Minimal vector lattice covers

Paul F. Conrad

We show that each abelian *l*-group *G* is a large *l*-subgroup of a minimal vector lattice *V* and if *G* is archimedean then *V* is unique, in fact, *V* is the *l*-subspace of $(G^d)^{\wedge}$ that is generated by *G*, where G^d is the divisible hull of *G* and $(G^d)^{\wedge}$ is the Dedekind-MacNeille completion of G^d . If *G* is non-archimedean then *V* need not be unique, even if *G* is totally ordered.

Throughout this note group will always mean abelian group. An *l*-subgroup *A* of an *l*-group *B* is *large* if for each *l*-ideal $L \neq 0$ of *B*, $L \cap A \neq 0$ (or equivalently each *l*-homomorphism of *B* that is one to one on *A* is an isomorphism). In this case we shall also call *B* an essential extension of *A*.

We define U to be a v-hull of an l-group G if

- i) U is a vector lattice and G is a large $l\mbox{-subgroup}$ of U , and
- ii) no proper l-subspace of U contains G.

Note that U contains a copy of G^d and since G^d is divisible and large in U it is dense in U (that is, $0 < u \in U$ implies 0 < g < ufor some $g \in G^d$). Thus ([1], p. 116), the infinite joins and intersections that exist in G agree with those in U.

PROPOSITION. Each l-group G admits a v-hull. Thus if G is an l-subgroup of a unique minimal vector lattice U then U must be a

Received 22 August 1970.

v-hull of G .

Proof. G is a subdirect sum of o-groups and by the Hahn representation theorem, ([4], p. 59), each o-group can be embedded in a vector lattice of real valued functions. Thus we may assume that G is an *l*-subgroup of a vector lattice V. Let W be the intersection of all the *l*-subspaces of V that contain G. Let B be an *l*-ideal of W that is maximal with respect to $B \cap G = 0$. Then

$G \cong (B \oplus G)/B \subseteq W/B$

and this is an essential extension. For if U is an l-ideal of W that contains B and $U/B \cap (B \oplus G)/B = B$, then $B = U \cap (B + G) = B + (U \cap G)$ and so $U \cap G \subseteq B$. Thus $U \cap G = 0$ and $U \supseteq B$ and so U = B. Therefore W/B is a v-hull of $(B \oplus G)/B$.

THEOREM. An archimedean l-group G admits a unique v-hull. This v-hull is (l-isomorphic to) the l-subspace of $(G^d)^{\wedge}$ that is generated by G and hence it is archimedean.

Proof. Let U be a v-hull of G.

(1) U is archimedean. For suppose by way of contradiction that $0 < a, b \in U$ and na < b for all integers n > 0. Since G is large in U there exists $0 < x \in G$ such that x < ma for some m > 0. Since U is minimal,

 $U = \bigvee U(g)$ for all $g \in G^+$,

where U(g) is the *l*-ideal of *U* that is generated by g. Thus $b = b_1 + \ldots + b_t$, where $b_i \in U(g_i)$ for $i = 1, \ldots, t$ and hence

$$b = |b_1 + \dots + b_t| \le |b_1| + \dots + |b_t|$$
.

Now there exists k > 0 such that $b_i \le kg_i$ for i = 1, ..., t. Thus $b \le k(g_1 + ... + g_r) = y \in G$ and hence

$$nx < nma < b \le y$$
 for all $n > 0$;

but this contradicts the fact that G is archimedean.

(2) U is unique. Since U is divisible we may assume that G^d is

https://doi.org/10.1017/S0004972700046232 Published online by Cambridge University Press

an l-subgroup of U. Thus G^d is dense in U and hence, (see [2]), $(G^d)^{\wedge}$ is the l-ideal of U^{\wedge} that is generated by G^d and so $(G^d)^{\wedge}$ is an l-subspace of U^{\wedge} that contains G^d . Also since U^{\wedge} is archimedean it follows that U is an l-subspace of U^{\wedge} , (see [3]). Thus

$$G \subseteq G^d \subseteq U \subseteq (G^d)^{\wedge}$$

and so U is the l-subspace of $(G^d)^{\wedge}$ that is generated by G and hence it is unique.

COROLLARY I. If U and V are v-hulls of an archimedean l-group G then there exists a unique l-isomorphism π of U onto V such that $g\pi = g$ for all $g \in G$.

Proof. This is true for G^d and for $(G^d)^{\wedge}$.

