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Machine Learning (ML) has seen significant performance improvements, due to breakthroughs in 

algorithm design, such as Deep Learning [1], improvements in computing power, and an abundance of 

data to train ML algorithms. One popular subcategory of ML is Supervised ML [2]. The premise of 

Supervised ML is that an algorithm is trained using a pre-labelled dataset.  The trained algorithm is then 

be used to make inferences about data outside of the training dataset. 

 

This has proved to be a successful application of ML for inference, but it has some limitations. For 

example, the data undergoes manual labelling before algorithm training. This is a time-consuming task. 

Another problem is a dearth of labelled data with which to train a neural network. ImageNet [3] is a 

benchmark dataset used for testing ML algorithms in the computer vision community. It consists of 3.2 

million images from 5247 labelling categories. No benchmark datasets of similar size and extent exist in 

microscopy. Most datasets consist of 10s to 100s of images, with no labelling of what is in these images 

as part of their metadata, which would be useful for ML image classification applications. ML 

segmentation algorithms require even more sophisticated labelling than this. Segmentation algorithms 

require per pixel labelling for each image in the training dataset. 

 

One potential solution to a dearth of such data is to make use of synthetic data. In Transmission Electron 

Microscopy (TEM), this is generated data, which closely resembles data outputs from a TEM. Synthetic 

data has the advantage of being automatically segmented and labelled during data generation. The 

generated dataset is used to train a ML algorithm, which can segment particles of interest in 

experimental TEM images. Synthetic data to train ML algorithms has already seen success when applied 

to autonomous driving and the segmentation of nuclei in cells [5, 10]. 

 

In this work, we demonstrate how a synthetic image generator can be used to train ML algorithms that 

detect particles in TEM produced images. The TEM images consist of silica particles on a lacey-carbon 

grid substrate, with an ultrathin layer of amorphous carbon beneath. We also demonstrate the 

measurement of the particle’s dimensions post detection, using a bespoke edge detection method, and 

compare these measurements to those carried out manually by a domain expert. 

 

The ML algorithms detailed in this work were trained using synthetic data alone. A synthetic data 

generator was developed to produce images that resemble features in the TEM data, including variations 

in magnification, brightness, and texture. The synthetic data generator creates images using a series of 

image manipulation and shape generation techniques, such as the generation of Voronoi tessellations to 

mimic the lacey-carbon grid, and the use of a Sobel filter to recreate the lacey-carbon grid edge effects. 

These techniques were carried out using common python packages, such as OpenCV [6], SciPy [7] and 

NumPy [8]. Figure 1 shows an example of a synthetic TEM image. 
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Using this synthetic data generator, a user defined number of images and labelling masks can be 

generated. To account for the range of magnifications in the TEM data, three separate algorithms were 

trained, each one trained with synthetic images for a particular magnification range. The U-Net ML 

architecture [9] was used for each algorithm and each one was trained on 1,000 training images and 300 

validation images from the synthetic generator. 

 

Once the algorithms had been trained successfully, analysis of the TEM data was carried out by passing 

the data through one of the three ML algorithms. The TEM micrograph dataset consists of 32 images at 

2k resolution, with 4 different magnifications present. Each image passes to one of the three ML 

algorithms depending on the image’s magnification. The ML particle prediction for each image is then 

passed through a filtering process to remove any erroneous features in each prediction. 102 particles out 

of 115 visible in the images were detected by the ML algorithms, an 88.7% detection rate. Figure 1 

shows an example of a TEM image, with two particles having been detected. 

 

The detected particles are then measured using a bespoke edge detection technique. Ninety cross-

sections of each particle are taken at evenly spaced degrees of rotation azimuthally. Each cross-section is 

then analyzed to estimate the particle’s edges. The cross-section is pre-processed using an average kernel 

and by finding the derivative between consecutive points. The perimeter of each particle is found by 

getting the best fit circumference using all the edge detections for a particle. This fitting is done using a 

statistical technique known as Functional Data Analysis (FDA). The best fit bounding box dimensions 

for this edge estimate provides the data for the major and minor axis lengths of each particle. Figure 2 

shows edge predictions for two particles. 

 

To gauge the accuracy of the major and minor axis measurements, the particles were manually measured 

too and so a comparison could be made. The manual measurements for the 115 particles gave an average 

major axis length of 182.96nm ± 26.97nm and an average minor axis length of 170.13nm ± 27.42nm. 

The combined particle detection and measurement program gave an average major axis length of 

186.93nm ± 23.41nm and an average minor axis measurement of 173.06nm ± 19.13nm. The automated 

measurements are within the error margin of the manual measurements, demonstrating the preciseness 

of the automatic edge detection method. 

 

We have shown how a synthetic image generator combined with supervised ML can be used to detect 

and segment particles of interest in TEM micrographs. The measurements obtained from this method 

compare with those carried out manually by a human expert [11]. 
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Figure 1. An example of a synthetically generated TEM image (left) and a TEM micrograph with two 

particles detected using ML within it. 

 

 

 

  
Figure 2. The results of the edge detection program for two separate particles. The red data points are 

the particle edge points detected for each cross-sectional particle profile; the blue line is the best-fit line 

for these particle edge detections. 
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