Extensions of Continuous and Lipschitz Functions

Eva Matoušková

Abstract

We show a result slightly more general than the following. Let K be a compact Hausdorff space, F a closed subset of K, and d a lower semi-continuous metric on K. Then each continuous function f on F which is Lipschitz in d admits a continuous extension on K which is Lipschitz in d. The extension has the same supremum norm and the same Lipschitz constant.

As a corollary we get that a Banach space X is reflexive if and only if each bounded, weakly continuous and norm Lipschitz function defined on a weakly closed subset of X admits a weakly continuous, norm Lipschitz extension defined on the entire space X.

1 Introduction

The classical theorem of Tietze and Urysohn says that given a continuous function f on a closed subset F of a normal space T, there is a continuous extension \tilde{f} of f to all of T so that $\inf _{F} f \leq \tilde{f} \leq \sup _{F} f$. Kirszbraun's theorem ensures that any Lipschitz function defined on a subset of a metric space M can be extended to a Lipschitz function on M with the same Lipschitz constant (see e.g., [WW]). Given a normal space (T, τ) with some metric d on it, we examine when it is possible to extend every τ-continuous function Lipschitz in d defined on a τ-closed subset of T to a τ-continuous function Lipschitz in d defined on the entire space T. We show that every bounded, τ-continuous function Lipschitz in d defined on a τ-closed subset of T can be extended to a τ-continuous function Lipschitz in d defined on the entire space T with the same supremum and Lipschitz norm if and only if for each τ-closed subset F of T and $\varepsilon>0$ the set

$$
\{x \in T: d-\operatorname{dist}(F, x) \leq \varepsilon\}
$$

is τ-closed. We give also an "in between" version of this result; strict one in the case when (T, τ) is countably paracompact. As a corollary we get that if (K, τ) is a compact Hausdorff space, d a lower semi-continuous metric on K, F a τ-closed subset of $K, c>0$ and f a τ-continuous function on F which is c-Lipschitz in d then f admits a τ-continuous and c-Lipschitz extension \tilde{f} on K such that $\inf _{F} f \leq \tilde{f} \leq \sup _{F} f$. A special case of this result with f taking only values 0 and 1 and the extension \tilde{f} being "almost" c-Lipschitz appears in [GhMa] and [JNR].

As another corollary we get that each bounded, weak*-continuous and norm-Lipschitz function f defined on a weak*-closed subset of the dual X^{*} of a Banach space X admits

[^0]a weak*-continuous norm-Lipschitz extension on X^{*} which has the same supremum and Lipschitz norm as f.

It is easy to see (e.g., p. 214) that if each continuous Lipschitz function defined on a closed subset of a normal space (T, τ) with a metric d can be extended as above, then necessarily the metric d has to be lower semi-continuous with respect to τ. We give an example of a normal topological space (T, τ) with a lower semi-continuous metric on it (any separable nonreflexive Banach space with the weak topology and norm metric) and of a bounded, τ-continuous and 1-Lipschitz function f on a closed subset of T such that no τ-continuous extension of f is c-Lipschitz for any $c>0$. Namely, we show that if X is a nonreflexive Banach space, there exists a weakly closed subset F of the unit ball B and a weakly continuous, norm Lipschitz function f on F, such that no weakly continuous extension of f on B is norm Lipschitz. Thus we get that a Banach space X is reflexive if and only if each bounded, weakly continuous and norm Lipschitz function defined on a weakly closed subset of X admits a weakly continuous, norm Lipschitz extension defined on the entire space X.

The functions in the hypotheses of Tietze-Urysohn and Kirszbraun's theorems do not have to be bounded; in our setting, they do have to be bounded. We give an example of an unbounded, weakly continuous and norm-Lipschitz function f defined on a weakly closed subset of the separable Hilbert space ℓ_{2} such that no weakly-continuous extension of f on ℓ_{2} is c-Lipschitz for any $c>0$.

We consider only Hausdorff topological spaces. In the following, if (T, τ) is a topological space and d is some metric on T, if we do not specify which topology we mean, we always mean the topology τ, not the one defined on T by the metric d.

