SL(2, 4) fix exactly 8 points on L_{∞} .

Proof. Here Ω' consists of the 65 points spanned by the following vectors (where $i, j \leq 5, i \neq j$)

 $\phi^4 e_i + \phi^2 e_8 + \phi e_9$ $\phi^2 e_i + \phi^4 e_j + \phi e_8$ $\phi e_i + \phi^4 e_j + \phi^2 e_6$ $\phi e_i + \phi^4 e_i + \phi^2 e_7.$ 1205

The first 5 of these vectors have sum $\phi^4(e_6 + e_7 + \phi e_8 + \phi^{-1}e_9)$, and hence determine the subplanes appearing in (ii). Since G_y induces S_5 on $A(\Omega')$, all remaining assertions also follow easily from the above list of vectors.

Remarks. 1. There are many other subplanes of order 4. Since

$$\begin{split} \phi^4 e_5 + \phi^2 e_8 + \phi e_9 &= \phi^4 (e_1 + e_2 + e_3 + e_4) \\ &+ \phi^4 (e_6 + e_7 + \phi e_8 + \phi^{-1} e_9), \end{split}$$

these can be obtained, for example, by using $\langle u_1, u_2, v_3, v_4, \phi^4 e_5 + \phi^2 e_8 + \phi e_9 \rangle$ whenever u_1, u_2, v_3, v_4 are among the above 65 vectors and

$$egin{aligned} u_1 + u_2 \in \langle e_1 + e_2 + lpha(e_6 + e_7)
angle & ext{and} \ v_3 + v_4 \in \langle e_3 + e_4 + lpha(e_6 + e_7)
angle \end{aligned}$$

for some $\alpha \in GF(8)$. There are several different ways to choose the pairs $\{u_1, u_2\}$ and $\{v_3, v_4\}$.

2. A more compact description of $A(\Omega')$ can be obtained as follows. Set

$$s = e_1 + e_2 + e_3 + e_4 + e_5, f_i = e_i + s$$
 for $1 \le i \le 5$, and
 $g_k = e_k + \phi s$ for $k = 6, 7$.

Then

$$y^{\perp} = y \perp \langle f_1, f_2, f_3, f_4, f_5 \rangle \perp \langle g_6, g_7 \rangle$$

with

$$Q(f_i) = 0 = (f_i, g_k), (f_i, f_j) = 1 = (g_6, g_7) \text{ for } i \neq j,$$

$$Q(g_k) = \phi \text{ and } f_1 + f_2 + f_3 + f_4 + f_5 = 0.$$

The ovoid of $\langle f_1, f_2, f_3, f_4, f_5, g_6, g_7 \rangle$ upon which Ω' projects consists of the points

$$\langle f_i \rangle$$
, $\langle \phi f_i + \phi^4 f_j + \phi^2 g_k \rangle$, $\langle \phi^2 f_i + \phi^4 f_j + \phi^3 (g_6 + g_7) \rangle$

with $i, j \leq 5, i \neq j$, and k = 6, 7.

3. It follows readily from the preceding remark that Aut $A(\Omega') = \mathbb{Z}_7 \times S_5$.

Example 8.3. $y = \langle e_5 + e_6 + \phi^{-1}e_7 + \phi^{-2}e_8 + \phi^{-4}e_9 \rangle$. Here, $G_y \cong S_4 \times \mathbb{Z}_3$, where the \mathbb{Z}_3 is nonlinear, induces (7, 8, 9), and fixes exactly 5 points of $y^{\perp} \cap \Omega$: $\langle e_i \rangle$, $1 \leq i \leq 4$, and $\langle \phi^4 e_7 + \phi e_8 + \phi^2 e_9 \rangle$. Moreover, G_y induces S_4 on each of the resulting 7 subplanes AG(2, 4).

Example 8.4. $y = \langle (e_4 + e_5) + \phi(e_6 + e_7) + (\phi + 1)(e_8 + e_9) \rangle$. Once again $\langle y^{\perp} \cap \Omega \rangle = y^{\perp}$. This time, $G_y \cong \mathbb{Z}_{2^2} \times S_3$; its Sylow 2-subgroups induce exactly 6 Baer involutions and 1 nontrivial elation. 9. Concluding remarks. 1. Most of the automorphism group of each of the planes studied in [4, 5] could be obtained using the associated orthogonal spread. However, for the planes discussed here the groups induced by Aut A and $\Gamma O^+(8, q)_{\Omega}$ on L_{∞} need not coincide (cf. (3.2) and (8.1)). It would be desirable to know how close they are in each case we have discussed.

2. We have surveyed all the known $\Omega^+(8, q)$ ovoids. Are there further examples?

3. Presumably, planes of the form $A(x^{\perp} \cap \Omega)$ have intrinsic properties not shared by most translation planes. However, I know no such property.

4. The duals of the planes (4.5) with $q \equiv 2 \pmod{3}$ can be derived so as to obtain planes of type II.1, as in [10].

References

- 1. L. Carlitz, A theorem on permutations in a finite field, Proc. AMS 11 (1960), 456-459.
- 2. P. Dembowski, Finite geometries (Springer, Berlin-Heidelberg-New York, 1968).
- 3. R. H. Dye, Partitions and their stabilizers for line complexes and quadrics, Annali di Mat. 114 (1977), 173-194.
- W. M. Kantor, Spreads, translation planes and Kerdock sets I, SIAM J. Alg. Disc. Meth. 3 (1982), 151-165.
- 5. ——— Spreads, translation planes and Kerdock sets II, to appear in Siam J. Alg. Disc. Meth.
- 6. Strongly regular graphs defined by spreads, Israel J. Math. 41 (1982), 298-312.
- 7. W. M. Kantor and R. A. Liebler, The rank 3 permutation representations of the finite classical groups, Trans. AMS 271 (1982), 1-71.
- 8. D. E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965), 182-217.
- 9. H. Lüneburg, Translation planes (Springer, New York, 1980).
- 10. T. G. Ostrom, The dual Lüneburg planes, Math. Z. 97 (1966), 201-209.
- 11. N. J. Patterson, A four-dimensional Kerdock set over GF(3), J. Comb. Theory (A) 20 (1976), 365–366.
- 12. J. A. Thas, Ovoids and spreads of finite classical polar spaces (to appear in Geom. Ded.).
- 13. J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Publ. Math. I.H.E.S. 2 (1959), 14-60.
- 14. Les groupes simples de Suzuki et de Ree, Sém. Bourbaki 210 (1960/61).
- 15. M. Walker, A class of translation planes, Geom. Ded. 5 (1976), 135-146.

University of Oregon, Eugene, Oregon