COROLLARY II. If G is a subdirect sum of reals then its v-hull is contained in this sum of reals.

Proof. If
$$G \subseteq \prod R_i$$
, then $(G^d)^{\wedge} \subseteq \prod R_i$, (see [2]).

If A is an *l*-subgroup of an *l*-group B then B is an *a-extension* of A if $L \rightarrow L \cap A$ is a one to one mapping of the *l*-ideals of B onto the *l*-ideals of A (or equivalently for each $0 \le b \in B$ there exist $0 \le a \in A$ and a positive integer n such that $a \le nb$ and $b \le na$).

PROPOSITION. Each v-hull of an o-group G is an o-group, but it need not be an a-extension. An o-group G admits a v-hull that is an a-extension, but it need not be unique.

Proof. If *H* is an essential extension of *G*, $0 < a, b \in H$ and $a \wedge b = 0$ then there is a positive integer *n* and $0 < x, y \in G$ such that na > x and nb > y. Thus $0 = n(a \wedge b) = na \wedge nb \ge x \wedge y \ge 0$ which contradicts the fact that *G* is an *o*-group. Thus *H* is totally ordered and so each *v*-hull of *G* is an *o*-group.

Let $U = R \oplus R \oplus R$ lexicographically ordered from the left and let G be the subgroup of U generated by (0, 0, 1), $(\pi, 1, 0)$ and $(1, \pi, 0)$. Then each subspace N of U that contains G must contain $\pi(\pi, 1, 0) - (1, \pi, 0) = (\pi^2 - 1, 0, 0)$ and hence N = U. Therefore U is a v-hull of G but clearly not an a-extension since U has two proper convex subgroups, but G has only one.

REMARKS. Note that

 $G \cong$ (the subgroup of R generated by π and 1) $\bigoplus R$ and so $R \bigoplus R$ is a *v*-hull and an *a*-extension of G. If we let $U = R \bigoplus R$ lexicographically ordered from the left and let G be the subgroup of U generated by $(\pi, 1)$ and $(1, \pi)$ then U is a minimal vector lattice containing G but it is not an essential extension and so not a *v*-hull. Also, G but not U is archimedean.

Now by Hahn's representation theorem each o-group G can be embedded in a vector lattice V that is an a-extension of G and hence the intersection of all the subspaces of V that contain G is a v-hull and an a-extension of G.

Finally let $V = \prod_{i=1}^{\infty} R_i$ lexicographically ordered from the left and

let f be a group isomorphism of R onto $\prod_{i=2}^{\infty} R_i$ such that f(1) = (1, 0, 0, ...) and in general $f(x) = (f_2(x), f_3(x), ...)$. Define

 $(x_1, x_2, \ldots)\tau = (x_1, x_2+f_2(x_1), x_3+f_3(x_1), \ldots)$

Then τ is an *o*-automorphism of V . For each $x \in V$ and $r \in R$ define

$$r*(x\tau) = (rx)\tau .$$

Then (V, *) is a vector lattice. Note that

$$r_*(x, f_2(x), f_3(x), \ldots) = r_*((x, 0, 0, \ldots)\tau)$$

= $(rx, 0, 0, \ldots)\tau$
= $(rx, f_2(rx), f_3(rx), \ldots)$.

In particular, for x = 1 we have

$$r_*(1, 1, \ldots) = (r, f_2(r), f_3(r), \ldots)$$

Thus (V, \star) is a *v*-hull and an *a*-extension of the *l*-group $G = \sum_{i=1}^{\infty} R_i$ and *G* is also a vector lattice with respect to the natural scalar multiplication and so *G* is its own *v*-hull. But *G* and *V* are not *o*-isomorphic since *V* is *a*-closed (that is, admits no proper *a*-extensions) and *G* is not.

REMARK. If the chain of convex subgroups of an o-group G satisfies the DCC then the Hahn group corresponding to G is the unique v-hull of G that is also an a-extension.

References

- [1] S.J. Bernau, "Orthocompletion of lattice groups", Proc. London Math. Soc. (3) 16 (1966), 107-130.
- [2] Paul Conrad and Donald McAlister, "The completion of a lattice ordered group", J. Austral. Math. Soc. 9 (1969), 182-208.
- [3] Paul Conrad, "Free abelian *l*-groups and vector lattices", Math. Ann. (to appear).
- [4] L. Fuchs, Partially ordered algebraic systems (Pergamon Press, Oxford, London, New York, Paris, 1963).

University of Kansas, Lawrence, Kansas, USA.