2 Extensions

Let X be a set and d a not necessarily symmetric pseudometric on X. By this we mean that $d: X \times X \rightarrow \Re, d \geq 0, d(x, x)=0, d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$, but not necessarily $d(x, y)=d(y, x)$. If $c>0$, we say that a function $f: X \rightarrow \Re$ is c-Lipschitz in d if $f(x)-f(y) \leq c d(x, y)$, for all $x, y \in X$. If Y and Z are subsets of X, then

$$
d-\operatorname{dist}(Y, Z)=\inf \{d(y, z): y \in Y, z \in Z\}
$$

whereas

$$
d-\operatorname{dist}(Z, Y)=\inf \{d(z, y): y \in Y, z \in Z\}
$$

By a slight abuse of notation we denote for $A \subset X$ and $\alpha>0$

$$
\begin{aligned}
d-B(A, \alpha) & =\{x \in X: d-\operatorname{dist}(A, x) \leq \alpha\} \\
d-B(\alpha, A) & =\{x \in X: d-\operatorname{dist}(x, A) \leq \alpha\}
\end{aligned}
$$

The specification " d-" will sometimes be omitted.
Suppose now that (X, τ) is a topological space, d is a (nonsymmetric) pseudometric on X and $f: X \rightarrow \Re$ is τ-continuous and 1-Lipschitz in d. Then the function $d^{\prime}: X \times X \rightarrow \Re$ defined as $d^{\prime}(x, y)=d(x, y)-(f(x)-f(y))$ is clearly also a nonsymmetric pseudometric on X. Suppose that d has the property that if $A \subset X$ is τ-closed and $\alpha>0$ then both
the sets d - $B(A, \alpha)$ and $d-B(\alpha, A)$ are τ-closed. Then d^{\prime} also has this property. Indeed, let $x \in X \backslash d^{\prime}-B(A, \alpha)$ be arbitrary. Then there is some $\varepsilon>0$ so that $d^{\prime}(a, x)=d(a, x)-$ $(f(a)-f(x))>\alpha+\varepsilon$ for all $a \in A$. Choose an open set $U_{1} \subset X$ so that $x \in U_{1}$ and $|f(x)-f(y)|<\varepsilon / 4$ for each $y \in U_{1}$. Let $\beta=\sup _{a \in A}\{0, f(a)-f(x)+\alpha+\varepsilon / 2\}$. If $\beta=0$ put $U_{2}=X \backslash A$, otherwise let $U_{2}=X \backslash d-B(A, \beta)$; in both cases $x \in U_{2}$. Let $y \in U=U_{1} \cap U_{2}$ and $a \in A$ be arbitrary. Then

$$
\begin{aligned}
d^{\prime}(a, y) & =d(a, y)-(f(a)-f(y)) \geq \beta-(f(a)-f(x))-(f(x)-f(y)) \\
& >\alpha+\varepsilon / 4
\end{aligned}
$$

This means that $U \cap d^{\prime}-B(A, \alpha)=\varnothing$, and the set $d^{\prime}-B(A, \alpha)$ is closed. Similarly we get that the set $d^{\prime}-B(\alpha, A)$ is closed.

The following Urysohn-like lemma is a mild extension of a result contained in [JNR]; we give only an outline of the proof. We use the following elementary property of F_{σ} sets: let X be a normal space and $A, B \subset X$ be F_{σ} sets such that $\bar{A} \cap B=A \cap \bar{B}=\varnothing$. Then there exists an open set $U \subset X$ so that $A \subset U$ and $\bar{U} \cap B=\varnothing$.

Lemma 2.1 Let (X, τ) be a normal space and d be a (nonsymmetric) pseudometric on X with the property that if $A \subset X$ is τ-closed and $\alpha>0$ then both the sets $d-B(A, \alpha)$ and d - $B(\alpha, A)$ are τ-closed. Suppose F_{0} and F_{1} are τ-closed disjoint nonempty subsets of X with

$$
d\left(x_{1}, x_{0}\right) \geq 1 \quad \text { for } x_{1} \in F_{1} \text { and } x_{0} \in F_{0}
$$

Then there exists $f: X \rightarrow[0,1]$ continuous in τ and 1-Lipschitz in d, taking the value 0 on F_{0} and the value 1 on F_{1}.

Proof First observe that if $F \subset X$ is closed and $\alpha>0$ then the set

$$
\{x \in X: \operatorname{dist}(F, x)<\alpha\}=\bigcup_{\frac{1}{n}<\alpha} B\left(F, \alpha-\frac{1}{n}\right)
$$

hence it is an F_{σ} set. Similarly the set $\{x \in X: \operatorname{dist}(x, F)<\alpha\}$ is F_{σ}.
Let Q be the set of all rational numbers in $(0,1)$. Enumerate $Q \cup\{0,1\}$ so that $r_{0}=$ $0, r_{1}=1, r_{2}, \ldots$. We use the convention that $U_{0}=\bar{U}_{0}=F_{0}$ (this means that unlike the other U 's U_{0} is a closed set; it can have even empty interior) and $U_{1}=X \backslash F_{1}$. We construct a family of open sets $\left\{U_{r}: r \in Q\right\}$ in X so that:
(i) for $s, t \in Q \cup\{0,1\}, s<t$, and any $x \in \bar{U}_{s}, y \in X \backslash U_{t}$, we have $d(y, x) \geq t-s$.

Suppose that for some $n \geq 1$, the sets $U_{r_{i}}, 0 \leq i \leq n$, have been chosen so that (i) holds for all choices of s, t from $\left\{r_{0}, r_{1}, \ldots, r_{n}\right\}$. The set $U_{r_{n+1}}$ will be chosen in the following way. Write $r=r_{n+1}$ and

$$
\begin{aligned}
& S=\left\{r_{j}: 0 \leq j \leq n, r_{j}<r\right\}, \\
& T=\left\{r_{j}: 0 \leq j \leq n, r<r_{j}\right\} .
\end{aligned}
$$

Put

$$
\begin{gathered}
A=\bigcup_{s \in S}\left\{x \in X: \operatorname{dist}\left(x, \bar{U}_{s}\right)<r-s\right\} \\
A^{\prime}=\bigcup_{s \in S} B\left(r-s, \bar{U}_{s}\right) \\
B=\bigcup_{t \in T}\left\{x \in X: \operatorname{dist}\left(X \backslash U_{t}, x\right)<t-r\right\} \\
B^{\prime}=\bigcup_{t \in T} B\left(X \backslash U_{t}, t-r\right) .
\end{gathered}
$$

Both A and B are F_{σ} sets; the sets A^{\prime} and B^{\prime} are closed and $A \subset A^{\prime}$ and $B \subset B^{\prime}$. By (i) we have that $A^{\prime} \cap B=A \cap B^{\prime}=\varnothing$. Therefore there exists an open set U_{r} so that

$$
A \subset U_{r} \quad \text { and } \quad \bar{U}_{r} \cap B=\varnothing
$$

If we define a function f on X by taking f to be 1 on F_{1}, and

$$
f(x)=\inf \left\{r: x \in U_{r}, r \in Q\right\} \quad \text { for } x \in U_{1}
$$

then f is continuous by the proof of Urysohn's lemma [K, p. 114]. If $x, y \in X$ and $f(x)=$ $a<b=f(y)$ then for all $a<s<t<b$ we have $x \in U_{s}$ and $y \in X \backslash U_{t}$. Hence

$$
d(y, x) \geq \operatorname{dist}\left(X \backslash U_{t}, U_{s}\right) \geq s-t
$$

and $d(y, x) \geq b-a=f(y)-f(x)$, which means that f is 1-Lipschitz in d.
Theorem 2.2 Let (K, τ) be a normal topological space, and d be a metric on K such that the set $B(A, \varepsilon)$ is τ-closed for each τ-closed $A \subset K$ and $\varepsilon>0 ; c>0$. Let $g \leq h$ be bounded functions on K so that $g(x)-h(y) \leq c d(x, y)$ for each $x, y \in K$. If g is upper semi-continuous in τ, and h is lower semi-continuous in τ then there exists a function f on K which is τ-continuous, c-Lipschitz in d, and $g \leq f \leq h$.

Proof By adding a constant and multiplying by a constant of g and h we can suppose that $-1 \leq g \leq h \leq 1$; by multiplying the metric by a constant we can suppose that $c=1$. Put $g_{0}=g, h_{0}=h$, and $d_{0}=d$. As in the proof of Tietze's theorem we proceed by induction. Suppose that d_{k} is a (nonsymmetric) pseudometric on K satisfying the assumptions of Lemma 2.1 and $g_{k} \leq h_{k}$ are functions on K so that $g_{k} \leq 2^{k} 3^{-k}, h_{k} \geq-2^{k} 3^{-k}$, $g_{k}(x)-h_{k}(y) \leq d_{k}(x, y)$ for each $x, y \in K$; g_{k} is upper semi-continuous in τ, and h_{k} is lower semi-continuous in τ. Put

$$
\begin{gathered}
G_{k}=\left\{x \in K: g_{k}(x) \geq \frac{2^{k}}{3^{k+1}}\right\} \\
H_{k}=\left\{x \in K: h_{k}(x) \leq-\frac{2^{k}}{3^{k+1}}\right\} .
\end{gathered}
$$

It is $d_{k}(x, y) \geq 2^{k+1} 3^{-(k+1)}$ for any $x \in G_{k}$ and $y \in H_{k}$ and by Lemma 2.1 there exists a τ-continuous function ψ_{k} which is 1-Lipschitz in $d_{k},-2^{k} 3^{-(k+1)} \leq \psi_{k} \leq 2^{k} 3^{-(k+1)}, \psi_{k}=$ $-2^{k} 3^{-(k+1)}$ on H_{k} and $\psi_{k}=2^{k} 3^{-(k+1)}$ on G_{k}. (If one of the sets G_{k}, H_{k}, say G_{k}, is empty, we put $\psi_{k}=-2^{k} 3^{-(k+1)}$; if $G_{k}=H_{k}=\varnothing$, we set $\psi_{k}=0$.) Put $g_{k+1}=g_{k}-\psi_{k}, h_{k+1}=h_{k}-\psi_{k}$, and $d_{k+1}(x, y)=d_{k}(x, y)-\left(\psi_{k}(x)-\psi_{k}(y)\right)$ for $x, y \in K$. By the remarks preceding Lemma 2.1, d_{k+1} is a pseudometric which satisfies the assumptions of Lemma 2.1. Clearly, $g_{k+1} \leq h_{k+1}, g_{k+1} \leq 2^{k+1} 3^{-(k+1)}, h_{k+1} \geq-2^{k+1} 3^{-(k+1)}, g_{k+1}(x)-h_{k+1}(y) \leq d_{k+1}(x, y)$ for each $\bar{x}, y \in K ; g_{k+1}$ is upper semi-continuous in τ, and h_{k+1} is lower semi-continuous in τ. Put $f=\sum_{k=0}^{\infty} \psi_{k}$. Then f is well defined and τ-continuous; $-1 \leq f \leq 1$. From the construction it follows that

$$
\begin{gathered}
g-\sum_{i=0}^{k} \psi_{i}=g_{k+1} \leq 2^{k+1} 3^{-(k+1)} \quad \text { and } \\
h-\sum_{i=0}^{k} \psi_{i}=h_{k+1} \geq-2^{k+1} 3^{-(k+1)}
\end{gathered}
$$

for $k \in \mathbb{N}$, hence $g \leq f \leq h$. By induction we have also that $d_{k+1}(x, y)=d(x, y)-$ $\sum_{i=0}^{k}\left(\psi_{i}(x)-\psi_{i}(y)\right)$ for $k \in \mathbb{N}$ and $x, y \in K$. Since

$$
\psi_{k+1}(x)-\psi_{k+1}(y) \leq d_{k+1}(x, y)=d(x, y)-\sum_{i=0}^{k}\left(\psi_{i}(x)-\psi_{i}(y)\right)
$$

we have

$$
\sum_{i=0}^{k+1}\left(\psi_{i}(x)-\psi_{i}(y)\right) \leq d(x, y)
$$

for $k \in \mathbb{N}$ and $x, y \in K$ which means that f is 1 -Lipschitz in d.
If (K, τ) is a normal space and d is a discrete metric on K (that is $d(x, y)=1$ if $x \neq y$), then d satisfies the assumptions of Theorem 2.2 and any function φ on K with $0 \leq \varphi \leq 1$ is 1-Lipschitz in d. Therefore by a theorem of Dowker and Katětov (see [E, p. 428]) if we wish to have sharp inequalities in Theorem 2.2 we have to assume that (K, τ) is countably paracompact. Also, we have to assume that both g and h are c-Lipschitz as the example of $c=1, K=\{-1\} \cup(0,1], g(-1)=1, h(-1)=2$, and $g(x)=0, h(x)=x^{2}$ for $x \in(0,1]$ shows.

Proposition 2.3 Let (K, τ) be normal and countably paracompact, and d be a metric on K such that the set $B(A, \varepsilon)$ is τ-closed for each τ-closed $A \subset K$ and $\varepsilon>0 ; c>0$. Let $g<h$ be bounded functions on K, both c-Lipschitz in d. If g is upper semi-continuous in τ, and h is lower semi-continuous in τ then there exists a function f on K which is τ-continuous, c-Lipschitz in d, and $g<f<h$.

Proof First we show that there is a τ-continuous function f_{1} on K which is c-Lipschitz in d and for which $g<f_{1} \leq h$. Similarly one shows that there is f_{2} with $g \leq f_{2}<h$, and $f=\frac{1}{2}\left(f_{1}+f_{2}\right)$ is the required function.

For each pair of rational numbers $r<s$ put

$$
U_{r, s}=\{x \in K: g(x)<r<s<h(x)\} .
$$

The lower semi-continuity of g and h implies that each $U_{r, s}$ is open (possibly empty). Since $g<h, \mathcal{U}=\left\{U_{r, s}\right\}$ is a countable open cover of K. Let $\mathcal{V}=\left\{V_{r, s}\right\}$ be a closed cover of K with $V_{r, s} \subset U_{r, s}$; it exists since (K, τ) is countably paracompact (see e.g., [E, p. 393]). Put

$$
g_{r, s}(x)= \begin{cases}g(x), & \text { if } x \in X \backslash V_{r, s} \\ g(x)+s-r, & \text { if } x \in V_{r, s}\end{cases}
$$

Then $g \leq g_{r, s} \leq h$ and $g_{r, s}>g$ on $V_{r, s}$. If $\alpha \in \Re$, then

$$
\left\{x \in K: g_{r, s}(x) \geq \alpha\right\}=\{x \in K: g(x) \geq \alpha\} \cup\left\{x \in V_{r, s}: g(x) \geq \alpha-(s-r)\right\}
$$

since g is upper semi-continuous these sets are closed and $g_{r, s}$ is also upper semi-continuous. If $x, y \in K$ then $g_{r, s}(x)-h(y) \leq h(x)-h(y) \leq c d(x, y)$. By Theorem 2.2 there is a τ continuous function $\varphi_{r, s}$ on K which is c-Lipschitz in d with $g_{r, s} \leq \varphi_{r, s} \leq h$. Re-index the functions φ by natural numbers and put $f_{1}=\sum_{i=1}^{\infty} 2^{-i} \varphi_{i}$. Then f_{1} is τ-continuous, c-Lipschitz in d and $g \leq f_{1} \leq h$. Since \mathcal{V} covers K it is even $g<f_{1}$ on K.

Theorem 2.4 Let (K, τ) be a normal topological space, and d be a metric on K such that the set $B(A, \varepsilon)$ is τ-closed for each τ-closed $A \subset K$ and $\varepsilon>0$; let $c>0$. Let $F \subset K$ be closed, f be a bounded and τ-continuous function on F which is c-Lipschitz in d. Then there is a τ-continuous function \tilde{f} on K such that $\tilde{f}=f$ on $F, \inf _{F} f \leq \tilde{f} \leq \sup _{F} f$, and \tilde{f} is c-Lipschitz in d.

Proof Define functions g and h on K so that $g=h=f$ on $F, g=\inf _{F} f$ on $K \backslash F$, and $h=\sup _{F} f$ on $K \backslash F$. It is easy to see that g and h satisfy the conditions of Theorem 2.2, hence there exists a continuous function \tilde{f} defined on K which is c-Lipschitz in d and $g \leq \tilde{f} \leq h$.

There is a converse to the above theorem. Namely suppose there exists a closed set $A \subset K$ and $r>0$ such that $B(A, r)$ is not closed. Choose some $z \in \overline{B(A, r)} \backslash B(A, r)$, and put $R=\operatorname{dist}(A, z)$. Then $r<R$ and the function

$$
g(x)= \begin{cases}0, & \text { if } x \in A \\ R, & \text { if } x=z\end{cases}
$$

is a continuous 1-Lipschitz function on the closed set $F=A \cup\{z\}$. Suppose g admits a continuous 1-Lipschitz extension f to K. If $u \in B(A, r)$, and $\varepsilon>0$ then there exists $v \in A$ so that $d(u, v)<r+\varepsilon$, hence

$$
f(u)=f(u)-f(v) \leq d(u, v)<r+\varepsilon .
$$

Since f is continuous, $f \leq r$ on $\overline{B(A, r)}$, which is a contradiction.

A metric d on a topological space K is lower semi-continuous, if d is lower semi-continuous as a real valued function on $K \times K$, that is, the set

$$
\{(x, y) \in K \times K: d(x, y) \leq \varepsilon\}
$$

is closed for all $\varepsilon>0$. Notice that the metric d in the previous theorem is necessarily lower semi-continuous. Indeed, given any two points $s, t \in K$, by Theorem 2.4 there exists a continuous function $f=f_{s, t}$ on K such that $0 \leq f \leq d(s, t), f(s)=0, f(t)=d(s, t)$, and f is 1-Lipschitz in d. If we put

$$
\rho(s, t)=\sup \left\{\left|f_{u, v}(s)-f_{u, v}(t)\right|: u, v \in K\right\}
$$

then clearly $d=\rho$ and ρ is lower semi-continuous on $K \times K$ as a pointwise supremum of a family of continuous functions. If K is a compact Hausdorff space, we get by the following corollary that a metric d on K is lower semi-continuous if and only if it has the property required in Theorem 2.4.

Corollary 2.5 Let K be a compact Hausdorff space, d a lower semi-continuous metric on K, $F \subset K$ closed and $c>0$. Let $g \in C(F)$ be c-Lipschitz in d. Then there exists $f \in C(K)$ such that $f=g$ on $F, \min _{F} g \leq f \leq \max _{F} g$, and f is c-Lipschitz in d.

Proof Let $A \subset K$ be closed, and $\varepsilon>0$. If $z \in K$ than $\operatorname{dist}(A, z)=\inf _{A \times\{z\}} d$, and since $A \times\{z\}$ is compact and d is lower semi-continuous, the infimum is attained. Hence

$$
B(A, \varepsilon)=p_{2}((A \times K) \cap\{(x, y) \in K \times K: d(x, y) \leq \varepsilon\})
$$

where p_{2} is the projection on the second coordinate. Since A and K are compact and p_{2} is continuous, the set $B(A, \varepsilon)$ is closed.

Corollary 2.6 Let X be a Banach space and F a weak*-closed subset of the dual X^{*} of X; $c>0$. Let g be a bounded, weak*-continuous function on F which is c-Lipschitz in the normmetric on X^{*}. Then there exists a weak ${ }^{*}$-continuous function f on X^{*} such that $f=g$ on F, $\inf _{F} g \leq f \leq \sup _{F} g$, and f is c-Lipschitz in the norm-metric on X^{*}.

Proof Since $\left(X^{*}\right.$, weak $\left.{ }^{*}\right)$ is σ-compact, it is Lindelöf. From the definition of the weak ${ }^{*}$ topology it follows easily that it is regular. By a theorem of Tychonoff (see e.g., [K, p. 113]) $\left(X\right.$, weak $\left.^{*}\right)$ is normal. Let $A \subset X^{*}$ be weak*-closed and $\varepsilon>0$. Observe that $B(A, \varepsilon)=$ $A+B(0, \varepsilon)$; the latter set is closed since it is a sum of a weak*-closed set and of a weak*compact set. Indeed, if $z \in X^{*}$ and $\operatorname{dist}(A, z) \leq \varepsilon$, then $C=A \cap B(z, 2 \varepsilon)$ is a nonempty weak *-compact set with $\operatorname{dist}(C, z) \leq \varepsilon$. The function $h(x)=\|x-z\|$ is weak ${ }^{*}$-lower semicontinuous, hence it attains its minimum at some point $y \in C \subset A$. Then $\|y-z\| \leq \varepsilon$, and $z \in(y+B(0, \varepsilon))$.

3 Examples

As we have seen above, τ-lower semi-continuity of the metric d is a necessary condition for the conclusion of Theorem 2.4 to be valid. It is not sufficient, though; the next theorem shows that each separable nonreflexive Banach space equipped with the weak topology and norm metric provides an example. Indeed, the norm-metric on any Banach space is lower semi-continuous in the weak topology; weak topology is easily seen to be regular, separable Banach spaces are Lindelöf and therefore normal in the weak topology (see e.g., [K, p. 113]).

Theorem 3.1 Let X be a Banach space. Then X is not reflexive if and only if there exists a bounded, weakly closed subset F of X and a weakly continuous function g on F which is 1-Lipschitz in norm such that no continuous extension of g on X is c-Lipschitz for any $c>0$.

Proof If X is reflexive then X is a dual of X^{*} and the weak and weak* topology are the same; every weakly-continuous f which is Lipschitz in norm admits an extension by Corollary 2.6.

Suppose that X is not reflexive. Fix $0<\delta<1$. We will construct a weakly closed set $F_{\delta} \subset B(0,2)$ such that $\operatorname{dist}\left(F_{\delta}, 0\right) \geq \frac{1}{2}$, and $0 \in{\overline{F_{\delta}+B(0, \delta)}}^{\text {weak }}$. Recall that since X is nonreflexive by a result of James [Ja] there exists a sequence $\left\{u_{n}\right\}_{\mathbb{N}}$ in the unit ball of X so that for each $n \in N$

$$
\begin{equation*}
\operatorname{dist}\left(\operatorname{span}\left\{u_{i}\right\}_{i=1}^{n}, \operatorname{conv}\left\{u_{i}\right\}_{i=n+1}^{\infty}\right)>1-\frac{1}{3} \delta \tag{1}
\end{equation*}
$$

Put

$$
F_{\delta}=\left\{u_{j}-(1-\delta) u_{i}: i, j \in \mathbb{N}, i<j\right\}
$$

Then clearly $F_{\delta} \subset B(0,2)$, and by (1) $\operatorname{dist}\left(F_{\delta}, 0\right) \geq \frac{1}{2}$. Let $z \in{\overline{F_{\delta}}}^{\text {weak }}$ be given. Then z is contained in the norm-closure of span $\left\{u_{i}\right\}_{i=1}^{\infty}$. Choose $n \in \mathbb{N}$ so that

$$
\operatorname{dist}\left(\operatorname{span}\left\{u_{i}\right\}_{i=1}^{n}, z\right)<\frac{1}{3} \delta,
$$

and $v \in \operatorname{span}\left\{u_{i}\right\}_{i=1}^{n}$ so that $\|v-z\|<\frac{1}{3} \delta$. By the Hahn-Banach theorem choose z^{*} from the unit ball of X^{*} so that $z^{*}=0$ on span $\left\{u_{i}\right\}_{i=1}^{n}$ and

$$
\left\langle z^{*}, x\right\rangle>1-\frac{1}{3} \delta
$$

for all $x \in \operatorname{conv}\left\{u_{i}\right\}_{i=n+1}^{\infty}$. Then for each for each $i, j \in \mathbb{N}$ such that $i<j$ and $n<j$

$$
\begin{aligned}
\left\langle z^{*}, u_{j}-(1-\delta) u_{i}-z\right\rangle & =\left\langle z^{*}, u_{j}\right\rangle-(1-\delta)\left\langle z^{*}, u_{i}\right\rangle+\left\langle z^{*}, v-z\right\rangle-\left\langle z^{*}, v\right\rangle \\
& >1-\frac{1}{3} \delta-(1-\delta)-\frac{1}{3} \delta-0=\frac{1}{3} \delta .
\end{aligned}
$$

Since the set $\left\{u_{j}-(1-\delta) u_{i}: i, j \in \mathbb{N}, i<j \leq n\right\}$ is finite, $z \in F_{\delta}$.
To show that $0 \in{\overline{F_{\delta}+B(0, \delta)}}^{\text {weak }}$, let $x_{1}^{*}, \ldots, x_{n}^{*}$ in the unit ball of X^{*} and $\varepsilon>0$ be given. Observe that

$$
\left\{u_{j}-u_{i}: i, j \in \mathbb{N}, i<j\right\} \subset F_{\delta}+B(0, \delta)
$$

Since for each $1 \leq l \leq n$ the sequence $\left(\left\langle x_{l}^{*}, u_{i}\right\rangle\right)_{i \in \mathbb{N}}$ is bounded, there exist $a_{1}, \ldots, a_{n} \in \Re$ and a subsequence $\left(u_{k_{i}}\right)_{i \in \mathbb{N}}$ of $\left(u_{i}\right)_{i \in \mathbb{N}}$ such that

$$
\left|\left\langle x_{l}^{*}, u_{k_{i}}\right\rangle-a_{l}\right|<\frac{\varepsilon}{2}
$$

for each $1 \leq l \leq n$ and $i \in \mathbb{N}$. Consequently

$$
\left|\left\langle x_{l}^{*}, u_{k_{2}}-u_{k_{1}}\right\rangle\right|<\varepsilon
$$

for each $1 \leq l \leq n$, and 0 is in the weak closure of $F_{\delta}+B(0, \delta)$.
Now choose a bounded sequence $\left(z_{n}\right)$ in X such that

$$
\operatorname{dist}\left(\operatorname{span}\left\{z_{i}\right\}_{i=1}^{n-1}, \operatorname{conv}\left\{z_{i}\right\}_{i=n}^{\infty}\right)>5
$$

for each $n \in \mathbb{N}$. Put $F=\left\{z_{n}\right\}_{n=2}^{\infty} \cup \bigcup_{n=2}^{\infty} F_{\frac{1}{n}}+z_{n}$. The set $\bigcup_{n=2}^{\infty} F_{\frac{1}{n}}+z_{n}$ is weakly closed since each $F_{\frac{1}{n}}+z_{n}$ is weakly closed and

$$
\operatorname{dist}\left(\operatorname{conv} \bigcup_{i=2}^{n-1} F_{\frac{1}{i}}+z_{i}, \operatorname{conv} \bigcup_{i=n}^{\infty} F_{\frac{1}{i}}+z_{i}\right) \geq 1
$$

for each $n \geq 3$. Since $\left\{z_{n}\right\}_{\mathbb{N}}$ is weakly closed, F is weakly closed as well. Define

$$
g(x)= \begin{cases}0, & \text { if } x \in \bigcup_{n=2}^{\infty}\left(F_{\frac{1}{n}}+z_{n}\right) \\ \frac{1}{2}, & \text { if } x \in\left\{z_{n}\right\}_{n=2}^{\infty}\end{cases}
$$

It is readily seen that g is a weakly continuous and 1-Lipschitz function. Suppose $n \in \mathbb{N}$ and f is a weakly continuous, n-Lipschitz extension of g on X. Let $x \in B\left(z_{4 n}+F_{\frac{1}{4 n}}, \frac{1}{4 n}\right)$ be arbitrary; choose $y \in\left(z_{4 n}+F_{\frac{1}{4 n}}\right)$ so that $\|x-y\| \leq \frac{1}{3 n}$. Then

$$
f(x)=f(x)-f(y) \leq n\|x-y\| \leq \frac{1}{3}
$$

Hence $f \leq \frac{1}{3}$ on $B\left(z_{4 n}+F_{\frac{1}{4 n}}, \frac{1}{4 n}\right)$, and since $z_{4 n} \in{\left.\overline{B\left(z_{4 n}+F_{\frac{1}{4 n}}, \frac{1}{4 n}\right.}\right)}_{\text {weak }}$, this is a contradiction.
The following example shows that unlike Tietze-Urysohn and Kirszbraun's theorems, the function in the hypothesis of Theorem 2.4 has to be bounded.

Example 3.2 There exists a weakly closed subset F of the Hilbert space ℓ_{2} and an unbounded, weakly continuous function g on F which is 1-Lipschitz in norm, such that no continuous extension of g on ℓ_{2} is c-Lipschitz for any $c>0$.

Let $\left(e_{i}\right)_{\mathbb{N}_{o}}$ be the canonical basis of ℓ_{2}. Define

$$
\begin{gathered}
x^{n}=n^{\frac{1}{4}} e_{o}+n^{\frac{1}{2}} e_{n} \\
y^{n}=n^{\frac{1}{2}} e_{n} ;
\end{gathered}
$$

observe that zero is in the weak closure of the set $\left\{y^{k}\right\}_{k \geq n}$ for each $n \in \mathbb{N}$. Indeed if $\alpha=\left(\alpha_{i}\right) \in \ell_{2}, \varepsilon>0$ then there exists $k \geq n$ so that $\left|\left\langle y^{k}, \alpha\right\rangle\right|=\left|k^{\frac{1}{2}} \alpha_{k}\right|<\varepsilon$: otherwise $\left|\alpha_{k}\right| \geq \varepsilon k^{-\frac{1}{2}}$ for $k \geq n$ and $\left(\alpha_{i}\right) \notin \ell_{2}$. Similarly one can argue for finitely many α 's.

Put $F=\left\{x^{n}\right\}_{\mathbb{N}}, F_{n}=\left\{x^{m}: n \leq m\right\}$. Since $\lim _{m \rightarrow \infty} x_{o}^{m}=\infty$, each of the sets F_{n} is weakly closed, and the function $g: F \rightarrow \Re$ defined by $g\left(x^{n}\right)=n^{\frac{1}{2}}$ is continuous. Since for $n>m$

$$
\left|g\left(x^{n}\right)-g\left(x^{m}\right)\right|=n^{\frac{1}{2}}-m^{\frac{1}{2}} \leq(n+m)^{\frac{1}{2}} \leq\left(\left(n^{\frac{1}{4}}-m^{\frac{1}{4}}\right)^{2}+n+m\right)^{\frac{1}{2}}=\left\|x^{n}-x^{m}\right\|
$$

the function g is 1-Lipschitz. Suppose f is a weakly continuous, c-Lipschitz extension of g on ℓ_{2}; denote $a=f(0)$. Choose $n \in \mathbb{N}$ so that if $m \geq n$ then

$$
m^{\frac{1}{2}}-c m^{\frac{1}{4}} \geq a+1
$$

Then for $m \geq n$

$$
f\left(y^{m}\right) \geq f\left(x^{m}\right)-c\left\|y^{m}-x^{m}\right\|=m^{\frac{1}{2}}-c m^{\frac{1}{4}} \geq a+1
$$

Since zero is in the closure of the set $\left\{y^{m}\right\}_{m \geq n}, f(0) \geq a+1$ which is a contradiction.
Acknowledgment I would like to thank Yoav Benyamini and Luděk Zajíček for stimulating discussions on the subject of this paper, and David Preiss for explaining a simplification of the proof of Theorem 2.2 to me.

References

$[\mathrm{E}]$	P. Engelking, General Topology. PWN, Warszawa, 1977.
$[\mathrm{GhMa}]$	N. Ghoussoub and B. Maurey, H Math. Soc. 62, Providence, 1986.
$[\mathrm{Ja}]$	R. C. James, Weak compactness and reflexivity. Israel J. Math. 2(1964), 101-119.
$[J \mathrm{NR}]$	J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets. Collect. Math. (1) 41(1990), 133-163.
$[\mathrm{K}]$	J. L. Kelley, General topology. D. Van Nostrand Comp., New York, 1968.
$[\mathrm{WW}]$	J. H. Wells and L. R. Williams, Embeddings and extensions in analysis. Springer-Verlag, Berlin, 1975.

Mathematical Institute

Czech Academy of Sciences
Žitná 25
CZ-11567 Prague
Czech Republic
email: matouse@matsrv.math.cas.cz

[^0]: Received by the editors July 9, 1998.
 The author was partially supported by the Czech Academy of Sciences grant GAAV-V1019705, and by a grant of the Austrian Ministry of Education.

 AMS subject classification: Primary: 54C20; secondary: 46B10.
 Keywords: extension, continuous, Lipschitz, Banach space.
 (c) Canadian Mathematical Society 2000.

